electrothermal analytical response inspection of

139
AP-AJII $as Z-cfP-L AD AD-E400 796 CONTRACTOR REPORT ARPAD-CR-82001 ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF ELECTROEXPLOSIVE DEVICES CHARLES T. DAVEY JOSEPH F. HEFFRON FRANKLIN RESEARCH CENTER 20TH STREET AND THE PARKWAY PHILADELPHIA. PA 19103 LAURENCE V. MEYERS PROJECT ENGINEER ARRADCOM MARCH 1982 TECHNICAL} . LIBRARY US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND PRODUCT ASSURANCE DIRECTORATE DOVER, NEW JERSEY APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Upload: others

Post on 11-Jun-2022

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

AP-AJII $as Z-cfP-L AD

AD-E400 796

CONTRACTOR REPORT ARPAD-CR-82001

ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION

OF ELECTROEXPLOSIVE DEVICES

CHARLES T. DAVEY JOSEPH F. HEFFRON

FRANKLIN RESEARCH CENTER 20TH STREET AND THE PARKWAY

PHILADELPHIA. PA 19103

LAURENCE V. MEYERS PROJECT ENGINEER

ARRADCOM

MARCH 1982

TECHNICAL} . LIBRARY

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND PRODUCT ASSURANCE DIRECTORATE

DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Page 2: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

The views, opinions, and/or findings contained in this report are those of the author and should not be construed as an official Department of the Army position, policy or decision, unless so desig- nated by other documentation.

Destroy this report when no longer needed. Do not return to the originator.

The citation in this report of the names of com- mercial firms or commercially available products or services does not constitute official endorse- ment or approval of such commercial firms, prod- ucts, or services bv the US Government.

Page 3: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE 1. REPORT NUMBER

Contractor Report ARPAD-CR-82001

2. GOVT ACCESSION NO

4. TITLE (and Subtitle)

ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF ELECTROEXPLOSIVE DEVICES

READ INSTRUCTIONS BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED

Final Report June 1979 tn Qficfinhar i98i 6. PERFORMING ORG. REPORT NUMBER

7. AUTHORO)

Charles T. Davey and Joseph F. Heffron Franklin Research Center Laurence V. Meyers, Project Engineer, ARRADCOM 9. PERFORMING ORGANIZATION NAME AND ADDRESS

Franklin Research Center 20th Street and The Parkway Philadelphia, PA 19103 II. CONTROLLING OFFICE NAME AND ADDRESS

ARRADCOM, TSD STINFO Div (DRDAR-TSS) Dover, NJ 07801

8. CONTRACT OR GRANT NUMBERf*)

DAAK10-79-C-0134 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

D/A Project: M6350 ACMS Code: 53970M6350 12. REPORT DATE

March 1982 13. NUMBER OF PAGES

138 U. MONITORING AGENCY NAME ft ADDRESSfy/ dltlerant from ControlUnt Olllce)

ARRADCOM, PAD Tech & Auto, Info & Math Div (DRDAR-QAS) Dover, NJ 0 7801

15. SECURITY CLASS, (of thla report)

Unclassified 15a, DECLASSIFI CATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES _ , „ _ . „, ^ ■ -, m ^.J This project has been accomplished as part of the U.S. Army Materials Testing Technology Program, which has for its objective the timely establishment of test- ing techniques, procedures or prototype equipment (in mechanical, chemical, or nondestructive testing) to insure efficient inspection methods for materiel/ mal-prifll prnriifpH m- ma inl-ai npd by DARCOM — — 19. KEY WORDS (Continue on reverse side If necessary and Identify by block number)

Nondestructive testing Electroexplosive devices Electrothermal response

20. ABSTRACT ("Continu* era rerermm sttfr H rmxevaary ami identify by block number)

A commercial electrothermal tester and digital equipment were used to test SCD 10383 fuses and PA506 and M100 detonators nondestructively. Dissection and examination revealed positive faults on all types of devices tested (one each). Correlation was found between various NDT measured thermal parameters and sensi- tivity, burnout for fuses and fire/no fire results for detonators. The digital system that was developed represents a possible transition to on-line NDT of electroexplosive devices.

(cont)

DD , FORM JAN 73 1<73 EDrTlON OF » NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Page 4: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(TWi«n Data Bntend)

20. ABSTRACT (cont)

The system could be set to accept or reject devices based on departure from preset limits. The main limitation on the detonator testing was created by a small coefficient of thermal resistance of the bridge wire material which :ni, resulted in a poor signal-to-noise ratio.

The system, if refined and used in production, would eliminate devices that are deficient in the bridge wire area. Comparisons with a collective thermal model indicate it would further permit culling of extremely sensitive or insen- sitive devices.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGECWhon Dara Entered)

Page 5: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

ACKNOWLEDGMENTS

This report reflects the efforts of numerous personnel who supplied Franklin Research Center with test materials, background information, and guidance in the related areas of the project. Noteworthy also is the invaluable support received from Professor L. A. Rosenthal of Rutgers University, who served as consultant to

ARRADCOM.

Page 6: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

CONTENTS

Section Title Page

INTRODUCTION 1-1

HISTORY AND THEORY

2.1 General History

2.2 Theory.

2-1

2-5

3.

TEST METHODS AND EQUIPMENT

3.1 General

3.2 Test Equipment

3.2.1 Thermal Transient Test Set .

3.2.2 Digital Oscilloscope With Recorder

3.2.3 Control Computer ....

Test Methods ........

3. 3.1 General

3.3.2 Thermal Response Curve Analysis.

3.3.3 Thermal Transient Test SCD 10 38 3

3. 3.4 Energy to Burn Out Bridgewire

3.3.5 Thermal Transient Tests - PA506 and M100 Detonators.

3-1

3-1

3-1

3- '

3-3

3- 3

3-4

3-6

3-7

3-7

FUSE TESTING PROGRAM

4.1 General ......

4.2 Testing and Fuses ....

4.2.1 Preliminary Tests

4.2.2 Fuse Testing for the Record

4.2.3 Destructive Testing.

4.2.4 Extraordinary Waveforms

4-1

4-1

4-1

4-3

4-4

4-6

UuUU Franklin Research Center A Division of The Frankiin Institute

Page 7: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

DETONATOR TEST PROGRAM

5.1 General ........

5.2 Preliminary Examination PA506 Detonator

5.3 Execution of Test Plan

5-1

5-1

5-1

INTERPRETATION OF DETONATOR TEST RESULTS

6.1 NDT - Sensitivity Relationships

6.2 Rating System for Detonator Sensitivity in

Terms of NDT Parameters

6.2 Measurements of Detonators Showing Extraordinary

Waveforms ...........

6.3.1 Negative and Noisy Waveform on PA506 Detonator

6.3.2 Inverted Waveform on M100 Detonator.

6-1

6-4

6-4

6-4

6-7

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions . . . .

7.2 Recommendations . . .

7-1

7-1

8. REFERENCES 8-]

APPENDICES

A TEST PLAN FOR NONDESTRUCTIVE TESTS OF FUSES •

NUMERICAL RESULTS OF NONDESTRUCTIVE FUSE TESTING

ANALYSIS OF TEST RESULTS OF FUSES . • • •

DESTRUCTIVE TEST RESULTS ON PREVIOUSLY NDT FUSES

TEST PLAN FOR PA506 AND Ml00 DETONATORS

TEST RESULTS ON PA506 DETONATORS ....

TEST RESULTS ON M100 DETONATORS ....

BRUCETON TEST RESULTS ON PREPULSING EFFECTS

DISTRIBUTION

A-l

B-l

C-l

D-l

E-l

F-l

G-l

H-l

J-l

Franklin Research Center A Division of The Franklin Institute

Page 8: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

FIGURES

Number Title Page

2-1 Circuit for R andAR/AP Measurements 2-3 o

2-2 Voltage-Time Relationships on a Pulsed Bridge Wire. . . . 2-6

3-1 Block Diagram of System Used for Electrothermal Data Collection 3-2

3-2 Digital Thermal Transient Response Curve - Typical. . . . 3-5

4-1 Thermogram of High-Response Fuse With Normal-Response Fuse. . 4-7

4-2 Plan and Elevation Views of High-Response Fuse 4-8

4-3 Plan View of Normal Fuse .......... 4-9

4-4 Thermogram of Extreme Low Response Fuse ...... 4-10

4-5 Photomicrograph of Extreme Low Response Fuse ..... 4-10

4-6 Thermogram of Badly Shaped Response Vs. Normal Response . . 4-12

4-7 Photomicrograph of Thermal Reject 4-12

5-1 Effect of% Increasing Current on Electrothermogran-PA506

Detonator 5-2

6-1 Normalized NDT Data 6-3

6-2 Anomoly in PA506 Detonator 6-6

6-3 Normal PA506 Header 6-8

6-4 Anomoly in M100 Detonator 6-9

TABLES

Number Title Page

4-1 Analysis of Thermal Parameters as a Function of Current . . 4-2

4-2 Comparison of Correlation Coefficients (Energy Time to Open

vs. Thermal Parameters) .......... 4-5

5-1 Summary of Detonator Tests. ......... 5-4

5-2 Summary of Means and Standard Deviations on PA506 and

M100 Detonators 5-5

6-1 Computation of NDT Parameters for 10/90, Fire/No Fire

Detonators (PA506 and M100) 6-2

6-2 Possible Rating System for Detonators Using NDT Derived Data . 6-5

Franklin Research Center A Division of The Franklin Institute

Page 9: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

1. INTRODUCTION

Nondestructive testing (NDT) of wirebridge electroexplosive devices

(EEDs) may seem a self-contradictory statement. EEDs are designed to

work once; and in the process of working, they are destroyed. For

nearly 25 years researchers have been unable to accept the existing

quality assurance methods: on-line microscopic inspection, x-rays, N-

rays and the other then-existent methods as the final word. An

electrical-thermal feed-back from most wirebridged detonators express

thermal conditions of the complete electroexplosive system. For this

reason, it is one of the most sensitive tests of the electrical/

explosive system that exists.

Further investigation seemed warranted by ARRADCOM, Dover, into the

potential of this electrothermal test method for applications in product

assurance in the production stages of EEDs. Success in this effort would

permit questionable items to be detected and eliminated before their

installation in critical weapon systems where the cost of failure is much

higher in terms of lives and property.

Effort was concentrated on the measuring system, its safety and

usefulness, and on electrical fuses (10383-30) and detonators (PA506 and

M100).

This work was accomplished using commercially available equipment. The

general approach was to seek the meanlngfulness of the nondestructive test and

its applicability to testing of electroexplosive devices.

Our findings are clear in some areas. The test is of great value for

finding defects in wire bridged fuses, detonators, and probably in other

EEDs. There are limitations, and there will need to be compromises in making

measurements. Signal-to-noise levels are improved by using higher currents;

but higher currents tend to reach into the range where some detonators are

going to fire during nominal nondestructive tests. The effects of this

problem can probably be circumvented by using proper safety precautions.

Proper shielding of measuring stations to prevent explosive propagation will

probably be necessary. Bridge wire materials with small thermal coefficients

1-1

Franklin Research Center A Division of The Franklin Institute

Page 10: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

of resistance (a ) are prone to provide little feedback and are therefore not

amenable to electrothermal testing, except to detect certain defects in

construction.

Overall, the system is useful enough to warrant some special choices of

bridge wire material to make this kind of quality test possible; it is that

important.

Application of this nondestructive test (NDT) to EEDs in the production

stage is realizable. The system lends itself well to automatic methods with

some study and design. The system can most probably be adapted to production

lines where in-line inspection can be accomplished.

1-2

Franklin Research Center A Division of The Franklin Institute

Page 11: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

2. HISTORY AND THEORY

2.1 GENERAL HISTORY

Electric detonators were used as early as the Civil War. They were wired

into cannon balls containing explosives. The ball was fired as usual, but a

long trailing wire allowed an observer to fire the bursting charge in the

cannon ball by touching the leads to a battery at an opportune time.

Today, one of the real advantages to EEDs, is that they serve to link the

brains to the brawn, electronic computer controls to high explosives, thereby

making most efficient use of explosive systems.

Not much improvement in EEDs was experienced until proximity fuzes were

introduced in World War II. This was the first need for a link between an

electronic device and a detonator. The need was critical and it is likely

that great care was taken in product assurance on the electric detonator.

This need exists even more critically today when so much hinges on the

effectiveness of our weapons, when success depends upon having quality in

electroexplosive devices.

Electrothermal testing of EEDs is not a new development. The Franklin

Institute started investigating resistance changes in EEDs during the

application of constant current pulses and characterized the change in

resistance as a function of time and of current input in the 1950's. These

findings were coupled with circuit theory to examine the aspect of non-linear

responses of the resistance of detonators as part of a firing cirucit.[l]

Further examination of EED responses to transient pulses was made and reported

by the Navy.[2] This work dealt with the dynamic resistance of EEDs during

pulse application.

NDT measurements were made by a method developed at FRC under the

sponsorship of Picatinny Arsenal. FRC investigation involved the relationship

between nondestructive measurements and the firing sensitivity of

[1] Please refer to list of references at the end of this report,

2-1

Franklin Research Center A Division of The Franklin Institute

Page 12: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

electroexplosive devices (EEDs). [3] This research reached the point where it

was applied to many EEDs with the expectation that some degree of correlation

would be found between the constant current firing sensitivity and the

electrothermal parameters that could be measured without degrading the EED.

The parameters that were measured were R (initial resistance) and A. RA P

(power sensitivity), where the latter is defined as the change in bridgewire

resistance for a corresponding increase in input power. We found that a

predictable inverse relationship exists between the product R A R^ P and the

current required to fire most EEDs. The current necessary to fire a wire

bridge EED could often be estimated, on a relative basis, by measuring only

R ; but a higher degree of correlation could be had by using the product

R0 A R/A P instead of Ro was that the former was able to detect abnormal

thermal environments around the bridgewire such as the absence of the spot

charge.

To classify a test as nondestructive, one must be able to make all

measurements without altering or degrading the normal firing sensitivity of

the test item. Past experience with several EEDs indicated that there were

usually no changes in the normal firing sensitivity caused by measuring R

or A R/A P by the following procedure. Both R and A R/A P are measured with a

resistance bridge circuit shown in Figure 2-1, where X represents the device

being tested, and the series resistors at A or B limit the current through the

detonator to 1 mllliampere. When the bridge is balanced, R is recorded.

The bridge is then unbalanced by increasing R by a known amount (this is

AR) and the current is increased to bring the bridge back into balance. The

voltage drop across the detonator, due to this increased current, is measured

and the power is computed, P = R + AR . The change in power (AP) necessary

to balance the circuit is actually the power necessary to balance the bridge

for a known R minus the power necessary to measure R . The power needed to

measure R0 is so small it is always neglected in these calculations.

The relationship which was found between R and the constant current o

sensitivity is given approximately by

Cons. Cur. Sens. = k '1 + k , , . i AR/AP 2

wnere ^ and k are constants.

2-2

FrankJin Research Center A Division of The Franklin Institute

Page 13: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

A^ Sx

/

o-iaon

Position A R0 Measurement

Position B ^§ Measurement AP

-AAA/ o 120 n A

Figure 2-1 Circuit for R and AR/AP Measurements

2-3

life Franklin Research Center A Division of Die Franklin Institute

Page 14: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

The method of testing was manual and relatively slow, but the accuracy-

proved to be very good. It was used in nondestructively examining a lot of

T77 detonators. [4] Results gave predictable current for firing on each

individual detonator that was accurate within about 1%.

Based upon nondestructive tests, predictions were made on an individual

detonator basis as to whether a particular detonator would fire when exposed

to a current of 74 mA for 10 seconds. Of 30 predictions made in this fashion,

results of the predictions were 100% correct.

This work was expanded and summarized for portions of the space

program. [5]

More recently, other researchers have looked into the meanings of

various faults by intentionally creating problems within electroexplosive

devices. [6] Subsequent electrothermal studies were made to determine to what

degree construction and material faults were detectable.

A different ignition mix from the normal was loaded into 20 EEDs. All

proved to deviate from the mean, and 4 of the 10 were off more than the 3

sigma limits set by a lot evaluation of the normal device. Solvent

contamination was detectable in some cases, not in others. High and low

welding currents were used to prepare 10 improperly welded bridgewires. These

appeared out of specifications according to thermal testing in six instances,

five of which were also out of resistance specifications. One of these,

however, appeared normal in resistance but abnormal in thermal testing. Cuts

and nicks were made in five bridgewires at 20 to 30% penetration by removal of

materials. One was cut through to 70% and the remaining four were flattened.

All d.c. resistances were normal. Abnormal thermal tests were experienced on

the wire cut through 70% and on bridgewires that were flattened for 80% of

their length. Loading pressure was incrementally increased as thermograms

were made on 10 items. All 10 items showed abnormal thermograms at 2000 and

5000 psi loading pressures. At 10,000 psi, 9 of the 10 showed abnormal

thermograms; at 15,000, 4 of 20 and at 18,000 and 20,000 psi all were normal.

This short historical summary, admittedly incomplete, indicates the state

of the art when the work reported here began. No one, to the best of our

knowledge, has done large-lot testing on electroexplosive devices with the

2-4

FrankJin Research Center A Division of The FrankJin institute

Page 15: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

expressed purpose of relating electrothermal tests to different types of

electric detonators.

Instruments were available to test electric detonators at the onset of

this program.* The decision was made to purchase the instrument rather than

to build one.

2.2 THEORY

The theory of electrothermal testing is a simple one. Success of the

test depends upon sensing the change in resistance of the wire bridge

element. The resistance change is the result of heat input that is supplied

electrically and also the result of heat losses that occur because of heat

conduction or convection from the bridge wire. Hence, the bridge wire or

convection from the bridge wire surrounding the primary charge, has a large

effect. Rosenthal [7] has derived an equation representing the electrothermal

parameters of a bridgewire system as follows:

de 2 C —5—- + Y » = P(t) = I R (1 +cte-) (1)

Cp - heat capacity of the bridgewire-explosive system © - temperature rise t - time Y - heat loss I - excitation current R - initial resistance a - temperature coefficient of resistance of the bridgewire

Application of this equation is accomplished via a thermogram represented

by Figure 2-2. This thermogram occurs as the result of the application of a

constant current pulse. Certain measurements are indicated on this figure

that are pertinent to calculation of the electrothermal parameters. From

these measurements, the following parameters are derived:

*As, for example, from Pasadena Scientific Industries, 495 South Arroyo Parkway, Pasadena, CA 91105.

2-5

Franklin Research Center A Division of The FrankJin Institute

Page 16: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

COMPUTED BY DATE

THE FRANKLIN INSTITUTE RESEARCH LABORATORIES

PHILADF.I,PHIA. PA. 19103

PAGE

CHECKED BY DATE PROJECT

TITLE

^a0

O >-

^. 1^

«0

M

-

„«0 H oft K

0

3 H

II m

i \ u >-

\ \

-d \ ^

^^^^ \ 1

t ^^

H

aHiMaoaina SSOHOV asvxiOA

2-6

CD

M ■H 3

0) &1

CQ

0) 10 H P

c o

•H C m a o

I 0)

H O >

CN

2

FORM 207-10M-4-74-CP

Page 17: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

Temperature rise ( 6 ) is computed from

S. |£L_ (2)

Thermal conductance ( Y) from

aKo2 I3

(3)

Mm

Thermal capacitance (CD ) froni

= 2 T3

a R I o

c = P s

and Thermal time constant ( -r ) from

(4)

T = (5)

0.69

One major purpose of the work described in this report relates these

measured parameters to the quality of electroexplosive devices, thereby

permitting their nondestructive evaluation.

2-7

Franklin Research Center A Division o( The Franklin Institute

Page 18: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

TEST METHODS AND EQUIPMENT

3.1 GENERAL

Thermal transient testing of electroexploslve devices is a fairly

straightforward process. It requires a bridge circuit which can null out the

initial resistance of the explosive device, a constant-current pulse

generator, and a detector to monitor bridge imbalance in response to the

device's resistance change. In the past it was common practice to monitor

bridge imbalance with an oscilloscope and to characterize the wave shape by

measuring the curve on an oscillograph. If, however, you wish to test a large

number of devices rapidly and obtain the results immediately then this method

will not serve. We have attempted, therefore, to develop an improved method

of acquiring and analyzing thermal transient data with a view to eventual

refinement into a fully automated system. The general system block diagram is

shown in Figure 3-1.

3.2 TEST EQUIPMENT

3.2.1 Thermal Transient Test Set

The thermal transient tester is manufactured by Pasadena Scientific

Instruments and the unit we are using is a Model 605B. The test set contains

a bridge circuit which is adjusted to null out the initial resistance of the

device being tested. At null, this initial resistance can be read from a pair

of dials on the test set. Current for testing and nulling is provided by an

adjustable constant-current pulse generator. Pulse amplitude can be varied

from 10 mA to 3000 mA and pulse duration from 15 ms to 70 ms. Nulling is done

with a repetitive 10 mA pulse having the same duration as the test pulse.

Output from the test set is the imbalance voltage across the resistance

bridge. This is proportional to the voltage change across the test device.

The tester also provides a trigger pulse which leads the test pulse by about

5 ms.

3-1

Franklin Research Center A Division of The FrankJin Institute

Page 19: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Current Pulse

Electrothermal Tester Pasadena Scientific

Inst. 605 B OO

_r rElectroexplosive Device

Being Tested

Resistance Bridge Adjust

Millivolt Response

Digital Storage Oscilloscope

Nicolet Explorer III

iODEL 2090 i 11

Floppy Disk Memory

sj Modem

*' To DEC 20 Computer

Desk-Top Computer HP 9825 A

Figure 3-1 Block Diagram of System Used for Electrothermal Data Collection

UUUU Franklin Research Center A Division of The Frankiin Institule

3-2

Page 20: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

3.2.2 Digital Oscilloscope With Recorder

The oscilloscope used to monitor the output of the test set is a Nicolet

Explorer III Model 2090-III with a Model 206 front end plug-in. (Nicolet

Instrument Corporation) This oscilloscope is capable of digitizing 4096 data

points at rates up to 500 ns per point. On its most sensitive range the

oscilloscope will digitize in steps of 50 microvolts. A mini floppy disk

recorder allows the digitized waveforms to be saved either at full resolution

or at reduced resolution with increased disk capacity. Finally, the scope is

equipped with a Model NIC-2081 interface (IEEE Standard 488-1975) which

permits it to be used in conjunction with compatible instrumentation.

3.2.3 Control Computer

The control computer is an HP 9825A Desktop Computer manufactured by

Hewlett-Packard Company. This computer interfaces the Nicolet oscilloscope

via the HP 98034A Interface Card (IEEE Standard 488-1979) and can control the

oscilloscope and acquire data from the scope's memory. The 9825A can record

data on magnetic tape and it can also communicate with our mainframe computer,

a Digital Equipment Corporation DEC-20, by means of an HP 98063A Serial 1/0

Interface (RS 232C).

3.3 TEST METHODS

3.3.1 General

The method used to conduct the thermal transient tests evolved

considerably during the course of this program. As we acquired sufficient

data on a given test item we were able to better define its limits of response

and could, therefore, focus our testing within these limits. Conversely, when

testing less responsive devices, it was necessary to treat the data somewhat

differently. Also, as testing progressed we became more familiar with

capabilities and limitations of our instrumentation and were able to improve

our procedures accordingly.

3-3

Franklin Research Center A Division of The Franklin Institute

Page 21: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

3.3.2 Thermal Response Curve Analysis

Once certain characteristics of the thermal transient response curve have

been determined it is possibleto define the electrothermal properties of the

test item. The characteristics of interest are the maximum voltage, the

initial slope, and thermal time constant. To define these parameters requires

the definition of only two points on the curve: the start of the curve, V o

and the maximum, VmaX'

Figure 3-2 shows a hypothetical digitized waveform. There is usually a

spike, as shown, at the beginning of the applied pulse. This presents some

difficulty in determining the location of V . We have tried to insure that o

Vo is the start of the thermal portion of the curve and not part of the

switching transient. Initially, we selected the first data point after the

minimum as V and this seemed to work, fairly well as long as the items being

tested had a large thermal reponse. All of the SCD 10383 fuses were tested

with V0 set at this point. Vmax does not usually present any difficulties.

In its first version the curve analysis program requires that operator

specify the loctions of V and V . This was done by moving the scope o max JO t-

cursor to the desired point and then resetting the scope. All of the SCD

10383 tests and the Series I detonator tests were conducted using this

method. The test method and the analysis program were then changed to further

automate the test procedure. In the second method the first 1000 data points

are read into the computer. Experience has shown that this is sufficient for

the curve to have reached equilibrium. The computer then determines the

minimum and maximum values which it has organized. The maximum value is

Vnia , the minimum value checked against several subsequent values to

determine if it is the beginning of the uniform portion of the curve. If it

is not, V is incremented to V . +1 and the check repeated. When a mm mm K

Vmin + n is reached which satisfies the requirements that point is

designated as V0.

3-4

Franklin Research Center A Drvision of The FrankJIn Institute

Page 22: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

--«—i «-»-»-

mm

V - V . V

• 2 »

- •

t

t, _^

V

Figure 3-2 Digital Thermal Transient: Response Curve - Typical

3-5

Franklin Research Center A Division of The FrankJin institute

Page 23: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

With V and V defined, we start at V and check the voltage at

each subsequent point V until we find V = ("V - V ')/2. If V = n n max o n

(V -V )/2 then the time for the voltage to reach one half of V is max o max

simply n multiplied by the time per data point. This is T., , usually V 1/2 n

■ (V,^ ~ v„)/2 and in th:i-s case a straight line interpolation is made nici A o

between V^ and V _ to determine T, ,„ the thermal time constant is given

by T1/2 ln 2.

The slope of the curve is measured starting from V and usually taken o

over the first 100 microseconds. When working with the well-behaved SCD

10383's, we simply take the voltage difference between V and V^„ (this o 20

assumes a data acquisition rate of 5 microseconds per point) and divide by 100

microseconds. This, of course, is not exact, but is sufficiently accurate for

comparative measurements. When testing the detonators, however, the poor

signal to noise ratio makes this method unacceptable. Therefore, linear

regression was applied to the first 20 data points to determine the slope.

3.3.3 Thermal Transient Test SCD 10383

Preliminary testing indicated that a 20 mA pulse would produce a good

response curve and, therefore, the first test segment was conducted at this

level using a pulse length of 16 ms. Data were taken at a rate of 50

microseconds/point and the initial slope was evaluated over the first 500

microseconds. This first sequence comprised test numbers 1000 through 1100.

At the conclusion of the first sequence we decided that the data

acquisition rate should be increased to improve resolution. This allowed us

to observe the beginning of the pulse in greater detail and better define the

starting portion of the thermal rise. Also, we were able to reduce the time

period over which the initial slope was evaluated.

The 25 mA tests (Nos. 2002 through 3100) and the 30 mA test (Nos. 3001

through 3100) were conducted using a 16 ms pulse with a data acquisition rate

of 5 microseconds/point and an initial slope of 50 microseconds.

3-6

Franklin Research Center A Division of The FranWin Institute

Page 24: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

3.4 ENERGY TO BURN OUT BRIDGEWIRE

Using the SCD 10383 devices, tests were conducted to see if a correlation

could be established between thermal transient response and energy required to

burn out the bridgewire. The Pasadena thermal transient test set was used to

measure initial resistance and to supply the current pulse for these tests, but

separate circuitry was employed to monitor bridgewire current and voltage. A

low resistance was inserted in series with the test device and the voltage

across it was used to monitor current. At the same time the voltage across

the test device was determined so that power could be calculated.

Energy delivered to the bridgewire was found by integrating the power

from the beginning of the pulse to bridgewire failure. A trapezoidal

approximation was used employing the sampling rate, 5 microseconds, as the

interval.

3.5 THERMAL TRANSIENT TESTS PA-506 AND M-100 DETONATORS

Thermal transient tests on the PA-506 and M-100 detonators were all

conducted using 60 mA pulses 16 ms long. The data requisition rate was 5

microseconds/point. Thermal response of the detonators is quite low compared

to the SCD 10383's and, consequently, the signal to noise ratio is much

poorer. To obtain a meaningful measure of the initial slope it was necessary

to increase the evaluation time to 100 microseconds. Tests performed this way

constitute Series I which includes the following:

PA-506 Nos. 8151 through 8204* Nos. 8555 through 8640

M-100 Lot 098 Nos. 8305 through 8354* M-100 Lot 069 Nos. 8361 through 8410*

At the conclusion of the Series I test the data were evaluated and we

decided that the initial slope could be defined better by performing a linear

regression over the 20 points which make up the first 100 microseconds. All

*Most of these items were expended in the second set of Bruceton tests,

3-7

Franklin Research Center A Division ot The FrankJin institute

Page 25: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

of the Series II tests were done in this manner. Series II consists of only

one test: PA-506, Nos. 8591 through 8640.

Series III tests are the same as Series II except that the data

acquisition has been further automated. In Series III the computer program is

able to determine the beginning and the maximum of the response curve instead

of having them entered by the operator. Series III comprises the following:

PA-506 Nos. 8641 through 8690 Nos. 8891 through 8940

M-100 Lot 098 Nos. 8891 through 8940 Nos. 8841 through 8890

M-100 Lot 069 Nos. 8741 through 8840

3-8

Franklin Research Center A Division of The FrankJin Institute

Page 26: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

4. FUSE TESTING PROGRAM

4.1 GENERAL

The fuse being tested is actually a system component of a current weapon

system. It is a fully enclosed element with the appearance of a detonator.

The fuse testing program included an evaluation of the electrothermal tester.

The complete program for the fuse and tester is contained in Appendix A. To

keep them in order, each of the 1000 fuses was placed in a coin envelope and

given a number. Items tested nondestructively could be placed in the envelope

and retrieved for further examination if necessary.

4.2 TESTING OF FUSES

4.2.1 Preliminary Tests

Preliminary evaluation included determining what current levels may be

used to test the fuses without permanent effect on performance, checking

adherence to equations and generally examining fuses.

This fuse was found to withstand about 30 mA without adverse effect. At

35 mA, one fuse opened on the 7th pulse.

It was found, by repeated exposures on the same fuse at increasing

currents that the thermal time constant ( T ) increased, the heat loss factor

( Y ) decreased and that the system heat capacitance (Cp) maximized and then

decreased. (See Table 4-1)

The supposition that y and Cp are constants in this particular instance

is apparently unfounded unless there are serious changes in the fuse bridge

wire system as pulses are repeated.

The apparent lack of conformance of observed data to the equations is

really of little consequence to the ultimate value of the test. Generally,

nondestructive testing will be done utilizing only one value of test current.

4-1

U Franklin Research Center A Division of The Franklin institute

Page 27: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

Table 4-1. Analysis of Therwil Para.aeters as a Fanction of Current (Fuse No. 998)*

Thermal Initial Maximum Time Temperature Heat

Current (mA)

Resistance Voltage Constant (x)

Slope (S)

Rise (6)

Capacity

20 7.403 18.4 256 48 36.6 81.01

0.92

25 7.412 15.0 241 48 23.8 195.0

0.60

30 7.450 91.2 360 192 120.0 55.8

3.04

30 7.450 90.4 360 192 120.0 55.8

3.04

35 7.450 23.7 567 320 267.0 34.1

6.77

35 7.450 23.4 558 320 263.0 34.6

6.67

* These calculations were performed with a calculator.

4-2

Franklin Research Center A Division at The Franklin Institute

Page 28: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

thereby narrowing any effects introduced by the apparent theoretical anomolies

observed.

Repeated tests for initial resistance (R ) using clip leads to connect

the fuse to the ND tester, show that firm connection to the item under test

is necessary. We finally used a zero-insertion-force IC socket to establish

good connections and continued using this method of connection throughout the

remaining tests on fuses.

4.2.2 Fuse Testing for the Record

Appendix B gives detailed results on electrothermal testing of fuses.

Histograms were made of each variable as shown in Appendix C (Phases 1.1 and

1.2 of Test Plan). For 25 vak tests, R was well behaved and all values fell

within 3 standard deviations of the mean. Maximum voltage values (V ) m

revealed that 4 of maximum temperature values were more than 3 a greater than

the mean. One thermal time constant ( x ) value was more than 3 a greater

than the mean. Six values of 300 of the initial slope (S) values were more

than 3a greater than the mean. Two temperature values were 3a greater than

the mean. Seven heat loss values were more than 3a greater than the mean.

If all of those fuses greater than 3a from the mean were discarded, then

less than 10% of the samples would have been eliminated. Even if the "bad"

items were actually usable, this would be of little consequence compared to an

accident or a dud.

The 20 mA test revealed very little about the fuses. Only about 4 of 100

fuses tested were outside the 3 a limits on all variables. The 20 mA test may

be well into noise level thereby limiting the ability to discern problems by

electrothermal testing.

Tests were also made at 30 mA. While some additional signal over noise

was noted, it is believed that 30 mA is too close to the excitation level

where some items would be permanently changed by the test current.

4-3

Franklin Research Center A Division of The Franklin Institute

Page 29: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

These tests completed our examination of the items. Remaining to be

done, and most difficult to deduce is the meaning of these tests with

respect to fuse quality.

4.2.3 Destructive Testi ng

Samples from each of the three groups of devices that were tested

nondesructively were exposed to current levels almost certain to open the fuse,

nominally 40 mA. Two primary parameters were measured during current

application, both relating to fuse opening. These were energy to open and

time to open.

To test the linear correlation of NDT-measured and computed variables

among themselves and with the opening times and opening currents, a computer

program was applied to determine correlation coefficients. The data for three

NDT test currents and correlation matrices for these three conditions are

given in Appendix D.

The correlation matrices at the end of Appendix D are an extremely

powerful means of comparing the destructive parameters (energy-to-break and time-

to-break) with the nondestructive parameters determined earlier. The

coefficients were examined and those showing absolute values of 0.4 or

greater were recorded in Table 4-2. This table shows parameters 11 (energy to

open) and 12 (time to open) in terms of R (initial resistance), V (max o m

voltage), T (thermal time constant), S (initial slope) and Q (temperature)

for the three groups of data representing NDT currents of 20, 25 and 30 mA.

A correlation coefficient of 1 is perfect, 0 Indicates no correlation and

-1 is perfect, but negative. All values in this table are. negative, meaning

that time and energy to break decrease as the other measured values increase.

4-4

Franklin Research Center A Division of The Franklin Institute

Page 30: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

Table 4-2. Comparison of Correlation Coefficients

Thermal

Initial Maximum Time Temperature Test

Resistance Voltage Constant Slope Rise Current

Variable (RJ

-0.5892

(x) (S)

-0.6616

(a) (mA)

U - Energy -0.6566 -0.03 -0.4371 20

to open

12 - Time to -0.6945 -0.5799 -0.05 -0.6347 -0.4768

open

11 - Energy -0.4887 -0.5112 -0.09 -0.5505 -0.4747 25

to open

12 - Time to -0.4971 -0.5056 -0.010 -0.5441 -0.4648

open

U - Energy -0.5623 -0.4568 -0.4020 -0.4062 -0.4084 30

to open

12 - Time to -0.5411 -0.4374 -0.4075 -0.4187 -0.4187

open

4-5

Franklin Research Center A Division of The Franklin Institute

Page 31: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

Some tentative conclusions concerning fuse performance can be derived

from these correlated data:

R0 - initial resistance is a fair measure of break time and energy to break.

Vm - max. voltage - is also a good measure of these parameters.

t - thermal time constant - is poor for test currents of 20 and 25 nA but a marked improvement shows at 30 mA.

S - the initial slope - correlation is good at low test currents and degrades for higher test currents.

One problem with the analysis is that linear correlation was used

throughout. A few non linear methods were tried that indicate better fit to a

power curve, i.e. a log-log plot. Unfortunately, time prohibited the

treatment of these data in log-log terms.

4.2.4 Extraordinary Waveforms

Allowance was made in the test plan for any waveforms that were different

in basic shape. Items showing such waveforms were to be culled and

subsequently examined with the purpose of determining the reasons for

departure from the norm.

Figure 4-1 illustrates a normal response as displayed on an oscilloscope

and an extremely high response. After removing the fuse case, the fuse giving

a high response, looks like the one in Figure 4-2. Not all normal fuses look

as good as the one giving a normal response and shown in Figure 4-3. Some

devices show extremely low responses (Figure 4-4). These look like the

photomicrograph of Figure 4-5 when dissected.

The distance from the plane of the header face to the wire play an

important role in determining whether the response is high or low.

One of the most important findings of the entire fuse testing program is

demonstrated in the oscillogram of Figure 4-6. Note that the response of this

fuse is not high or low but of an entirely different shape. Remember, at the

time this oscillogram was taken there was no way of viewing the bridgewire

itself. Removal of the outer case revealed the bridgewire shown in the

photomicrograph of Figure 4-7. Expulsion during welding caused several jnetal

4-6

Franklin Research Center A Division of The FrankJIn Institute

Page 32: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Franklin Research Cente. A Division of The Franklin Institute The Beniamin Franklin Parkway. Phila.. Pa. 19103

Project 03G-C5174

Page

Title EVALUATION OF EMCTROTHERMAL MISFITS

High Extreme Response Test 2099

Normal Response Test 2134

Figure 4-1 Thermogram of High-Response Fuse With. Normal-Response Fuse

4-7

FORM 207-1 0M-4-74-CP

Page 33: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Title

Franklin Research Cente-

A Division of The Franklin Institute The Benjamin FrankJin Parkway. Phiia., Pa. 19103

Project

03G-C5174

Page

EVALUATION OF ELECTROTHERMAL MISFITS

Figure 4-2 Plan and Elevation Views of High-Response Fuse

FORM 207-10M-4-74-CP 4-8

Page 34: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Franklin Research Cente. A Division of The Franklin Institute The Beniomln Franklin Parkway. Phila.. Pa. 19103

Project

03G-CS174

Page

EVALUATION OF THERMAL MISFITS

Title

Figure 4-3 Plan View of Normal Fuse

4-9

FORM 207-1 0M-4-74-CP

Page 35: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Franklin Research Cente. A Division of The FrankJin Institute The Benjamin Franklin Parkway. Phila.. Pa. 19103

Project

03G-C5174

Page

EVALUATION OF THERMAL MISFITS

Title

Figure 4-4 Thermogram of Extreme Low Response Fuse

Figure 4-5 Photomicrograph, of Extreme Low response Fuse

FORM 207-10M-4-74-CP 4-10

Page 36: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

globules to form on the bridgewire. These unbalanced the thermal state of the

system enough to make its thermogram stand out during electrothermal testing.

In use, this condition could result in high wire stresses during vibration

with the likelihood of the wire failing during vibration.

This kind of finding could reduce in-service failures of fuse components

and add materially to the quality of weapon components. One such finding in a

lot of EEDs designated for missile service and otherwise tested for quality

assurance is well worth the testing effort. The device is bent to failure,

but this NDT would have shown the device to be defective.

This one fuse response and subsequent dissection demonstrate effectively

the value of the ND test in discovery of faulty bridge wire systems.

4-11

ilUUU Franklin Research Center A Division of The FrankJin Institute

Page 37: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Franklin Resedrch Center A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila.. Pa. 19103

Frojccc 03G-C5174

Page

EVALUATION OF THERAL MISFITS

Title

Figure 4-6 Thermogram of Badly Shaped Response vs Normal Response

* >

10k if/i^^SSi ^^^

mm

JL ■ ■ J '■ L**'^ •■i '" '

■>

^^^H|

*.

Figure 4-7 Photomicrograph, of Thermal Reject

FORM 207-10M-4-74-CP 4-12

Page 38: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

5. DETONATOR TEST PROGRAM

5.1 GENERAL

Two detonator types were assigned by the Contracting Officer to be tested

during this program, the M100 and the PA 506. A test plan was submitted and

approved. This plan is contained in Appendix E.

These are both microdetonators, containing only several milligrams of

explosive. The bridgewire material used on both detonators is an alloy

(known as moleculoyR*) stated to have a thermal coefficient of resistance

( a ) of +5 parts per million. This value of a is under question due to (1)

actual measurement made at the report originators facility and (2) measurement

made by L. Rosenthal and reported in a private communication (.0000705).

Furthermore, if a is as small as reported, then it would be extremely

difficult to obtain any thermal responses.

5.2 PRELIMINARY EXAMINATION - PA506 DETONATOR

Samples of the PA506 detonator under study were exposed to pulse currents

from the Pasadena instrument in progressively Increasing steps until firing

occurred (Figure 5-1). Thermal signals were clearly evident from the

thermograms. At this time, it was deemed possible to measure thermal

parameters by actual experiment despite the low value of a anticipated from

data.

Currents of 60, 70 and 80 mA gave clear, rising thermograms and a current

of 90 mA fired the detonator in about 5 milliseconds.

5.3 EXECUTION OF TEST PLAN

The test plan of Appendix E was begun as indicated. Findings of Bruceton

tests on untested items and those tested at a current representing a very low

firing probability (60 mA) were that there was no significant difference as a

result of the ND testing.

*Moleculoy is a registered trade name of Molec-Wire Corporation, a subsidiary of Superior Tube Co., Norristown, Pa.

5-1

Franklin Research Center A Division of The Franklin Institute

Page 39: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

90 mA (Fire)

8C mA

70 mA

60 mA

Figure 5-1 Effect of Increasing Current on Electrothenr.ogram PA 506 Detonator

Uillill Franklin Research Center A Division of The Franklin Institute

Page 40: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

It was therefore decided to proceed, running all nondestructive tests at

a current of 60 mA. This was done as indicated in Table 5-1.

The nondestructive test parameters for the PA506 detonators are tabulated

in Appendix F. Those from the two lots of M100 detonators are contained in

Appendix G.

The PA506 lot of detonators represent production items that have been

thoroughly checked for quality. One lot of M100 detonators (Lot 098) has

passed the quality test. The second lot (Lot 069) is a rejected lot. Reasons

for rejection were quoted to be a "marriage failure.*" Six Bruceton Tests

were run, one for each detonator lot, before, and after exposure to NDT pulses

to select current excitation levels and then to determine if this level caused

significant changes in detonator sensitivity.

The results are tabulated in Appendix H. One can see by inspection that

60 mA is a reasonable test level for the NDT evaluation. At this current less

than one item in a hundred can be expected to fire during the testing

process. We used 60 mA for all NDT work despite some minor variations in the

probability of firing for the various lots of detonators. Inspection of the

means before and after exposure shows that there is no significant difference

in the means. There appears to be some kind of stabilization in the

detonators as a result of the 60 mA prepulse. Table 5-2 illustrates and

summarizes data taken from Appendix H.

While the means are not significantly different, there is obviously some

"pull in" in the spread as a result of prepulsing. In this sense, prepulsing

is not an adverse effect but rather a benefit. More effort is warranted in

this area of investigation. Prepulsing may actually benefit quality.

*A marriage failure results when the detonator fails to initiate a booster or lead that is the next element in the explosive train.

5-3

Franklin Research Center A Division of The Franklin Institute

Page 41: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Experiment

F-C5174

Table 5-1. Summary of Detonator Tests

Number of Items Tested

PA506 M-100-098 M100-069

Bruceton

Thermal NDT

80/130 mA Pulse

Bruceton

Repetitive

40

250

100

40

50

40

150

100

40

40

150

100

40

Repetitive

(65 mA)

50

5-4

Franklin Research Center A Division o/ The Franklin Institute

Page 42: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

Table 5-2. Summary of Mean and Standard Deviation on PA506 and M100 Detonators

Detonator Lot

Statistics Before Prepulse

M100 190-098

M100 190-069

PA506

Mean (Amps)

0.097

0.099

0.102

Std. Dev. (Log Amps)

0.08256

0.04729

0.05278

Statl£ 60

itl tnA

cs After Prepulse

Mean (Amps)

- ■

Std. Dev. (Log Amps)

0.097

0.102

0.101

0.03233

0.02963

0.03067

5-5

Franklin Research Center A Division o< The Franklin Institute

Page 43: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

6. INTERPRETATION OF DETONATOR TEST RESULTS

6.1 NDT - SENSITIVITY RELATIONSHIPS

An experiment was conducted to demonstrate the ability to use NDT

measurements to sort extremely sensitive devices and extremely insensitive

devices from a lot of detonators. To do this, a lot of PA506 detonators and

two lots of M100 detonators (lots 069 and 098) were given NDT to measure and

record all thermal parameters (Appendix G contains NDT data) All of these

detonators were then subjected to the 10% firing current and then the

survivors from the 10% current were subjected to the 90% firing current. The

NDT data on those items affected by these tests were then scrutenized for

information leading to the cause of their behavior.

Once the items were separated by testing, their NDT characteristics were

tabulated (Table 6-1). These data were then analyzed by finding their

deviation from the mean for each of the nondestructive measurements. A plot

was made for each of the ND parameters for the 10 items found either to fire

at the 10% point or not to fire at the 90% point (Figure 6-1).

There is a definite trend in most of the parameters:

RQ is clearly an important sensitivity indicator. Vm is also indicative of firing sensitivity. TTC is mixed as an indicator of sensitivity but in a small area of

overlap. S is also mixed slightly.

is mixed but somewhat definitive. and Cp are both mixed without clear predictor trend. R is clearly indicative and unmixed.

There is definite advantage to making six of the nine measurements. The

only ones of questionable value are gamma and Cp. Remember, we are faced with

a very small value of thermal coefficient of resistance (a) in both of these

detonators and are therefore less likely to be able to discriminate their

thermal characteristics than we would be were the a values in the .0001 range

instead of the .00001.

6-1

Franklin Research Center A Division of The Frankiin Institute

Page 44: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

Table 6-1 Computation of NOT Parameters for 10/90 , Fire/No ire ueton ators i.r/w JD CUIU 1-iXW ^/

Det No. PA506 8193 8571 8569 8648 8791 8809 8769* 8861* 8716* 8730*

M 100*

Fire/No F F NF NF NF F F F NF NF

MEASURE

R 5.26 5.51 3.86 3.37 3.41 5.42 5.91 4.81 3.19 3.51 o

tier 1.17 1.60 -1.21 -1.92 -2.10 1.12 1.91 0.49 -1.99 -1.50

NO-

4.58 3.88 2.01 0.74 0.87 3.70 5.52 1.56 1.52 1.08

0.84 0.30 -1.16 -1.49 -0.75 1.57 2.84 0.17 0.10 -0.66

TTC 14 17 12 176 215. 72] 907 323 342 69

SO -0.27 -0.22 -0.31 -0.69 -0.72 1.85 2.80 0.12 0.23 -1.32

s 18.5 16 10.5 1.92 1.80 4.48 4.62 1.75 2.05 1.26

N<r 0.34 -0.11 -2.99 -0.73 -0.52 2.63 0.86 -0.36 0.11 -1.13

e JL45 117 86.8 36.4 42.6 114 148 53.9 79.3 51.3

Nff" 0.49 -0.23 -1.02 -1.28 -0.49 1.29 2.14 -0.01 ■ 1.31 -0.14 G 130 169 160 333 288 171 143 321 1441 246

Nfl- -0.26 0.46 0.30 0.49 -0.28 -1.39 -1.65 -0.08 -1.36 -0.74

CP Nfl"

32 40 30 127 139 141 163 285 107 210

-0.26 0.79 -0.03 -0.84 -1.08 -1.05 -0.82 0.14 -0.83 -0.27

R 80 60 30 10 10 60 90 30 30. 20

H& 1.02 0.08 -1.33 -1,77 -0.97 1.49 2.96 0.58 0.58 -0.46

Group Statistics

Population of Items 8193 8571 8569

m TTC

S

e

GA •

8648 8791 8809 8769 8861 8716 8730

Mean Std. Dev Mean Std. Dev Mean Std. Dev. Mean Std. Dev.

4.53 0.589 4.40 0.536 4.72 0.623 4.49 0.653

3.50 1.28 1.56 0,549 1.78 1.22 1.46 0,575

30.3 • 59.9 283 154 356 196 302 177

16.6 5.53 2.48 0.77 2.24 0.052 1,98 0.639

126 38.6 58.6 17.3 62.1 40.2 54.1 19.3

144 54.2 291 86.5 318 106 330 114

30.4 12.2 186 70.4 242 95.8 260 185

58.3 21.3 26.1 9.1 29.7 20.4 24.4 9.59

Franklin Research Center A Division o( The Franklin Inslilult

6-2

Page 45: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

R o

TTC

e

Gamma

P

A B

o

-3

GGO OO ® gi <S ®

O COGD 0® ® ® ®

O OSD G^ ® ® ®

G OOXD® ® (^ ®

GO GESSS ® !S ®

® ® 0® (^S)

i

M

—r-

+ 1 -2 -1 M +1

STANDARD DEVIATIONS FROM THE MEAN

(gFire at 10%

O No fire at 90% (3) Both

+3

Figure 6-1 Normalized NDT Data

6-3

Franklin Research Center A Division of The Franklin Institute

Page 46: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

6.2 RATING SYSTEM FOR DETONATOR SENSITIVITY IN TERMS OF NDT PARAMETERS

Individual NDT parameters gave clues to the sensitivity of devices, but

with so many parameters available, it looked like all of the available

information would be useful in arriving at a "quality number" that would

predict the sensitLvily of a device or devices with some degree of accuracy.

In searching for such a rating system, the algebraic sum of the

deviations for the ten items culled from the entire lot of detonators was

determined (Table 6-2). For every detonator that fired at the 10% level, the

sum of the deviations was positive. For every detonator that failed to fire

at the 90% excitation level, the sum of the deviations was negative.

These data represent only one set of observations. There is no

contention at this time that data are of great significance; however, these

results deserve more analysis. The measurements are all derived from one

exposure of the detonator to a small current pulse. The treatment is quick

and effective in yielding the "quality number." The full meaning of this

number needs to be explored further.

6.3 MEASUREMENTS OF DETONATORS SHOWING EXTRAORDINARY WAVEFORMS

6.3.1 Negative and Noisy Waveform on PA506 Detonator

One PA506 detonator. No. 8909, yielded a negative waveform with a noisy

front end. Figure 6-2A shows this waveform as first recorded. The detonator

was carefully dissected and the explosive was removed. The photomicrograph of

Figure 6-2B shows a flattened section in the bridgewire near the center

electrode as well as a small dimple in the weld area. The electrothermogram

was repeated (Fig. 6-2C) after the explosive was removed. This time the

response was of the same general shape but of much greater magnitude as can be

seen in the figure. The higher response could be expected because of the

reduced thermal loading resuling from the removal of the explosive.

6-4

Franklin Research Center A Division of The Franklin Institute

Page 47: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

Table 6-2 Possible Rating System for Detonators Using NDT Derived Data

Item No,

Algebraic Sum of Standard Deviations of Fire at 10% X All NDT Parameters No Fire at 90% 0

8193 2.07 X

8571 2.67 X

8569 -5.33 0

8648 -8.23 . 0

8791 -6.91 0

8809 7.51 X

8769 11.04 X

8861 1.05 X

8716 -2.12 0

8730 -6.23 0

6-5

Franklin Research Center A Division of The FrankJin Institute

Page 48: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

*■.■;

■•'■'!

v\^:„ ■- '■ "-'^ ' ' •

•>

o o.o o o tn S o o 6.0 o m U !

B- PHOTOMICROGRAPH

The detonator was sectioned and the explosive carefully removed. Wire is flattened near center conductor. There is a small dimple in the weld near the wire

A- INITIAL INSPECTION -PA506- 8909

Waveform deviates from norm. Trend is negative and noise occurs at the beginning of the trace.

C- ELECTROTHERMOGRAM After explosive removal , electro- thermogram is repeated. Shape is essentially the same. Amplitude is greater than with eKplosi-'e present.

Figure 6-2 Anomoly in PA 506 Detonator

6-6

Page 49: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

In order to compare the response of the detonator (8909) with an unused

header, the header was first photographed (Figure 6-3A) and subsequently

exposed to the same pulsed current as the detonator. The response (Figure

6-3B) shows a normal positive going wavefcLrm with which the questionable

detonator may be compared.

The odd waveshape demonstrated by this detonator is probably indicative

of a bad weld. Contact at one end of the bridgewire is probably marginal. It

would appear that this detonator may be subject to two potential problems.

One would be extreme sensitivity to energy of an electrostatic or

electromagnetic nature. The gap or poor connection may be subject to extreme

heating under very high voltages such as may be caused by electrostatic or RF

induced energy. The second possibility is that continued exposure to

mechanical shock or vibration may alter the connection to an open circuit

under low voltage excitation.

6.3.2 Inverted Waveform on M100 Detonator

The M100 detonator did not completely escape from notice due to odd

waveforms. One M-100 detonator escaped notice on the first exposure to a

current pulse (Figure 6-4A) . This detonator is one of those which did not

fire when exposed to the 90% firing current. It was subsequently re-examined

using the same excitation level (60 mA) as used in the. initial thermogram but

with much different results (Figure 6-4B). Notice that the waveform is

negative and of much greater amplitude than the initial waveform. After the

detonator was dissectded and the explosive removed, a photomicrograph of the

detonator was made (Figure 6-4C). The weld at the center electrode showed

signs of expulsion and the electrode was deeply pitted.

6-7

Franklin Research Center A Division of The Franklin Institute

Page 50: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

A- UNUSED HEADER- PA 506

B- ELECTROTHERMOGKAM OF UNUSED HEADER

Figure 6-3 Normal PA 506 Headei

6-8

Franklin Research Center A Division of The Franklin Institute

Page 51: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

C-J77-V

M 100- Initial Test

Presents a near-normal oscillogram.

AFTER EXPOSURE TO 90% FIRING CURRENT

Th^ electrothermogram changes radically.

the trace is negative and of much larger

amplitude

EXPLOSIVE REMOVED

Photomicrograph of wire bridge shows

that the center electrode was deeply

pitted and that the weld showed

signs of e:cpulsion.

Figure 6-4 Anomoly in M 100 Detonator

6-9

Page 52: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

Progress has be&n made in demonstrating that an existing, commercially

available electrothermal tester for electroexplosive devices does provide an

inspection of EEDs that is meaningful. The electrothermal test reveals faults

that other inspection methods have apparently missed. One major fault was

easily discernable in each of the two detonator types tested and in one of the

fuses.

There is apparently no hazard introduced by the instrument that was not

present, to begin with if all reasonable care is taken in use of the instrument.

Enough evidence is present in the work, completed here to suspect a

relationship between NDT determined parameters and detonator sensitivity. A

numerical evaluation of the NDT parameter from items that either fired at the

10% excitation level or failed to fire at the 90% excitation level gave NDT

readings that were indicative of their subsequent performance.

7.1 RE C OMMENDATIONS

Since all of the items used in these tests were previously quality

tested, we would expect the results that actually occurred. Only about 0.5%

of the items tested showed abnormal performance in the form of severe

distortion of the waveform. A large number of devices must be tested to find

just a few items that are "bad" according to the electrothermal NDT

technique. For this reason a large number of devices needs to be tested to

provide additional confidence in the inspection method.

One positive step in this direction would permit a limited sampling of

production lots of detonators. In the process, as much data as is practicable

should be accumulated on production items. The "odd" waveform is a very

important aspect of this method and detonators showing deviation from the

normal waveform should be isolated, marked and inspected further.

7-1

UUiJU FranWin Research Center A Division of The Franklin Institute

Page 53: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

Computations should be made on accumulated data in such a way that tested

items can be recovered at.a later date for re-inspection and possible test by

firing.

EEDs with abnormal waveforms should be subject to inspection by other NDT

methods, x-rays for example. This will allow a comparison of the

electrothermal approach to other, currently used methods. Subsequent

dissection and closer examination of devices in question may reveal the extent

to which other NDT methods compare with the electrothermal method.

Our findings are that the NOT method is applicable, even if bridgewire

materials have a relatively small temperature coefficient of resistance. Both

the PA506 and M100 detonator use MoleculoyR as the bridgewire alloy. This

material was apparently chosen for its very small alpha as well as for reasons

unknown to us.

At some future date it may be prudent to use an alloy with a larger

alpha. We feel that in many applications the choice of a larger alpha will

permit electrothermal tests on EEDs that would otherwise be difficult to make.

Some foresight is now possible on future uses of the electrothermal test

in the production of EEDs and our feeling is that such testing will be used

eventually. There are a number of practices that will greatly aid the process

o Design EEDs that contain bridgewires with higher values of alpha if this practice is compatible with other features of the system.

o Good electrical contact at the detonator input is a must, and efforts spent in producing and maintaining the contact will be well spent.

o While an analog approach will suffice in testing, a digital approach such as was used in this study produces much more information.

o Automation of the process is within realization. There will be small technical problems, mainly in decision making; but all of the technology exists for automated electrothermal measurements.

o Accept-reject criteria can be established by initial studies on production items, much the way the work reported here was done: establishing limits on thermal parameters, making use of algebraic sums of parameters combined with data derived from firings of samples of the EEDs.

JUUlJ Franklin Research Center A Dtvision of The Franklin Institute

Page 54: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

F-C5174

We strongly recommend that this work be continued and that these

inspection methods be applied to detonators and other EEDs that are being

produced. To do otherwise is to invite accidents due to very sensitive

detonators and failures due to very insensitive detonators or to improperly

manufactured devices. We cannot afford to contend with the problems that the

electrothermal test minimizes.

7-3

Franklin Research Center A Division of The Franklin Institute

Page 55: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

8. REFERENCES

[1] R. G. Amicone and C. T. Davey. The Wire Bridge Detonator as a Circuit Element - Proc. of Second Electric Detonator Symposium, The Franklin Institute 1957.

[2] I. B. Kablik, L. A. Rosenthal and A. D. Solem, The Response of Electroexplosive Devices to Transient Electrical Pulses, 3rd Electrical Initiator Symposium, The Franklin Institute 1960.

[3] Army Contract No. DA-36-034-501-ORD=3115RD Reported in FIRL Reports MU-A2357-10 through 43.

[4] R. G. Amicone and V. W. Goldie, Nondestructive Determination of the Sensitivity of T77 Detonators, Franklin Institute Report F-B2191, May T964:

[5] M. G. Kelly and R. G. Amicone, Study of Pretesting Effects on Electroexplosive Devices, The Franklin Institute, NASA Contractor Report CR-1203, Nov. 1968.

[6] W. J. Sipes, Thermal Response Testing of Electroexplosive Devices, Proc. 9th Symposium on Explo. & Pyro., Franklin Institute, Sept. 1976.

[7] L. A. Rosenthal, Electrothermal Characteristics of Electroexplosive Devices, 7th Symposium on Electroexplosive Devices, The Franklin Institute 1971, AD 742 150 (NTIS).

Franklin Research Center A Division of The Frankiin institute

Page 56: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

APPENDIX A

TEST PLAN FOR NONDESTRUCTIVE TESTS OF FUSES

Page 57: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

PREPARED BY DATE

C.T. Davey 11/14/79 THE FRANKLIN INSTITUTE

FRANKLIN RESEARCH CENTER

PHILADELPHIA, PA. 19103

PAGE

APPROVED BY DATE PROJECT 03G-C5174-01

TITLE TEST PLAN FOR NON-D~STRUCTIVE TESTS OF FUSES

Testing of Fuses .

1.1 Obtain waveform from the Pasadena Tester at 20 miHiampere test level

and determine the thermal parameters using the data sheet provided.

100 fuses required. - —

1.2 Repeat 1.1 with test current of 25 miHiamperes. 300 fuses required.

1.3 Repeat 1.1 with test current of 30 milliamperes. 100 fuses required.

Additional instructions on above.

A. Record any noticable differences in waveform, particularly distortions.

Store on Floppy disks (FDj any vastly different waveforms and preserve for

later analysis. Record the item number and FD location corresponding to

the number. - -

B. Record representative sample of Waveforms - -

-- - Obtain at least 20 oscillograms from each test, 1.1,1.2 and 1.3. -

C. Remove only one fuse at a time from the coin envelope in which it is

stored. Return the device to the same numbered envelope. - "

1.4 Methods to Cull - -—

Review data from 1.1,1.2 and 1.3. Examine any waveforms that appear to be

submormal and place siich devices in a separate packet, recording their

numbers. -

Repeat electrothermal CET5 tests observing any waveform changes. These

waveforms would have been recorded during the original tests so that

comparisons can readily be made.

Select members of this group for microscopic examination. To examine

them, remove the outer shell on a jeweler's lathe, view in optical

microscope for any construction defects, comparing the questionable

device with those found to ben "normal,J, Those found to be defective

or suspected of Being defectivo by optical microscopic examination

inay be subjected to examination in the electron microscope.

Note: Numbers refer to the accompanying graphical test plan.

A-l

Page 58: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

PREPARED BY DATE

C. T. Davey 11/14/7$ THE FRANKLIN INSTITUTE

FRANKLIN RESEARCH CENTER

PHILADELPHIA, PA. 19103

PAGE

APPROVED BY DATE PROJECT 03G-C5174-01

TITLE

1.5 Quality T -b.; on UDX Item-! • — •

t cMrrent th*t inavu a opening ol tits luse in a reasonable

time frame. This may require some preliminary determinations using

those remaining after removal of the 500 for NDT purposes. A plot of

opening time vs current will be required. '"'

Expose the items remaining from 1,1,1.2 and 1.3 to a fixed constant

pulse, measuring opening time on a time interval mater. Record

opening time for each item number tested. ,

1.6 Furthet NDT and Destructive Testing

This work is intended to be an extension of 1.4,methods to cull.

The exact types of examination are not defined at this time. We

plan to use the electron microscope in probing any devices that

are, by previously mentioned methods, determined to be different

or defective. These will be the -destructive portions of the

testing on previously NDTd devices.

Non-destructive tests will be made by other methods that are currently

not clear. One such meth-ld could be a continuous application of current

with, notation of the power required to raise the resistance a given

amount.

1.7 Summary of Fuse Testing

A summary will be prepared on all of the testing done on the fuses.

Ihe results will be discussed by means of analysis, graphs and other

illustrations to provide an understanding of what the results of the

testing mean in terms of fuse quality.

A-2

FORM 207 X 1.5M^-74-CP

Page 59: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

PREPARED BY DATE

C. T. Davey 11/15/79 THE FRANKLIN INSTITUTE

FRANKLIN RESEARCH CENTER

PHILADELPHIA, PA. 19103

PAGE

APPROVED BY DATE PROJECT 03G-C5174-01

TITLE

Study of Pasadena Electrothermal Tester (ETT)

2.1 Safety

The objective of this portion of the program is to determine

any conditions under which the ETT becomes hazardous in the

testing process.

To accomplish this, we will assemble an "ergmeter" that will in

one sense act as the bridgewire of an electroexplosive device or

as a thermal converter to allow broad viewing of the energy output

of the tester. A sketch of the circuit is as follows:

D C POWER SUPPLY

CAPACITOR VACUUM THERMOCOUPLE

MICROVOLT-AMMETER

The converter-integrator for energy is the vacuum thermocouple.

Output from the thermocouple junction is in the form of a voltage

signal that is proportional to the temperature of the heater element

in the thermocouple. This element integrates the electrical input

energy and presents it in the form of an output voltage that is

read on the electronic microvolt-ammeter. The circuit to the

left of the vacuum thermocouple provides for calibration of the

system by providing a known energy input pulse.

The unit will be calibrated and then used to determine any stray

energy output from the ETT. The effect of unbalance of the resistance

bridge will be determined. Switching transients in variation of

controls and switches will be investigated. Resolution is expected

to be in the tens of ergs.

A-3

FORM 207 X 1.5M-4-74-CP

Page 60: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

PREPARED BY DATE

C. T. Davey 11/15/79

APPROVED BY DATE

TITLE

THE FRANKLIN INSTITUTE

FRANKLIN RESEARCH CENTER

PHILADELPHIA, PA. 19103

PAGE

PROJECT

2.1 continued .._.._ _ _.

Record settings and operations for whicfi tests are made, TS ahove-background

readings are obtained, note the settings and conditions under wMch these

signals appear. Investigate further , using oscillograms, to obtain the

nature and source of such signals. Any readings that exceed 20 ergs

should be considered potentially hazardous unless these energy levels can

be explained as part of the intentionally provided test signal from the equipment. - ,

Investigate, in particular the effects of reading resistance

under off-balance conditions in the resistance measuring equipment (ETTf.

Record the off-balance setting and the energy output from the resultant pulse. - .' .

2.2 Accuracy - —

Obtain a precision resistance decade that reads, to 0.01 ohm

and covers a range from one ohm through .20 ohms. Set the decade to

5 ohms and read the value indicated on the ETT. Change the setting of the

decade resistance to 6 ohms and observe the unbalance signal, recording

the magnitude of the signal with the ETT. Cross-check the indicated

signal against Vm and the test current. Continue this process in one-ohm

Steps comparing the resistance change indicated on the decade with that

calculated from the oscilloscope trace. Tabulate and plot results.

Measure the currents for resistance measurement Cnominally 10 mAL, Compare

the pulse current indicated on the front panel with independently made

measurements at the EED terminal,

Check the specifications of the equipment according to the instruction

manual of the manufacturer. Note any differences between the specified

value and that determined from experiment.

A-4

FORM 207 X 1.5M-4-74-CP

Page 61: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

PREPARED BY

T■ T navpy

DATE

11/IK/IQ

APPROVED BY DATE

TITLE

THE FRANKLIN INSTITUTE

FRANKLIN RESEARCH CENTER

PHILADELPHIA, PA. 19103

PAGE

PROJECT Q3G-C5174-01

2.3 Operation _ _

Check the operation of the equipment as specified in the manual provided

by the manufacturer. Note any problems that are apparent or that _

could cause operational problems. These will become evident during

;?: exploration of the safety and accuracy portions of this work. -

2.4 Precautions, Errors and Ancillary Equipment

Investigate further any safety, accuracy or equipment problems that

are found to exist. Detail these and document them. From our findings,

determine other comraercially available ancillary equipment that would

tind potential use with the EEC. For example, other oscilloscopes

that may serve equally well. . ...

3, Demonstrations _

h demonstration and acceptance test will be planned and executed

prior to completion cf the contract. The test plan will be submitted

-90 days prior to the planned acceptance test. .-■ - -

4. Final Report . - ....

A comprehensive final report will be prepared detailing all of the

information determined during the course of the project. -

■U -

A-5

Page 62: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

PREPARED BY DATE

C. T. Davey 11/15/7^ APPROVED BY DATE

THE FRANKLIN INSTITUTE

FRANKLIN RESEARCH CENTER

PHILADELPHIA, PA. 19103

PAGE

PROJECT 03G-C5174-01

TITLE

DATA SHEET FOR EIECTROTHERMAL ANALYSIS

TEST CURRENT mA PULSE TIME _ ms ITEM DESIGNATION

ITEM NUMBER INITIAL | RESISTANCE j

VOLTAGE INCREASE

R Cohms) | Av fmv) _o i m.

THERMAL TIME CONST

TCUsec)

INITIAL SLOPE

Av/At(v/ysec

OBSERVATIONS FLOPPY DISK NO. REMARKS

A-6

FORM 207 X 1.5iVM-74-CP

Page 63: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

ELECTROEXPLOSIVE DEVICES

Testing of Fuses

iPreliminary lEvaluation

Study of Pasadena ETT

1000 Fuses

Remaining Fuses

2.1 2.2 2.3

Safety Accuracy Operati on

500 Fuses 1

1.1 1.2 1.3 100 3 20 mA | 100 (§ 30 mA

300 (§ 25 mA

1.5

1.4 Methods to Cull

1.6 Quality Tests of Devices NDT'd

1.7

Further NDT and Destructive Tests

Sunjinary of Fuse Test

■J Demonstrations L.

Final Report

2.A Precautions, Errors, and

Ancillary Equipment

2.5 Summary of equip- ment Operations

A-7

Page 64: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

APPENDIX B

NUMBERICAL PESULTS OF NONDESTRUCTIVE FUSE TESTING

Page 65: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

ta - o a. a. =

coccococcocccoccooocoooooccocoococ coococccooc ccoc-c rsrNCN04rMC>*r^cNrspjfs*<>*r<cvfNCN

u z u

£ .«•»••••••••••••• • •

< w a ^ o: o Eft. *< x a I- -« U

-^Tr-a^^-cNc- »£(r^rn*ci^r4' a. ir m a -^ o ct -a- «-. r^ o r. ct. r-. i^rovc*oci%ccvot^^ac^fiD a f\ r* fs

* 3

1- «.' u 01 X k4 1- cr *

T3

■J « h; O I-I a a.' H c V)

OOCOOOOOOOOC Cooc oooooooo

oooooooooooooc oooooooooooc < OOOOOOOOOOOOCOOCC'OOOOCOOOO

o o o c o c . c o o c o c

c o o c o o c- o

l-l « \

*s a CL I

E5

r'ccr'^,cr>*fNcx<z:c-"Tr'r*c •-*

«« =■ t; = u a: *t

o •-1 H CJ X J w •t C

1 >

» «■ u.' » u

J 2 < <; ►- i- i- U5 .— .— ^ W i- u;

o:

> • • * ' •

H- •- ir

W C ■^micr^Qcc o«-«fN , IT IT \c r^ a cr o

oooc ooooooooooooooooooooooooooooooeooooocoococfoe oo

B-l

Page 66: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c occoc'OCcooccoeoocooocooooccoocooccccC'Cooccec c coco

2 jj

^•-'>£vD^rr-vC'Otcr»c*ir^-^r^ occr-r-o*

,CN— O'JfX — — — ^—< ^-t^-»r>4cs«-i»-'^«-'--'-tCN^'Oics — CN—'rs*-«rj"-«-i •-fv*-t^ri--<«-^r*—'CNCS*-.

*2 >■

4-> ^ r* ^r

^c tn CD o c CM a en r- rn CD VD ut m ir> r* cc r^ oc '■n ao c^ r* oo o o fN r- vC •^ m c O cn m CM m -^ c r- nj ■<* CL O i-* ■" — "n 00 CXI

"T in o in <« CT n-i r^ M C IT. or o r^ T kO «N W a rj o e •* » fN -^r r* a: r^ TT in r- ro aj r- in rn CC' (-r> rn ^ (N r* m ff< a X •r a; m r- •^ a r- •t1 vr ^ CE r* ■T IT. U> r- vC c «? ^) r- r- in v£J ^ \JD in yo cc * QC £ VT !*• n^ a in r- ifi «) VC a ^r m CC rr «• W r- lO or r^ f

H- a. I- c

ccoocooooooocoocoocoooooooooooooooocoooc oocoooooocooooooocoooooooooooooooooooooo

oocoecco occopooc

CM-«j,a\^r^rrivcma^in'r^ra>»H(7\oooD^,CNODO(MQo^r'S,a^'*imr»4ir)'n^frs»"TaDo^,x)C«-tr^*Hfnr^<^»rn^raNa> iDmxiru"'»c^ com-^ir^f-^r^-r^r-tDr-^inxo^o-ir. ^rmo^iOvcccur'rooLirj^*^ iri^cirmr^^r^ri/^in^r^a^^

< o IT U or l i. u:

''i>^cr'?'vC(r*ccX)orNfM»r>'^r-vavr'0\m<rminoinrMTr»^r^r^r-Of^atr^^"r*^v£>r*mrstv£>*c*^aDt/>r^

o l^

3. U-

i-i t-

x -; <t o

> ■•••.•<.........••••••••••••«•••••••••••••••••••.•

u

I- f- H to

M c-vo~-«-i£r^ir'r^Ofvacr*o-CN^-(Nm^fNa~«o,'ir-orc^tor^i£>sc«*,^ir'?,vcr-r-*C'*»^>,^'*ccr-a.O"air

O tcco^cov£i(^r*-cococDa?r*r»p*CTicor*^CDoocc^ODCor*CT^p*^o>^oo>CDfficcc^CTr-cor^covo^r*-r^cacoco^OP^

»nirmtr^irmtrir*Cvovc«i)v£v£>icvcvci£ir^f^r^r-r-i^r^r^r^r^ao(r'a.opaDeDcrocecaoO'C-0'a»<ra'OCicc-. o occeoccccoooooocoooooooooccooooocooooocooococoooo—

B-2

Page 67: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

■2 or Z» a. a =

C u" i^ ur ^, LO u" u". u. JI u". i^ u^ u'1 y", j" ^ tr u-.. u. irt u^ kT' iri in ir) u" u^

*- E to *« ►- X

c^irr^i^^r^^ocvc\cu>^ca'0'X^voc^invou^o'r^^^r^ttr^irc<r#^fNir-a'Cirvcoc»-'ra:ccx-r-"-*-

f" < CN -tl r% rn i ^rofNi^^fi^rrw r* CN. ^J r^ * CNJ i iCitN^mcNf^-c n \r-r*it*: c-im^v-tr^mvtc^^&r^icoif'-cr^

iJ >-

S ft.

U

w -^mr^-u". f^Oim-^i£r-<(i,if)a»o*ok\oo»-<i^coor'««'00>'X><-«aD*H<^'r( mr-'ntNr'inr-o^aDr^-HfNm *—tf^-*! ir

»-» a E- C

irtf^w-^^^^i^^^ovrn^c^^^oPW^r^(r;^fMO^r^oxr^r^incf^ci>*ru^c>ocD-HCxacr^r*^'^vCvD»^«"u^vo

-,_,_-H,-,W,-.—.,-.,-1.^.-.—•—I—<^-- ^i^..^ ^4 ^-^ „w—*--4—t-^-.—;^^«« rs|»4-<^***-H^i«-(»-»«-i(N —

C OOOCCOOOCOOOOOOOOOOOCOOOOOOOOOCOOOCCOOCCOOC oooccc ooooooocooooooooooooooooooooooococoooooocooococooc

^ a ♦ X o

3

r-cNv£)r''rccr'0<N\£)',n\0-^Ofc

3 u US

X -3 «« C 5" >

^(N'noo<^r»'00inoaO'OCh'ri^O'nr»»<-^«-iajfn^r^oocNicsoa>r^«H^\DOa>c(Nrn xcr-^ravcT' P-CN X)"^^

•-' E-

|M M o

oocooococcoocooooooccoooooooooocoooooococooooocccc

B-3

Page 68: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

IS. u. IOIC r. in mtn m i» in w« «o ir in » mir 10 « » m *» in in in « ift »» £ £ 10 »»«« « r **«>«» »■ tDirt/^miTLDtr. IT. tf^ in ir> in m irf" f- ^ fcfi w^ ^ f' l'■, ^ ""' "' ^ ^ "^ ^ ^ ^ "^ "^ irMn<<Ni>cscNtMCs<NC^tv4<Ncsr>tstNr.<N(NrMr>irMrM

^<a^(y-lr^^)f^^cO'OC>lc^u^lf>^*■lnc^'*»ct.(NOl/l'v^ —4fNoDr^mu>u^r^ooc'Xor*«CCT<',r»mctj^mor--r-^C'^cM^ -o rti; «n —^^^^Mc^0"^^^^^^^^^""''J^„^_;^„^^_„^>l-.c^~vlr■^ca^)r-r■1■>^■€r,o<^ t- x E »c a -r m •>! CD "r o m — c — •<» IN m o: (Ri~t-r-»*»~«««^w** *">'B*",c,,''"~r^^u;,w;~~, ,,,'', ,

• ein«~ew»mooB»inweeo«««»»oo«e«»«in = «m = -w«woj>;-«o««j*jrc«r»j*

rsccr—»f^inmr- mfNOIOOJ^On^nnOO^-^CNOCMI^asCMtNOOff-a)^^^^ mm<Tivo^?'f'^oO'-,^'^c;'^,N,cr'^

-^ —t -^ CN (N 5»««»S"e-.S<f«niS»«»-'«><o<n««r»«»n.^»i*«iB»«o»»"in«e^e.^o22C! __^ ___rM«^cs.« — —— — CM — ^ — '-oi — CNCN^I _,..<,<-..~,*-..~ — -1 — — CN — CV —

t- c

• c u » DL I

n m r« r»i T 3

— 3r Lu

x ^; <t o

0"> r^ oo CD -i) ^ co o-'

rT « • » » r! e;»a;r.,«;efoJ»»«;»«r;r:»»o;«;r;»r^e»»ecocor-oop.<»r.i-«.»r>v«»i.r-i-«o.»o.«

B-4

Page 69: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

ir jr. u^ IT, U"J tr. IT. ir lA u^ ir. u^ in iri in IT ir u^ in in in in U". U"- u^ in U") iri ^ ^ IT. t/^ u^ in u^ u^ if. U" ir IT. »r tr IT, IT *f, tf^ u% in u". IT. c^r>»r^o*rvir>*c>»rsjrsirNr^r*)r^r^(Nr^fsr^cNir*i(Nr»ir*»fNieNCNcNr^r^r>*c-r>ir^f^f*#CNr^cNrsrsrN)r^r*irscNrjr>j(NfNfN

u ■a. (J

u.

(7sf^in-H-^CTiinr^rM<^«in--soa'aDNCni*r^r^moo«oDminGD<Nr^-*rsi»^(yvina='^r-^cM-^'^-*r-(x-inc*ofvckC/'^ t£OXsOirfvota,(rc»-^^ro,r-o--irr-ino^a'»«f^HCCfsoO'irr'mccmc>jr--acmr^r-»'c:oc^cxc

s •- a. u u: «

cs^cr^rs'^ir-r-O'^cinir. <'mcmcv^,Oi»C(*\r^in^'ir. '*>invcc*,,«f^,'»>inr*ir'0'inir. *£aoirwfN*-f^cc"- cNcs^racsic>itNf<»rcvirvicNr<rviMrsic<r^r>ir>i«t>oi«r<rgr<irsiMCNMrjr<c\if>(c^r4CNC<csr-j«i>ir^CN<>ic^t^rwr<

-^<rrt<^-*s0a>CT>**inp*,^*^a>oc^ir>^r^f-r-fMrsir'0»c>irMr*-icc*^',^inr^rnrMf^ini^^'n^-^r^^cc-^CNs£u> ^CN'^c^^rnm^ar". i^in^rn'n»*>i,nr^*^fornrn^l,«rCN*»i'«»r,4^r*»>rn*n«n*n<'<rr^inCNrn(^ ro^.^-rn^rrnnrnCN

^0-*CTvin<naDmc'rtrcr'*-«r**a;*^^r»>^a,cmr*'r>(Nvcr'O^rj'*>'S'^,c7^M3^r^cDr^i >OTOsfMTrc-^-^'*r~(NO'

(DaDOP^r^cD^r^o-^^CDOD^cvi^incNaor^^rcc^c^^e^^OToccD^inCTsoac—iO<caDma)-^ain(?<r*i^.tn'jj

.3 « u. OC.OOCOOCOOOOOOCOOOOOOOOOOCOOOOOOCOCOOOC

oooooooooooooocoooooooooocooooooooooooc o o c o c o o c o c

o c c o o c o o

in^)ONin»»iO'Ctsinoo-i)«jio<r-in-<»Hr~ino>»oo<r~<»i-<^ocMi~ino>'r'TCM<>j>oo — >Door-c->'^'^rMina>o< cNv£)invC'*iCMTi'^ra)vc^rfNr^inir. ^■*,rivor-oi^i^tn^,inii:inicmio«£i<r,^incirr-^o-m — ir-in*c«rnkcin-^c

10 J z -t o

I- l->

Of cMinocai^-iCTi—'Oi'i*

3

»-m»f,*corfcff*c«ioDODr»»in***-^'^r'r*-i£»a!^%Of»i«ooDOPP«*or«*Tr*-^tr-^-r- fn*-4ii5r^icincMor^r-Mio*-'*^vCP*mCT'r'(Ncs»HC\fnr*r^f'l^op*f3ic--i) »«rf^r,*^r**i^,r*i*m<n**>cN^,mr*»^'^rcNinf*ifri^,i*iv»»im'*^^ivm'*i'T''*

r^fxoino««ma--< ^jioajCNCfNooin

— £. llJ

3 «r i-. t- X _ «£ Q

a i_-

fMor^incD^r'<»'ininmr-r»>CT.mr^in-*c>*p*in'^inmio^-*oD-'vDf»i — voC'CT'v-O'minoc-^^ina^inoocr- — Tfv CN-^rMCNr-*'ncNicC'^fr-cor-^r'0*ro\'n^oor^co'^'CMinr^r*iO'<r'*«^rCT'i,^*-^o*coooofN'^sorMir)CNmooC"TCD

r-^-^or^{N^ovomincEP^»oo*<T»'^cD',^(N«aaD*i'inCT\invocNOfQor>r^f--oo(r^f^a>ina5fN^r^voo*inooO'CO voc-io>'»trcoo»a>^rtMr~inmoi"r~a>c-.{Mr-<Najr-tN<Nocint-oo«mh-iJ>in<ii-<wi^oo^cj>oi-or-CO'ain

a. >

l^ <J

»; z •t < >- t- N oc ^ r-* o c>* rj e- w E rsj »-. o co in in

3 w O r- CD r^ co r^ r- >- u:

o:

iaDcD(7ip^r^o^coa5r-r^aDODa»r'ODOOcooocDa5onjO(i>ooONr*cD«£cDa»r^^a>r^r*a)a:r^(^xr-^oao

f- • to c u. 2

^i[Nm^in>cr-ai<?o«CN'n*inier-ooo»o — CN^fir«r--oocro—CNmvinior-aiero — r\'"tir>cr~cD(T.o ococococo-*-Mw^^^«-Hw-^CNfNCMCMrNryf>*rJO*<N'^^'nmmnnr^^m^i^-^-^r^,^,,»,^''",^'in

M^i^M^^^«iN^^MM«MMM^^M^M^rvir^rN(^eNfvir><rvr^Mr>icvir^Mrsir*r>ir<iN<Nr<rtp<r<t>.(Nrs

B-5

Page 70: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

tf)irmtrmirtr>iou'itnifimmm IT r; t'i ui i/) vi ■J CN fs fN- ( : in un ir, i/-' in in ir, if, ir. ir ITJ

r-j (7 (N r^ CN ( * ra r^ r>t CN OJ

u

i o •- v oc r- c r- c n* c ic in a mmmu-«t.pi4U^l/-

rirm — Tfoo^icinvoor-r-mtsm^ooioioinoimwotDioicirinoir. o-inorifts^fn^Ttr. ina. 3^in<-iiCfNir.«;^c>.o.a:c\acma-(Mc^t^«:m*fMi^ocr>ir-1fin-T«<>ocrr-~ttcai? .*_*«'.''*' * • >"tfiinir^inif)->f'»>cr»)mr^in«cs«inr>.r<.inuii^mrMm»r<N(»>*tfiirinm«fN»»cinw>£tv

UJ < »~rCN'rc,0""*''<rif''",p'ir~,^ccco"«-ro<Tmo'>,c«'' — »" — <»•'«'■•>^■—T" — — r--,<«*infv^o^ tscNr^tNr404Mfs^P*r4fN.cs<Nr«^fsr«04NrNM —fviMeNMfvifsr<r^rsirjMf«.cvirvir>icNiNMcvieNNStN(NC>iS^

A- r^—*ir)a*—*i/>of*-r^a:o^CT' "> '^ ^ fv f% f*l t

tN»^tN<»im»^m«»>Oimw«f^r>j*i»>r.>»r»imr«CN»»><»i»ir^inmc«CNmwvm>t«f>jmmmTr

OD o » CM ^i* ** *c "■••'•*• ,

ici =>*'N<r<T-o-in<rr^<rcD<oin-.^-cr-«cini-o-a><r^(Ncr<'S-»>5-c<rr~-(Vi--»--wr-S"oc:

•3

F- CO

_1 Z •< a ex I

x X f- •-

£?£2SSSS2£Soooocooocoooc'coooooc,c>o<='<=ooooooooc;oococc coooooooooooooooocooooocooooocooooocooooooSoSSSSoS

a.in-»a;»r<io«r^mci--vo>cvin«ajr-(Nr->0'»«)in^or-a>o-*-.-.«--9-o-r~<rifi>Ta.<NO>c2icSc

IT CM •» ^ CM io a

«-t x: UJ

O U

M t <r ^ t^ c c •ijincocrm^rco

inin^i^^ir^inin^^^j^ic^ioio^r-r-i^^i^i^r^i^.i^i-ocoDajcDcccrartiiaa:.^^. o-o>»WffO-S»o

B-6

Page 71: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

U. 2

*"• '_"_'^*

2. ^-

k: i s a.

z. miomr-r- — «l-aoa><»<i!r~c><iriinoa>r-<ooCT'0'<r»->'>r<i>t^in'»,-'in,«r£P«-<-ir-oi^'nr-in-<rr--.>o»->r*«>c

t- ---••••••.••••••••••••••••■•••••••■"••••

f»ifimo)ice-'wr~ — ■<j-ccmmtNCNtvirivci^'r<rvctNO'0>c<Nec — ocr-tsu-i — •win — r-.r-c^ic^c r^ ^r ^r CN or r^ ^J- m o OD

occcooooooocccoocco oooooooooccococcooocoooooooooo^

.....••••.•..•.•••••••^•••"••'•"•••"■•••••••"■•■'" wa5TrtNtE^inrnc»-incsr<in*tN^^co^i-cN-^^^in*w«N--ONin« = «^o(J>-tN-»-^*>02^

_ 2 <t O

t- ^ H

U9 "to X >

m in — o ID m in co oo ir> i7« m

ootNi~'»omr<^a>'«-a)rioio-«r-i'fl-o>oO'<r — wnoo — inin^fNO-cajxraj^rjoooj—'n^vo

!5SS^vocS»m^^o^a;»tfin<iio>o><ta--M-->o^»insowa.*r~^^a.cNr-o-aoc^r-0(Na;*

U

•- (-

►i b: a:

E SS-SS^S''SS5oInoiii»S-^«covovoi~<NC>>cr-^^'->o1^^o^^^o.1nr-^:>>«oofs1a=cr- , • •"_ •• _'~,J ff,o>cr.=oa.t71oa><»oocr.ao^trr~CTv^r~t-iscor-co(r>uo?.r-^ajl-r~»tDCni~r-or.oxl~<i>a>coi--<i>a.c-a>(T>(-

w c -.<M«»in«t-«B»©-e«i<"«io«iT«eo-«m*ift£tS2£r222!£)SCSS25S5525?5?S ~SSSS£SSS^S^S^^N^(v-^S(s^«N^<NP.^^^ts^(N^o.^rJeNtN^<>.(v(>.cs,fscNC>*r-<NCv.ts ^N^SS^S"^^^^^N^^N^^«Sfv:cN(N<s.<N[NiNr.r.o.«fN<Nf>.rNtv.<>1r>.cNrs(Nr,fNr-tv1(vr>.cv<N

B-7

Page 72: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

u.. £

D a: a a

CNCNrs.rslTr^^'^rs»r^04^^CNiscs^r^fMrsi/*>^-4f>^j'f^^tt*rfOPnrkir''^<rncNOjrn» inn'nr^fir-r'- "^ mrsiO«

x a.

c: (Nr* ^r^or^^a^^r^inrnr^»^Mr^u^v«^^*^-^ou^o/nrn*or*sCO\c>iino^"^o^or^r^rnu*. "-in-^^-fn

? « •OvCGD^o^otD^-^iomr—cDm^\otfitri^'Ooct^o*Hr^^aiooa;ccC')^tacccr»*~moior^

ti

t- o ocooooooooooooocoooooooooocoocooooocoococ-ooccccocc ocoooooocoooooooooooooooooocooooooooocoooooooooooc ^—<r»40*i/>^fN'ro^-iirjCT>minor*)^j,o4aDr*-p^*-«o4aoc^m^»^aDCSLf)a>aD<B^mr*^*ornf^{i>^rmir^r'^iGDCT\'n

« - 2 « C I U tr I

X X I- •-<

H

Q «-l t-

at »

^r*coov^t,«cr*-r^*?''n^f^**>fft**iocomtnQD^,«-«»^f>iinr*'*>oaoo>o^rp*\omvcc*»^a>ocro^-»^. 'Ti^»fi»^^j,»* »cr**or*ocN**r^»^>*/>voo*-tr*minoto*n^ovcN^'ooD^)-^«-'Ovr^o^'r>crioa>ifivccc(^c>4C\OQoe»r*oooc»r^r*-

>- t- !- W

►- ti; o

f-

ir>irv>ir>»/iini^tri^«c\£tg3vc^ovcv£ ^^c^r^r-r^r^r^r^r-r-f-r^mccoctcoDoocLCDacc&crcr. cnc CTCT j'cr cr (7*0 cNr^cjrif%fNr^cvf^CNo*r^rNc^CHf>iriC>*r^cNr*c^rsir^eNr*r^r>tcNMr^rscNr>*r4£NMCsr^r«tCNOiCNCsf>*f>.t>irscNm r^cMr4r4r^cNCNr>-'r>Jr^cNcNr^r«iricNr^r^fNtr4(N(NC4rvi<Nr^c^f>io«r^c^rNr^r^cN(NCNioir4r^(N(Nrv(Nr4rsir>;r4r>fr«

B-8

Page 73: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

(^ u.

a. s

ococcocc-occcoocoocccccoocccoccccoccoccococoooccoco

H Z

u

a: o

x a.

m a. H O

ococoooooooooooooooooocooooooocco coocoooooooooooooooooocoocooooooc

c c c c o c. o e c c c c

occcococc occoecoco

wJ z < o z o IX I

X 5£ E- l-»

c ^o r- I w« O O

CJ m ^ —t T- rj

I— »-i

X tc

u: : H

COOOCOOOOOOOOOCCCOCCCCOOCCOOOO" o o o c

B-9

Page 74: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

CCOCC-CCCOOCCCCOOO ocoooocoocc-ooocc oooooooccoooc oc

— —'.'-.****■**•••••••••••••••••

z T <

inr-«-»-.votNin<rocif>»»i»-in-.eNi~0'*in'«'CDOtMrM«ja«r-ti>in>owi i^wmrMooc'nr^ o Oi m ev <r ^r

< b cccocoooccoooococ cocooocoooooooooc

CS <N v£) " ^ Wl fN

cocoooooooocoooooooooooooooocoooo COOOOCCOOOOOOOOOOOCOOOOOOOOOOOOQO

^;Z_Ijr_^>00'I''!'C'E<N''"C'Ck0vOCDDOO'*M'«ODOvCvOOO^>>»^onr.*0(i.x.OCM*<I.'«-»

c

a

to

< o r u a: I

x 2:

z: Li

Z <

X -- < 9 a. >

ou-o-fru-^tr—■'-i— a-oer-o-r-o cr — ir, o or^o»-^DC^r^,c»-lr)(y•el'ecam^camc^o^i^^co*0'•**l

tN CD ^ c co r^ c o « w*

^T m (N ^

ctmoioa^o-irr-otn^-oo^inoui

"'•••"•■•••••••••...••••••.....•.......,,,,,,,,

H Vi C S f ^. ^ ^ W. ^. ". ^ ^. 0. 0. ^ ^ ^ ^ ^ ^ ". = = ^ ^ in o r~ w co o N OS r- -" r- CB fli m _i -n (j, a. a. rx. c- o -. -. c ^ S rr i,

<n c

B-10

Page 75: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

APPENDIX C

ANALYSIS OF TEST RESULTS OF FUSES

Page 76: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

STATISTICAL SUMMARIES OF FILES OF DATA FOR PHASES 1.1 AND 1.2

DATA IDENTIFICATION

Variable No.

1

2

3

4

5

6

7

Symbol

m

t

S

0

P

AR

Ident ity

Item number

Initial resistance (ohms)

Maximum voltage (millivolts) in histograms (volts)

Thermal time constant (seconds)

Initial slope (volts/sec)

Temperature rise (0C)

Heat loss ( watts)

Heat capacity of system (watrs-seconds)

Resistance change (ohms)

***** HISTOGRAM FOR VARIABLE; PHASE 1.1

40.00 +

30.00

20.00

10.00

IXXXXXI IXXXXXI IXXXXXI

IXXXXXIXXXXXI IXXXXXI IXXXXXIXXXXXI IXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI

IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI

IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI

5 ' 10 - 19 - 23 * 16 * 21 - 4 * 2 *

7.14 * 8.14 " 9.14 * 10.1 6.64 7.64 8.64 9.64 10.6

C-l

Page 77: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

40.00

30.00

20.00

0.00

***** HISTOGRAH FOR VARIABLE: 3 ***** PHASE 1.1

IXXXXXI IXXXXXI

IXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI T V V V V V T V v v v V T v v Y Y v T 1 A A A A A 4 A A A A A i A A /. A A i

IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI

IXXXXXIXXXXXIXXXXXIXXXXXI ixxxxxixxxxxixxxxxixxxxx! IXXXXXIXXXXXIXXXXXIXX) IXXXXXIXXXXXIXXXXXIXA. T Y V >' v Y T ^^ v •.' v v 7 - v - v v T V V V i AA A A A i A A A A A i --. /■ ■ A /.if.

XXI ;.xl >:xi

IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI

. + 4 4 + _ + + +

- 15 * 26 ' 30 * 23 * 4 ' 2 -

.147E- .?65E-02 ,196E

.246E-01" -01 .29(

. J " o:

E-01 ■01 *

. 2 9 5 E - 01

***** HISTOGRAM FOR VARIABLE: A *»^»» PHASE 1.1

40.00 + I

30.00

20.00

10.00

IXXXXXI v IXXXXXI

IXXXXXI IXXXXXI IXXXXXI

IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXX I

IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI

.+ + + + + + 4

4 - 17 - 20 A 31 ' 20 * 8 '

.233E-03" .333E-03' .433E-03" 183E-03 .283E-03 .383E-03 .483E-03

C-2

Page 78: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** HISTOGRAh FOR VARIABLE; * * +. * t- PHASE 1.1

40.00 +

30.00

20.00

10.00

IXXXXXI IXXXXXI IXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI T VV V V V ^ V V V V ^ T V \* V V V T

IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI

IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXX IXXXXXIXXXXXiXXXXXIXXXXXI i. A A A A A 1 A AA A A 1 A A A .'. A * A /i A A /■ - ,'> t. A A A i.

IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI) XXXXI

IXXXXXIXXXXXIXXXXXIXXXxXiXXXXXIXXXXXIXXXXXIXXXXXI

9 - 25 23 27 10 " 3 *

43.0 33.0 i3.0

82.0 :3.0

io; 93, 0 113

***** HISTOGRAM FOR VARIABLE! ***** PHASE 1.1

40.00 +

30.00

20.00

10.00

IXXXXX IXXXXX IXXXXX

IXXXXXIXXXXX IXXXXXIXXXXX IXXXXXIXXXXX IXXXXXIXXXXX IXXXXXIXXXXX IXXXXXIXXXXX

IXXXXXIXXXXXIXXXXX IXXXXXIXXXXXIXXXXXIXXXXX IXXXXXIXXXXXIXXXXXIXXXXX IXXXXXIXXXXXIXXXXXIXXXXX IXXXXXIXXXXXIXXXXXIXXXXX

.+ + + +

7 '• 10 " 22 " 27

I I

I

IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI + + + +

■■ 2\ - 9 '■ 4 "

t 24.7 * 34.7 - 44.7 * 54.7

19.7 29.7 39.7 49.7

C-3

Page 79: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** HISTOGRAh FOR VARIABLE: ***** PHASE 1.1

50.00

37.50

25.00

12.50

IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI ■ IXXXXXI IXXXXXI IXXXXXI

IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI .+ + + + + + +

* 22 * 46 * 16 * 8 * 3 - 3 '

.792E-04- .119E-03' .159E-03" .592E-04 .992E-04 .139E-03 .179E-03

***** HISTOGRAM FOR VARIABLEi ***** PHASE

80.00 +

60.00

40.00

20.00

IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI

IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI .+ + + + +.

' 26 * 65 A 8 - 0 ' ■—+

1 "

.310E-07' .510E-07A .710E-07 .210E-07 .410E-07 .610E-07

C-4

Page 80: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** HI5T0GRAH FOR VARIABLE: ***** PHASE 1.1

40.00

IXXXXXI IXXXXXI

30.00 ♦ IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI

20.00 + IXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI

IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI

10.00 + IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI

.+ + + + + + + +

<> - 16" 33" 19* 17* 4A 2*

.483 .683 A 1.08 * 1.48 * 1.88

.883 1.28 1.68

C-5

Page 81: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

THERE ARE 9 VARIABLES AND 100 OBSERVATIONS PHi

VARa HEANS STD.DEV. VARIANCE 1 1050.500 29.01157 841.6711 2 8.488140 0.8298198 0.6886008 3 0.2119100E-01 0.5499009E-02 0a302391OE-O4 4 0.3434542E-03 0.6538760E-04 0.4275538E-O8 5 59.66000 13.84855 191.7822 6 36.44643 7.477817 55.91775 7 0.9697495E-04 0.2221124E-04 0.4933390E-09 8 0.3389000E-07 0.5747011E-08 0.3302814E-16 9 1.059550 0.2749506 0.7559784E-O1

1.1

***** CORRELATION MATRIX ***** PHASE 1.1

VAR. 1 1.0000 2 -0.1561 1.0000 3 -0.0807 0.6638 1.0000 4 -0.0496 0.0838 0.5270 1.0000 5 -0.0486 0.7226 0.7261 -0.1817 1.0000 6 -0.0277 0.3695 0.9366 0.6257 0.5689 1.0000 7 -0.0842 0.1158 -0.6346 -0.5969 -0.2394 -0.8462 1.00 8 -0.0836

1.0000 0.1745 -0.2558 0.3206 -0.5248 -0.3970 0.53

9 -0.0807 -0.2558

0.6638 1.0000

1.0000 0.5270 0.7261 0.9366 -0.62

1 2 3 4 5 6 7 8 9

C-6

Page 82: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** HISTOGRAM FOR VARIABLE; *««** PHASE 1.2

40.00 +

30.00

IXXXXX 20.00 + IXXXXX

IXXXXX IXXXXX IXXXXX

IXXXXXIXXXXX 10.00 + IXXXXXIXXXXX

IXXXXXIXXXXXIXXXXX IXXXXXIXXXXXIXXXXX IXXXXXIXXXXXIXXXXX IXXXXXIXXXXXIXXXXX

.+ + +

* 24 " 37 - 67

IXXXXXI IXXXXXI IXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI + _, + + + + +

* 74 * 51 * 29 * 15 * 3 '■

7.10 6.60

8.10 9.10 10.1 7.60 8.60 9.60 10.6

*,«»* HISTOGRAM FOR MARIAELE: *»«»* PHASE 1.2

50.00 +

37.50

25.00

12.50

IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXKTXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXIXXXXXI

IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI

.+ + + + +-

- 59 - 150 * 69 * 18 *

.417E ,217E-01

■or .8i7E-or .617E-01 .102

.122 H:

C-7

Page 83: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** HISTOGRAM FOR miABLE: ***** PHASE 1.2

80.00

60,00

40.00

20.00

IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI

• + 4 + -

' 232 * 67 - 0 — + -

0 *

.444E-03~ .944E-03" .\'.At-02' 194E-03 .694E-03 .119E-02 .1;

l<?4t-02' 3E-O: '19E-02

***** HISTOGRAM FOR VARIABLE: ***** PHASE 1.2

40.00 +

30.00

20.00

10.00

IXXXXXI IXXXXXI IXXXXXI

IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI

IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI .+ + + +

* U * 70 A 88 "

XXXXXI XXXXXI XXXXXI XXXXXI XXXXXI XXXXXI XXXXXI XXXXXI XXXXXIXXXXXI XXXXXIXXXXXI XXXXXIXXXXXI XXXXXIXXXXXIXXXXXI XXXXXIXXXXXIXXXXXIXXXXXI + + + +.

80 A 28 A 12 * " 8 ""

110. 160. 210. 85.0 135.

260. 185 235. 285.

C-8

Page 84: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** HISTOGRAM FOR VARIABLE! ***** PHASE 1.2

50.00

IXXXXXI IXXXXXI

37.50 + IXXXXXI IXXXXXI

IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI

25.00 + IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI

12.50 + IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI

IXXXXXIXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXIXXXXXI

. + + + + + +.

" 15 * 98 * 124 " 51 ^ 10 -

52.0 32.0

92.0 72.0 112.

132. 152,

***** HISTOGRMH FOR VARIABLE; PHASE 1,

iO.OO +

37,

,00

12.50

IXXXXXI IXXXXXI IXXXXXI IXXXXXI

IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXIXXXXXI

,4 + + + + . A 113 ' 145 " 36 * 4 -

,425E 62:

■04 E-04' .102E-03■ 42E-03' .182E-03

,825E-04 122E-03 162E-03

C-9

Page 85: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

****:♦ HISTOGRAM FOR yARIABLE; 8 ***** PHASE 1.2

80.00

60.00

40.00

20.00

IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX IXXXXX

IXXXXXIXXXXX IXXXXXIXXXXX IXXXXXIXXXXX

■ + +

* 32 " 196

I I I I I I I I I I IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI IXXXXXI + +- * 68 - 1 1 1 1

.210E-07A .310E-07A .410E-07' .510E-07 160E-07 .260E-07 .360E-07 .460E-07

***** HISTOGRAM FOR VARIABLE: ***** PHASE 1.2

60.00 +

IXXXXXI IXXXXXI

45.00 + IXXXXXI IXXXXXI IXXXXXI IXXXXXI

IXXXXXIXXXXXI 30.00 + IXXXXXIXXXXXI

IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI IXXXXXIXXXXXI

15.00 + IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI IXXXXXIXXXXXIXXXXXI

-+ + + +- A 101 ' 153 A 41 "

1.87 .866

3.87 2.87

5.87 4.87

C-10

Page 86: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

THERE.ARE 9 UARIABLES AND 300 OBSERVATIONS PHASE 1.2

VAR. MEANS 1 2147.167 2 8.260300 3 0.5578924E-01 4 0.3972572E-03 5 154.8833 6 78.48135 7 0.6842112E-04 8 0.23B6000E-07 ? 2.231570

STD.DEV. 89.15654

0.7824506 0.1644404E-01 0.1243652E-03 31.27101 17.50079

0.1432680E-04 0.3437030E-08 0.6577612

VARIANCE 7948.888

0.6122290 0.2704065E-03 0.1546669E-07

977.8761 306.2777

0.2052573E-09 0,1181317E-16 0.4326498

***** CORRELATION f-.ATRIX ***** PHASE 1.2

1.ocoo 2 -0.0591 1.0000 3 -0.0733 0.7737 1.0000 4 0.7490 0.1752 0.3997 1.0000

5 -0.1286 0.7662 0.7903 0.0371 1.0000

6 -0.0760 0.5909 0.9642 0.4382 0.7079 1.0000

7 0.0470 -0.1407 -0.6809 -0.4038 -0.4381 -0.8287 1.0000

C-ll

Page 87: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

APPENDIX D

DESTRUCTIVE TEST RESULTS ON PREVIOUSLY NDT'd FUSES

Page 88: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Destructive Testing 1.6 P/)^> fVt, ALucei.i>ft-

A lot of 50 items from 1.1 where subjected to a current pulse

that was nearly certain to open the wire. The waveforms were

computed for the energy input, break time and average current.

THERE ARE 16 VARIABLES AND 50 OBSERVATIONS

VAR. HEANS STD.DEV. VARIANCE 1 1030.680 16.61983 276.2188 2 8.790080 0.6091740 0.3710930 3 0.2275400E-01 0.5050508E-02 0.2550763E-04 4 0.3542994E-03 0.6608724E-04 0.4367523E-08 5 62.40000 11.85456 140.5306 6 38.00746 7.475132 55.87760 7 0.9664790E-04 0.2392419E-04 0.5723670E-09 8 0.3448000E-07 0.4970273E-08 0.2470361E-16 9 1.137700 0.2525255 0.6376911E-01

10 0.2000000E-01 0.6975446E-05 0.4865685E-10 11 5030.680 16.62769 276.4800 12 8.634346 0.6149284 0.3781370 13 0.1972382E-03 0.8111669E-04 0.6579917E-08 14 0.2885000E-02 0.1533573E-02 0.2351846E-05 15 0.4006995E-01 0.5000719E-03 0.2500719E-06 16 42.00000 0.0000000 0.0000000

IDENTITY OF NUMBER CODE ABOVE

riable Meaning

\ Test Nmober

2 Initial 'Resistance 3 Max "Voltage 4 Thermal Time Constant 5 Initial Slope 6 Temperature Rise 7 Heat Loss 8 Heat Capacity 9 Resistance Change

10 Pulse Current CNominal) 11 Test Number (Energy Test 12 Resistance 13 Energy 14 Time to Break 15 Average Current 16 Nominal Current

D-l

Page 89: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** CORRELATION MATRIX *****

VAR. 1 1.0000 2 -0.0729 1.0000 3 0.0192 0.4184 1.0000 4 0.1540 -0.1868 0.5713 1.0000 5 -0.1736 0.6568 0.6275 -0.2649 1.0000 6 0.0492 o. i m 0.9499 0.6905 0.4630 1.0000 7 -0.0841 0.2577 -0.7399 -0.7459 -0.1757 -0.8976 1.0000 8 0.1294

1.0000 0.1167 -0.3985 0.1809 -0.6580 -0.4805 0.4736

9 0.0192 -0.3985

0.4184 1.0000

1.0000 0.5713 0.6275 0.9499 -0.7399

10 -0.0103 -0.0013

-0.0048 -0.0010

-0.0012 1.0000

-0.0016 -0.0011 -0.0011 -0.0011

11 1.0003 -0.0730 0.0193 0.1539 -0.1735 0.0492 -0.0341 0.1292 0.0193 -0.0687 1.0000

12 -0.0824 0.9639 0.4411 -0.2103 0.7062 0.1548 0.2197 0.0067 0.4411 -0.0025 -0.0823 1.0000

13 0.0788 -0.6566 -0.5892 -0.0301 -0.6616 -0.4371 0.1633 0.2636 -0.5892 -0.0004 0.0788 -0.6732 1.0000

14 0.0411 -0.6945 -0.5799 -0.0514 -0.6347 -0.4168 0.1358 0.1934 -0.5799 -0.0004 0.0410 -0.7063 0.9859 1.0000

15 -0.2766 -0.2722 -0.1185 0.2051 -0.3218 -0.0270 -0.0528 0.1247 -0.1185 -0.0174 -0.2767 -0.2484 0.1248 0.1044 1.0000

U 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16

D-2

Page 90: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

UJ t— •^- r-j-— cNi-o^ocNioo-r^bT oouio*— — incsm c^a)i-o»r-om-o-oi>-io»-»«5rv.or»5ro

O-^C>OO'^OO0-OOOOOOOOO0^OOOI>l>-OOC^OO0'-e>-0-0-O0~OCKO

Cu »—« c< h-

4J 10 )- a) 3" cs -p UJ cc a) a. UJ M o z ft UJ

a) u ni t—

Qi UJ z: en UJ

B _I cc •H =■ Cr:

LL =D

cr-co^r-jrocK*— oo^Cvi^rJii^CKO-cocors'^r^-orj,— coi*^oa3orsiinrss'^or-4rxcocKrv4 r^MDrj^i>r^o^r^^c^CDinr^>oropoooy'5^-ror^rvO'-^-rv^oro--vnroeKift'<Trooo

u"5 r^ tO -O -O CO CM — ao m r%. ■«- -o o-

ro -^- co oo in r-o

o^ co oj (>J U"> o •— r-j m

O^ W -o rvi ro —

CO o^ m rv ro m ■«' CM ro — -^ ■—

CN-<JOPs.ir>rNi(Nir^ps.r^

— ^ — — — — rsirsi — tNioj

0'000»<=>0<^OOC3>OC>OOC><^<^0»<^0>C>C>C>0>0>C><C>C>0>«00<=>C>0.<=> cvi CM csrMrsic^r^c^trsic^CMCNicsicNicNiCNCNir^icsr^rMrsirMrgrarMrsicNir^

e>- m •— rv r\ -o

o o o

o tn cs Ul (N »—* 2: c k^ Ln <x x:

UJ 3: o H ce <-) ID Ifl 3 h _J >-

■<r t— s

s ac *-» CJ IX o ^ UJ ■a: —1 X Ci_ c

111 1— « -p CJ id p

w <E 's tn 3= o m z: >» n <r zx

SS 3

a) > ■H 4J o C_J

to

P

4J in

a) M P.

I P

H

m rg ro •— c> r^ o o o o-- co r^. CM rv.

co in o o^ ^r LO r-j csi m m m u"3 o- o^

•o — ro O" — rvj

o CM -o ro in -o oo o^ co ro -^r m

r-^ o — CNI »- ro ro r^ — rv.O'-roo-oo-- — o

— -— OO'^-^-OO— •.— — — ■-— c>o — — ,— ^-oo^-_^.,_,_ ,_^-. ^-oo — c-^-c — —

o -^r r j orvaomr^com — rorommCMCN^rro

oo-oroao^-^-o-irjioo^moooi^-^r— u-jw— CK^ CMm-v rorMmoj^-porMmcjror^nrofo^-ro^-

f^ O -O CD O'- CO ro r-n m m rj m

c» -— r-j oo r\ r\ ^o c>> >o UT m ■*r csi *r &- -v co co rv CO CO o^- CO o-

r\ rs. -^D C' r^. o rv CM

oo •— ^o r-> ro rv oo o^rvrv.r-,cocor\oopNK

^r-^roDCMtMO-^r^r ^- r^o o» o-

■O O C^- LO ir» rj ro oo ro ^- — -^ LT co

r-oroo^pocMncM^"--— roo-^r r^-^r^^ r-orocMr*ocM*rcMr-o^r^r^r^r *rmro

r-oorvc>--^-c^jCM-<r -or^c^Lrjr-oeNtnmocoro^rvco*— -o — cor-jorjrvi^ U-JO-^-'V^-— >o^-o-rv,*roo«or\^- r-o^rpomrorO"<-^r-«r^r-«r^r^-ir>rorMr-irDrorororom

ro-o^rrxioro — r-oo^^r-^^ OO^OGOCMC^J rv. ^o in ^- OI in rs. P--. r^, b") rv. r-^ oo UT n in r^

o in CK oo *v oo '^r *— r^ o> -o rv o^- ^' ■^" -^ '-o r^ -^ -o >o ^o

o m — CM CO rv m tn -o oo

a: UJ

3: I-H

z: UJ

■<rc^rv^'*rco-<iroc>~ror\i(Min'n'<>~--or\^o,<)rvr-jQocMr^ ooommo^^ocoinoco'— cnmiouTocMro-o^orocM'-

•o r-o in in -o r-. no m PO

Ov ■,— o^ oo •^- IO in o m co co o •^ ^- (N CM CM ro

tn r^ ir»

CO O- O1- CM co in m CM ro

o o o UT -^r o

ouiooinommmoinoinomoinoo roc>-«r'^-ooinoocoooo-«--.— ^-^oo>pomr\ u-aoijTLTinminininoinoinoin

CMb")0>cMm^^*-— oo-^rp^ — ■^-^-•v X

3Z <^c>t^<)^ir3^c>^inp^c>r^c>c>^co^CM-^"OCDpv-<iCKr-ro*oo'^ojCM-*ioo-ooo-^oop'3c. CNjrNj^^^cM^^csjCMPO(MPO---^^icMCMPO^^-(Mr4CNir>jc^eMrsiPorsi^-»-cM--rsi--cMCM

o

en o UJ z

rvc>in-<»r^o^in^rvtc»<3?o^rgpor^rN.ro<>ooD^CMrjcDC>-^pv.pN.rrifsjoo'<ir^inoooo>s-^ E>K'^'^,^^^'nroino^cMC>c^4'<i-^r^u^c>^PO<^o^cr^p*i<>rN.-^T— -o-<3^rc>*unbTCMC>c>r

ooo^c>*p^c>^coa~ooooc^o^o^o^oDrN^o^r^c^<^cxjr^oocKa30ocKa3cao*oaco>*<>ca

■^-in^or^ooa- o-— oiro^-b-i orvooo^c*.— pn-^rbir^coa-'O.— rNm«rinr^oQCKO.— ro^-bn <^c>c><><^>o»— -—.— -—-— -~^---^--~ r^ CM CNiojrjr-j i jr-jr-jpot-i rorriropoporo^'^^r^r^r C^OOOOOOOOOOOOOOOOOOOOO-OOOO'OOOOOOOOOOOCS

D-3

Page 91: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

OOOOOOOOOOOOSE: rvcoi-o — cvj-o-ocKTOor~a3LiJ

u ai

,— ri — r j <— ^- .^ rsi rsi •- OJ «- &. LU

ui z ooooooooooootnuj r^rvicvirjCMrsjcMrsicvirsirMrsi-joc:

tn<i: ^: C> — -.— »— •^-*— *— •^-•— •— — C>LiJ3; o

cor^r^roo^CNiiDrv ►i tj

•- ro ••r oe cj

i— «

co "r -o rv -o CN r^ r-^ oo c»- eocuoooivcaioir

o^ ro oo ^o »— mo^-^r^r^-i

rsi^r^rmro«r^r^-m^-mr^3:

in U"J r^ •*• -o UT ^o in NO so 10 ■v

in r^ r. ONV— ^-«vfopoaor>»m<rt-> CNNorMoojn>o«— ^*O»NO>OX: t tr)P^>-*r'rro<rro^"rot*5rorvjtt:uj

C 0 u

•«r *r i>. ino'mintn^mmo»iDco

!>• — — c.— ro-omevi^oojCMX — rg ro r-j OJ tN rvi rsi CM CM CM ^- <r

I

4=

H

CD-«rcv)OcocK»— *— r^rNNC>CNj»—ten m-o-«rcMNOu-j<^roeM^--«rtni— »—»

ONr^cKaaascoONOOONaaooco^ruJ

Nor-NOTON<^,— ro^-.<5ooovOH- • «r^r-r-*-irjminmu*3mmN0i/5O

s: JS o

r>-4

Page 92: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

THERE ARE 13 VARIABLES AND 50 ObSERVATIONS

•yftR. MEANS STD.DEV. VARIANCE 1 1030.630 16.61983 276.2188 2 8.790080 0.6091740 0.3710930 3 0.2275400E-01 0.5050508E-02 0.2550763E-04 4 0.3542994E-03 0.6608724E-04 0,4367523E-08 5 62.40000 11.85456 140.5306 6 38.00746 7.475132 55.87760

0.9664790E-04 0.2392419E-04 0 . 5723670E-09 8 0.3448000E-07 0.4970273E-OB 0.2470361E-16 9 1.137700 0.2525255 0.6376911E-01

10 0.2000000E-01 0.6975446E-05 0. 48656e5E-10 11 0.1972382E-03 0.8111669E-04 0.6579917E-08 12 0.2885000E-02 0.1533573E-02 0.2351846E-0';; 13 C.4036995^-01 C.^OOO** ?!!-03 0 .: JO^'I'::-0 i

VAR. HEEHAN MODE «AXIHU« HINIMUM

1 1030.500 1004.000 * 1060.000 1004.000

n 3.795000 8.590000 * 10.27000 7.160000

3 0.2220000E- -01 0.2605000E- -01 0.3600000E- ■01 0.12cOOO0E- -01

4 0.3594100E- -03 0.2885400E- -03 0.4821000E^ ■03 0.1832600E- ■03

5 62.50000 54.00000 95.00000 38.00000

6 38.10279 21.74814 * 52.94118 21.74814

7 0.8726400E- -04 0.7051900E- ■04* 0.1699700E- ■03 0.7051900E- •04

8 0.3400000E- ■07 0.3300000E- •07 0.4500000E- ■07 0.2400000E- ■0" 9 1.110000 1.302500 1 .800000 0.6300000

10 0.2000000E- • ■:■! C'.2000000E' ■01 0.2000000E- ■01 0.2O0OOOOE- -0!

11 0.1753300E- •03 D.3421000E- •04i 0.4B3240OE- -03 0.8421000E- -04

12 0.24C5000E- ■02 0.2480000E- ■02 0.9420000E- •02 0.1040000C- -02

13 0.4012100E- ■01 0.33S7285E- -01* 0.4i3a293E' -01 0.3897283E -01

* More than 1 mode exists — only the first is shown.

Table D-i-i Data Summary from Table D-l Data

D-5

Page 93: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

<r uj a: cm UJ cc

o r-, -r- oo rn -c -o r^ o -o r^ CD rN r, L,-! ^3 QD 0 ^ 0 ro OJ o -*r ^ O: o- -c- r.' ■«r r^ n nj ri rsi CJ CM rj CNI OJ ri r-j oj r>4 r>j m OJ r-o i-o t-o OJ n n rt (M ro tN W — — r/

z: ui UJ ^ a. I-I

C>OOOOOO0»0iOOO ''i — c^ in o~ o ^ ro ^ o m u-) oo ca n rj

POCM — pxCMrorocM*— OJOJ-O o- — CM

'O^OCOODCO'OU-JO x> o -o -— v o h% po fi

oooooooo o -o o en in o r-j rsi

4J CO

ft

M

a

t3

a.

tX) UJ —i a:

a. =3

CM rr» -o (M ~ rs. rv in m r^ TJ — — m —

oocorM-oo-rv.oo^'OrMfM^rco^rL'j cM'-roor-r)0^f^co'«rr-")«r«— olnm^r tMCM— -— ~— ro-o^cMCMiocMroro

■«r •«- m r^ — ^o <r *r c^

— r-j

rsi rsi o — ^— -o CM o

— (M

<3 r'l o f-v -O ^O u"5

S 1^ If; iC ^ "^ "^ ^ "^ "^ ^ "^ " L,", "'' ''", "^ ^ ^ ^ m m in UT I,T UT in in in in m I;T in CM rg rg rM rj rM CN nj CM OJ r-j ^ CM CM (N CM rj CM rg rs, c-g S ri CM rj S ri CM rj IM r3 " tC

in cn C3

en -c

in ui zn

(U m 3

CK —i >- •X 1—

c a: — o CC CJ

Ui <r m = Q. 4J 1— tX.

« CJ

Q

jJ T

C

^ 3= •X (S

1' > • ■H ■U

0 <: 3 U Ul M — UJ i—

s

incor-o-<rcoij-3uTuD^r"«3-cooo-or->icDr^oj-oi>--o — ^^u-5ro-a--<i'o-^ro,-«r^oo>o--om-<JUTcorNs^-<T-

o -o o-

■— CN f^* •-— CM r^i rsi CJ o^ rsi r^i — — (-.J rg — r-j — — cMrj- r-g c%i rsi — OJ — OJ m

r^ o QO rsj t>-

in to -o o -o ^o rx. -*o

ri rsj rsj r>i OJ oi rg CNJ r^j CJ OJ ru r^ rn c^i r-j rsi r-n r-j rg eg rsi r^i CNI rg oi r^ r-sj

-o -o in in -o -o

rx ■^- MD co CK r J aa UT --o ao ^o -o ao -o co ii"5 ao

■^rr-j--— O'-oorN^rMin-tT'^r -oo.-o-o-ocorx'j^-o-o

rsj co m -o CM -o -o rx rv r^

mcooorv-o^— aa--— COOCJ I'^rN.^— rocooocKCN'c-pvcooo-oc^MTi"*rcao»co

^□Dm>ococar\oom^F\^L^coino-inrN.io-orxt>Hin-ocKa3CNr\rxin-or\--

<r UJ

SS-^SS^S^^^^Z^^^^l^f^003"^^------^^ ■^r CO ■^- oi -aoo--- inomrvo-

1) -U

a cu.

CN

Q

J H

H

co tr in m "•r o rx. OJ CM

rv o CK r-j --o m c^ ro in ro -^r n r^: ro

■**- t>- MQ r^ in o^ o ~o c^ r-^ -o co o r^

m in in -r -o ~-o ro ro n

r-. co o- n o>

-T- n -^r ro r-o -o un

m o» c o o> o in o o o CD U"3 in c^ in o O o m o in G» CK o m r-n <r CM -c — rv. ■^r ro UT rj ro o c> Do o

■ ■ • • • • • • • ■ ■ • • ■ ■ ■ • ■ ■ I

n ^O 0h> •o ro — r^ -— — t^o rr- CO to (N| — _ -o ■r— -o >— v in in T in o in *o -c LO in ro ro -O ■*- M^ m a": ro ■*:' »o

^ ^T" "« u*> u*7 tn UT O" o« LT to o> in

:--. <7 C3 O • - o- in r^

o o- O rJ rn in T — in m -^ -o

f—• LO ^rvjo-^rv^rnin-oioorn--^riocKa3'^-^o-or\oo-«-c>.corocr)ro---o-*-^oro rN.ro-^^fN.c3^-orxc>^jo>uTinrNic>-inrs.a3ro<o-^^r\irsir^rMrsiroc>*c>--io

rxcooooorv.ooCDCocoo-cDr\ rxcocDrN.r^r,^.rv.rN.aDo*',jor\aDcoo-r\co-ocot>>c^

— r J o o

■^rinrxcoo-^-fM'^r o f-. o o

c?c>*dc»oo«aoO'OOo rg r-j CM rsi rg r-i rj rg og r-j r-i CM

□oo--o---rMn^-in-opxcoo. — — CM 04 r i CM f%i CM CM r-j -g ■■: OdlOOOOOOOOOO CM CM OJ CM CM CM CM CM CM r-J CM CM

o — cMr^^-io^orvcs.

r i I"M OJ CM CM CM CM CM CM

D-6

Page 94: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

r-,n-^nT — i>-co<— ooonoc>-oao--ooz: •• ■ <r UJ

=> =) ca o o- ■T T t»)

O O O O O O O OD UT O ^ S3 r^ ^o o- o- ui r-4 CM 0> CM •■

OOOOOOOOOOZUI O^OOD«-V3C->ICNCN1CMLU;C

-O CM CM

O O O CO "O -"O m o^ CM CM OJ -—

c>mcD---— cocoooo-cMo^cn — ojToouTior^ — rooor^,ror^rv CJ ■v — *— r^i •— UT CM — CM r*3 o CM

T CD Z CD m r>* UJ oe «r -^ o. LU — ox:

«■ ro ^■ —) r^ — ^ 3 ^ CM •^

ii"3 m u"5 UT in in irj m u"5 in in ii-3 to CMCMCMCMCMCMCMCMCMCMCMCMCM

in ui in cn UJ CM CM CM _1 QC

=3 a: a. =1

U

m m m CM CM CM

^— ^-ocvirocM-— -^-incM-n-— — *-*— r^oocncra in •*r^or-jooc>CD-o--mooor^o^r^mo3^— >—<a: K • • • co « J:

CM — OJC-JC-JOJ—- cMro*— CM*— *— roro*— CMUJSC o a: cj

— -o oo ro CM •—

<r i—

SD^-— ^oro — cMrN,o»o^a3rsv*— ^O^OOCMOCCJ cMCMmrvir-JCMCM — CM — — .-eMCM»—rsicMuj<r

n: Q- t— <i

U

^- — 00 CM CM »-

co ro ro cn r-j r--~ -o -o ■^- r^

mcMr»5omm«M~or^ •«rNO*o>orv.m^-rv*o *o *o m

oO'Cor^cocKO^rrom-^-r^in-— mr^m<x CM -o «r

^o en — o ■<» m ■«• r^ "O r^ o- r^ o "O

CM ^^ i-n r^. r-J CXD ao — rv rv t\ o -o rv

CT> O* CM O Oi rv oo o ■o *—

car^cM~o — •«-o^r»c>~mio—in ^oro^oKJoooo^rrx^-rvomrM — — — .— .— .— — — — — CMCM —

m

ro o (>j ^o m r^ — CJ M3 in

-o &•■ oo o* o^ rv ^o o^ ^ ^o»— o^-o*— *—fN.o »rroromrororr><M'«t-

r^ — Cxi ■a: C_) u ,_ rs CM rx T :c 1 01 r^ o ■«r CM r-o

UJ UJ in

3 ho ■^-

c>ob"3omc»tnc>moc»mm<^mmmz3C3 CM-— i>'UT-oinmcooo«ro^r^cor^oor^inai<r •••••••■••«,—,i—

o*— T'OC»oocMr,<im^CMrv.cji\>o««*x—j o ■«■ UT rv UT rs. ■«• ui oo ^- yi *r «r o^ oo ^" ii"> <r co

in in oo m

rx ~o »-

C o u

I Q

<x t— ■^-CM-— ^r-ococj^-^-r^^-CMrNicMoorMQo*—ic/i CMOO-»— rvo^-in^-CMrxC^c^iaoho*— OJI— ►—i »•••■■••••••"■"■••—•£/>

o^r^o-o^r^-^vrvr^oarNr^^ocoo^oocoooxruj

o- in m in o r-i

^c ^- C-J ro «r UT -o rv, oo c>~ o »- CM ro T bT r^ JD ►— • 81 »r«-«T»r«r'«r"»-»r«rinmininininmincno H C^CSOO'OC^CJOOO^OOOO'OOUJX:

CMC^JCMCMIMCMCMCMCMCMCMCMCMCMCMrvJrMI—

CK — CM m -O -O o o o CM rsi c-j

D-7

Page 95: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

THERE ARE 13 VARIABLES AMD 53 OBSERVATIONS

VAR. 1

HEANSv

2032.302

STD.DEV.

17.41361 VARIANCE 303.2337

2 8.181887 0.7038335 0.4953815 3 0.5529057E- -01 0.1433947E -01 0.2056203E -03 A 0.3823e62E •03 0.7189210E -04 0.516B474E -08 5 158.8113 30.68453 941.5406 6 78.77127 15.65022 244.9294 7 0.6671206E- ■04 MQ58105E- ■01 O.imSBSE- -09 8 0.2234V06E- ■07 0.3313122E- -08 0.1097673E- -16 9 2.211623 0.5755787 0.3289926

10 0.:500000E- 01 0.2325254E- 05 0.5406807E- -1 i

11 0.5575157E- 05 0.7SO<'820E- 03 C.c09y329E- ■Oa 12 0.9660944E- 02 0.1533684E- 01 0.2352185E- 03 15 0.4200504E- 01 0.1049264E- 02 0.1100956E- 05

Iftft. MEDIAN 1 2032.000 2 8.160000 3 0.5370000E-0I 4 0.3700500E-03 5 159.0000 6 77.36738 7 0.6490300E-04 8 0.2300000E-07 9 2.14S000

10 Q.2500000E-01 11 0.219670CE-03 12 5.29B0O00E-O2 1 3 0.4221352E-01

MODE HAXIMUM MINIMUM 2001.000 • 2062.000 2001,000 7.760000 * 9.820000 6.^20000

0,7050000E-01 0.9270000E-01 0.3355000E-01 0.2673500E-03* 0.56C8500E-03 0.2673500E-03 140.0000 * 253.0000 102.0000 52.55737 * 123.3329 52.55737

0.4246600E-04* 0 . 91041OOE-04 0. 4246600E-04 0.2400000E-07* 0.31OOOOOE-07 0 .1600000E-07 2.820000 3.70SO0O 1.342000

0.:500000E-01 0.2^.0000E-01 O.ZSOOOCOE-Ol 0.973U'O0E-O«t 0.35175JOE-02 0.97310O0E-04 0,24GCO0O£-O2 0.6725000E-C1 0 . 1 2:0O00E-02 0.5975S97E-0!* 0.44041S5E-0 1 0 . 3975897E-01

1 HORE THArt 1 KOBE EXISTS - QHLY THE FIRST IS SHO'JN

Table D-2-1 Data Summary from Table D-2 Data

Page 96: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

IU k— tD z <r LU m QC cc c UJ cc r> 3) «I c_>

z LU u UJ 3: QJ

O- H-* U<

CO Ct C — <} C» C-i -or^-^rr^o — o-o^mo-oouT UT o rj r^. o^

■^ rj — ■--'— r< -^ o- »— — '— — r-J t^i o »— n ■>— ■^ »-»— -^ rj — — -^ rj 04 rs »—

OO0O00OO00OO0'00000iC>000OC>OOOC>C>C>

o-coo^rvrNiotsi^rr^ooJcsibTOmrJiDooocnroco^-r^M-o-orocviT

a. UJ

cn LU C><I>0-OOOO<0OOOCS'0CJC>«0C>C>OOOOOC>OO'0OO0» r^rttoror-orrirororoKirororor'irororororor^r^rotoror-or-ororororo

in i>- -T c> tN o- ^- -o r^ *r i^

■«r r^, ro o^ o- r J «r QO rj — ui co o ^o tn r J r-o -<J o CN >o -o r-j

orsirocKCOooroCNOorsi -— o-*oooo^roi>.-«r-— *o

to <c LU Z or. c_>

ro^rLOt-orocM-<roO'C-roror-jroroo*Tr^rorocou->u'imc>--o-*rro^"f^f<5

O

a: c_> UJ -c: X a. t— <:

•^•r-,mLrj«rcKr<io.mmu"ir-j<io»rMm-ocM>oincMCMoromo4C>,«"-— CM CMrsicNr^oj*— r>i — CNCsirjcjr-jrNir^rM--CNi-^-r-jcNir^jrocMCNicMOjcMCNic^j

Pi 0) m

fa a o nj 4J id Q

+J n 0)

0) > 4J O P ^J -P to 0) Q

<r CD

tr)^r-«rLTmiorM^o-«rb^-om^r^r^rrom,«rrr3roro^-c>jroui*r^rir5ir>

CO CD r^ i-^ r~ CO -o O r^ o rsi LT r^i ro OD — ■o o -o CO ^r rv. CM in o~ o **■ !>• o •«r

O «T OJ CM — ■« , o r-j o in ^_ ~o rM ^O r-j o~ ■V ,__ u-i co in r^ ^^ M L") ^_ in ^r m in u-) o -ir r-o •-— ■<r CO T «r a o M ^r QD vO in OJ hi

CM o tsi

03 ^o o^ rj CN

V LT ^3 CM m

_J <x LU u ►-< Ci- w H— o tx\ »—t _1 ^ at tn =>■

■a: c_> x: i CC UJ LU ac

— Or-4'«r^rCNJOCMCOOOCVJCO->OGO<r^orNiaD^OO^O^OCO<rc^JOOCNI03>OCNJ mmo-r— rMtocKo^^o*— cocMino--in*-ot'Oinino^^o-«rroo'— ^or^^rv rjcNii-ncNCvjrjrgmroCMCM — rjrjroojCNjojtNirorMCNOJr-otrsrotNiCMCMtM

— coocNO«rinrMO--orxorN,fsi — oo — inin-o — rvuTroro-o — rorv,»- in*— ^r*oo^o<r>o^cNooo^cr'ror-orv o^.in ■^-*— OD^T'*— --ocor^-orv.oJincM in-<<^oininro-<rrNfc<jin-^-rou"3'*r'^"rN.'^-^-^rr\-o*o^ocDi\-«r-«r*o*r^r

4-1 to 0) 4J Q) M fa

x -J

oooooooooo cocsJO-r^rM04<^oooor^

<r5 o c> <r> o o o <4- ^o ro ^r ro ••— r*5 O^ Pv.

o o o o o o o ^o -"r o. — co u"» ■•r

co^ro-oojrvjcMo^or^^ooooo^oo^o-orocMf^'— r>icsi^oo^r\r*iinoo ,— r-^-o*— oooc^jm^oo^r^*— ocoro^— ^o^r^mmrv.ocN-— roo^o .^_ — _^. ^.CN — — ^-.^^__.— »_CM—■>— -r— r>jr>i — — — —

en l

n

•a: i— •-< en »— •-• Z UJ

m ,:=^-_cNicoo>orvr^mrvoo*rcooopoooooo~-orvin~o-ororoi-o^ro- I r^m-o~o-oo~«ro-ommr^o^«rr^«ro3-<3-o~oroo-c>* — or^-ooom«>-

o rv^oocor^r^^ooo&-o-r^r^>or^r^o^OD^or^*oo^cDr^cocKCKCorxr^rs,r^

43

H tn o

■^-rsjm^-in^or^aoo^*— ro^-in>oooo^ofNifo^,m'or^coc^o-^-Csiro,«r ooc-oooooo — *- — — •—•— — CJrj(NCMCNCMrsio4tNtnnrop»5i-o C>00>C»OOC»00000<OOOOOC>OOC>OC>OOOC>OC"C> f^r^rorotrf3r^rororohOPorororoPor-'jroror*5Poror-n>rQKjrororororriro

D-9

Page 97: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

r-i CM rsj m QO ro

CNCSIC-J'— ■•— CM-— rs*-^-.— • . - ■ • . ••<ruj

oooo<=>ooooo OOITJOOOIOOOO

o rvi ro CM

O O O O lO C>

OOOOOOO:3:LU

CMrsitMCJf^CK — ro — rMrocMr^rvjczst—

lotr — o^aocMo — LDOOU-SfM-NOrM^--^- CMCMO. — — o^-o-

CM

-or^ — locomcDcocs-ctD i^ — ^rro*— cMr^cMoujtt: ^■■"— CM — CMCMCMCO — Q_UJ

CM 0 3:

O O Q O m m n n

oooooo-oooooooo nrornroronmmnnmrorot-o

•o t/] jj

rocMirt-^-CM-^po^-io *oroco-*r ao-^amrvr^t-o CT) <C .ffl

^ •—e ^"^1'^r^'~CN-ocM^.ro^rrM — cor-nrou^-^-or^JCcLj CMCMCMCMCM^-CMCM — CMCMCMCMCMrMCMCMCMCMCMUJ<r

= a. t— <r

Os ao o. r-o 10 -o

CM-«r-fl-0-CM — CKfN, Tococi-^jrvrvinrx roiiTnii-jromir^i-n-v

ior\^-cMrs.-Noioc>--fN.Os c-w in in ■^- -"r -o <r

i^CMo^rvu-a-— minrvo — ror^-a-'OCMpor-orocMrn -"'— '— ■^'-'— — -— CMCM-— CM-— CMCM-.— CM — — 1—-

COC>00-^-CM-«-'<r-0^0-<I-OC>0--QOG30.-»rcO«--* CMf\rO<>--0-^--^*C>0.0-0-Lr)-OO.r4CM-<IU*l — ""Tl— CMCMrMr>JCM<MrMCMrMCMCMCMrnroromcMrr)CMro»--«

—J C3 --oo-»— -oo>o-o<rtJ rocM^o — r^rxCMx: r ii-j co r^. WJ •~o *r m czz IU

us x:

e> o o o <3> r-i Pv o tM -o

o o> o o o> O -O OJ -O Ul

o o o o» o ro ro CD —

o o o o :=> LiJ CD

"«r ro CM rn (\ xi <r

a o a

I P

CO H

o-r^^-»-LT-*rcO'OU")rs.<M-o nc>rv.mrMcorNoror^o^o»

o --o ^r LT) CD b~) C> — Cst CM — C-J

■T- ro x _j o* — <r a

to r^ o CM rv CM ro ro

•^3 -^3 CM -T rs.rv.r-jcoajio-^-ro-O'wco-^- rv'-ococot>--oo-.o-u-iir3rM —

r~%.cor>vaor>vrN.cO'OrMCOOorva30-cocDCOt>--oo^3:

uo -o rx co o^ o ro ro ro ro ro -^r o o o o o «^> ro ro ro ro ro

— m ir> -o rv. co 0- ■*r ^r ^r ^r •^y -r -^r Ooooooo

^^ ro f-o r^j m

o-— fMro-*-L"3-oi— LT m vo bi m in ITJ LO OOOOOOOLU

p-lo

Page 98: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

THERE ARE 13 YARIA BLE 5 AND 50 QBSfcl ■<Vft 1 iUN5

VAR. MEANS STD.DEV. VARIANCE

1 3029.000 16.53000 273.2408

2 8.182600 0.8547796 0.7306481

3 0.M15950 0.5127790E-01 0.2629423E-02

4 0.5408434E- ■03 0.1418728E-03 0.2012789E-07

5 274.3000 49.84066 2484.091

6 1b6.7509 47.14913 2223.040

■? 0.4651548E- ■04 0.9680136E-05 0.9370503E-10

a 0.2272000E- ■07 0.2703282E-08 0.7307733E-17

9 4.719833 1.709263 2.921579

10 0.3000000E- ■01 0.8543142E-05 0.7298528E-10

11 0.4066606E- ■03 0.5187654E-03 0.2691175E~06

12 0.8566000E- ■02 0.1327715E-01 0.1762827E-03

13 0.4169420E- -01 0.5430778E-03 0.2949335E-06

VAR. flEPIAN MODE MAXIMUM MINIMUM

\ 3029.500 3001.000 * 3056.000 3001 .000

2 8.130000 6.780000 » 9.780000 6.680000

1 0.1271000 0.7020000E-01* 0.2724000 0.7020000E-01

4 0.5440750E- ■03 0.3089800E-03* 0.B831400E- 03 0.3089800E-03

5 263.0000 296.0000 394.0000 188.0000

6 151.4499 95.35321 » 291.5489 95.35321

7 0.4696500E- ■04 0.2827700E-04* 0.6890200E- ■04 0.2827700E-04

8 0.2300000E- ■07 0.2200000E-07 0.3000000E- ■07 0.1600000E-07

9 4.236667 2.340000 * 9.080000 2.340000

10 0.3000000E- -01 0.3000000E-01 0.3000000E- -01 0.3000000E-01

11 0.2203700E^ ■03 0.9982000E-04* 0.2827780E- -02 0.99820O0E-04

12 0.3425000E^ -02 0.2650000E-02 0.60BOOOOE^ -01 0.1450OO0E-O2

13 0.41747A4E- -01 0.3940358E-01* 0.4267894r -01 0.3940358E-0!

:* MORE THAN 1 MODE EXISTS - ONLY THE FIRST IS SHOUN

Table D-3-1 Statistical Summary from Table 3 Data

D-ll

Page 99: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

;i:**** nORRELATION MATRIX **•** For Data of Table D-l

VAR. 1 1.0000 2 -0.0729 1.0000 3 0.0192 0.4181 1.0000 A 0.1540 -0,1668 0,5713 1.0000 5 -0.1736 0.6568 0.6275 -0.2649 1.0000 6 0.0492 0.1186 0,9499 0.6905 0.4630 1.0000 7 -0,0841 0,2577 -0,7399 -0.7459 -0,1757 -0.8976 1,0000 8 0.1294 0,1167 -0.3985 0,1809 -0.6580 -0.4805 0.4736

1,0000 9 0.0192 0.4184 1.0000 0.5713 0.6275 0.9499 -C.7399

-0.3985 1.0000 !0 -0.0103 -0.0048 -0.0012 -0,0016 -0,0011 -0.0011 -0.0011

-0.0013 -0.0010 1.0000 1' 0.0788 -0.0301. -0.4371 0.1633

0,2636 -0,b392 -C.0004 1.0000 12 0.0411 -0.0514 -0.4168 0,1358

0.1934 -0.5799 -C.0004 0.9859 1.0000 13 -0,2766 -0.2722 -0.1185 0.2051 -0.3218 -0,0270 -0,0528

0.1247 -0.1185 -0.0174 0.1248 0.1044 1.0000

1 2 ,3 4 5 6 7 8 9 10 11 12 13

D-12

Page 100: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** CORRELATION MATRIX ***** For Data of Table D-2

VAR. 1 1.0000

2 0.0855 1.0000

3 0.26C7 0.7613 1 .0000

4 0.0437 0.3222 0.5909 1.0000

5 0.2214 0.6643 0.7430 -0.0158 1 .0000 6 0.2891 0.5533 0.9588 0.6234 0 .6 305 1 .0000 / -0.2795 -0.1333 -0.7145 -0.5554 -0 .4642 -0 .8698 1 .0000 8 -0.1509

1.0000 0.2724 -0.0942 0.3921 -0 .518-= -0 .2502 0 .4721

9 0.2607

-0.0942 0.7612 1.0000

1.0000 0.5909 0 .7430 0 .9588 -0 .7145

10 -0.0525 0.0013

0.0000 -0.0010

-0.0016 1.0000

-0.0030 -0 ,0019 -0 .0012 -0 .0034

11 0.0845 0.2193 -0.51 12 -0.0003

-0.0912 1.0000

-0, .4747 0 .3493

12 0.1008 0.2021 -0.5056 -0.0001

-0.0954

0.9974 1. .0000 -0 ,4648 0. ,3306

13 -0.8065 -0.2102 -0.2634 -0.0463 -0, ,2706 -o, ,2544 0, ,1913 0.0824 -0.2634 -0.0266 0.1091 0, 08c2 1. ,0000

14 0.0000 0.0000 0.0000 0.0000 0. ,0000 0, .0000 0. 0000 0.0000 0.0000 0.0000 0.0000 0, 0000 0, ,0000 1. .0000

15 0.0000 0.0000 0.0000 0.0000 0. 0000 0. ,0000 0. 0000 0.0000 0.0000 0.0000 0,0000 0. 0000 0. .0000 0. 0000 1.0000

1 2 3 4 5 6 7

8 9 10 11 12 13 14

■13

Page 101: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

***** CORRELATION MATRIX ***** For Data of Table D-3

WAR. 1 1.0000 ■% 0.1720 1.0000 w 0.1842 0.7486 1.0000 i 0.0531 0.5714 0.8495 1.0000 5 0.2139 0.8232 0.7827 0.4263 1.0000 6 0.1750 0.6008 0.9778 0.8607 0.6936 1.0000 7 -0.0979 -0.2181 -0.7692 -0.7639 -0.3835 -0.8767 1.0000 8 -0.0704

1.0000 0.5133 0.1615 0.3912 -0.0571 0.0426 0.1555

9 0.1842 0.1615

0.7486 1.0000

1.0000 0.8495 0.7B27 0.9778 -0.7692

10

t 1

-0.0056 -0.0003 0.1391

0.0009 -0.0007

0.0003 1.0000

0.0000 -0.0009 -0.0006

-C.4034

-0.0009

0.2580 -0.2992 -0.1

CJ68 -0.0001 1.0000

12 0.1481 -0.3878 0.2359 -0.3399 -0.4374 -0.0001 0.9620 1.0000

13 0.1829 -0.5082 -0.6360 -0.4690 -0.5922 -0.6072 0.4240 -0.0556 -0.6360 -0.0052 0.4807 0.4873 1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13

D-14

Page 102: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

APPENDIX E

TEST PLAN FOR PA506 AND M100 DETONATORS

Page 103: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

BUFranklin Research Center A Division of The Franklin Institute ■n-eBtnjamm Frsrkl.n Park-ay, fli'a . Fa 19103

Title

Project 03G-C5174

Page

fr-

TEST PLAN FOR DELAY DETONATORS

500 detonators

Random Sairple Entire Lot

Bruceton at D Tester Pulse

width 50

n Pulse at ND Selected

Level

Compare A Two Bruceton Results

Bruceton on Prepulsed

Items

in

iHJ

"D.i fferent? Assess

Not Different? Proceed

Run E T Tests ND Using Best ^00

Meas on Fuses

Analysis A and

Report

Notes:(1)Two lots of 500 detonators will be available (2) A- Means analytical- No detonators expended (3) D- Means testing is destructive W) ND- Means testing is non-desctructive _ (5J A number in the block indicates the nui^er of detonators required

fORM ?07-10M-4-74-CP £-1

Page 104: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

APPENDIX F

TEST RESULTS ON PA506 DETONATORS

Page 105: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c c c c ■^ r x i x

c c c c c c c X C < 4. «£- <£ ■*

C C O C C C X i C x£ >X -

c c c c c c c c c o c c x r ^ x i* X. tf ^ x Xi x M ^ x r x x x

O'lT'XC iTtTu" ~* ^ x —. tf v oc v r» O" x ■^rXT f*> — r*',ric r-C'-ra:'Xxr~*x ccc— ccc— c'ccccccccccccc^cccc^-ccccc-c

X <_ c c c C C- C C X c c c c c c

a^ X "V ^ X/ iT O, 3 £'

c c c c c c c

r^r*,.-r~-CvC f**r^<? ^-.-CT Oi^f. xcr-»*rfr-,<rr\c-c,^c-X'^c

, X- « f X- -^ r- — r^ c c i

m rz, ex ■^ CN X CN c o c^ c* c IN a.

T — cc ^ ^r m c o o

m c *-! ?■ ^ CN c r>. cv c- O ^ if X

CN r- -T X ^ X iT i— 'na cr cr^"r-c CTT'C f W •• C c,crrr'wifNX)r'CC r^irvcicc r-'r —.-^^r z:

j- —. c\ u" c T t- z ^ L- CM r^ u"- w CN r* c: a*, x- •— w o c. — ^,

cf\«?cc— cf^fr'trf^vCTrar-c^c^*-^r^c-cu'. c c ^r ac ^ —< *r ^ o (S f* '*'.<?• ? L~ 'vi t": ;.' r* CN f*^ - j x c r^ccccrfc"r,?''^'^lcr*tNr^^',x zr^ irr-^r-^T

*i rt- L) X »- c- a

ccccccwoccoccccooc-ccccc cccccoccccccc rcccccccs cx-- c o tf. tr O ir< O C couvcir^mjiOvhoOCiDtAC c c ir IT c vr ir ur ir c ^ ^r ir J

-, in LI u" u* u J" x c c- IT T

^-irCN/^tN--— ^'Ti(N^fN^^CN«<Nrrl^»-fs.^^'CN^-^(NCNr--^rNCN^CNCNr-tN-^ ^^^-^rrr. --CN-^-^-fN

y;

ti. U

r-x-xix x*-xr- C U"v X C 'X X CT r- O' rv c c cs sC -- r- 'X x wc x1

•X C

C^^-CT'^CN-— a-C"r-inf*^ox!i*>cDCNO'T,^'^J'r,^x."-'rfc'*%CT>-^0'Xrn^r^XJC-r*-CN0' • ••••••■••■■••■■•*••••••••••••*■**"*'

CN rr ^J- T CN rr -n i

^r M a(Nu-cror>axctvfNau-c--— f--CNcm-x:cNCcro<rr-tN. ^-H-TL-irr-trcrxxxcrr-cr-ir-

f_taJ r «,»•••••••••••••••••■••••••••••••••"" r tfl o ^^^^^r*^ — rt^^^^^^r^^^^f»rn^■',^'X^•?'*^^r•Tl^'r•t■-*^*,:*- ~ rri ** •nr)'L'~-''"f'*^rrtr^1

fc- trir. irxivir.r'U'if x x'x;x.»f xJXJ^cxrX'r-r-r-r-r-r-r-r-f-r-cccrrccT r a x c: a ec 9 C 0"^->^>^t^°^^s,

^c^ix^a^Saccc'm^'Xc&cc^^T'rocr. ac-c-crc =cr a:s:a;crcca-c.-aa etc:, a. aacrc:a crara :xxx

F-l

Page 106: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c c c c c c c c £ w X ^

cccccccccc cccc^ c c w e w c c c c c c- e c ccccc ccc

cr = cr j- r- u-. y j- r*-. CCCCCCCCC-

■i * X ir. sT ^ x r- ccccccoc

r- c c — c e c c

=• c c c

^ r> ^r vc -^ r— c; c — c c c c c

C C C- c

^- -r r: x. rr ~ «- c ^. "■ "^f rr r- ccccc

C- c c c

c c c c-

I ■*• *Pt f») »» W ^ ** , ^ c: rs t.' ^- cr. — — -' T rsi -^ rN fv

x fv r*- c <* ^ m ^

— o^-c^o r*-cfvc^u ccso r^^^xc**^ c.wc SL— cr

^ a ir c .r ■£ cv. c r

•r^p- — 'r^vx',r»^■- a -- c ^r 3 ^ «-

r ,-N -r -^ (*" f" u. o l/".

i 0 x r- H-V — /*■ c in fv

C C 3 -^ 'T C — ^. O vt -^ C

rN f^ j" ^t r- •r w ^ r* IT

^ c ^. c r ^N i w. i. sr — r* v & x o- T

sOr-jr'ir»^r.r-(Nx^-r^o — r-r-t r-i CN f-" j-, Cf- —« r-; C J

p* .% "^ c* c- x — <r r. * c c r^ — c- c vr cs & ^ f^ —< -x '^ r- '^ c: T rj fN -j^ T* 1 -"y IT* f* .c y

CC CCCCC C-'-OCCC COCOCCCCCC COOCCOCCTCC J^ " c c ir r L" c- r ir _r L^ o if? X' c ir. IT IT j^ ir, o IT' c IT. in c c ir c u"> c I/J if. f C C Lrt O IT; C C IT ~ X.

tr^c-c^r-'^c^ xcoi-OJN*ir-j%*-'ir.-i\£: OJ o XJXCV^OC-XI^: a-immmfTjC'* w x TC •« .

pb «n ^ ^ ^. p-

'-,' T .ft '?■■ r^ x — fs o CN o- x ^c ^ fs "^l c ^ r»i u-! rn ^ ^ f^ i-i c ^ fs ^ "T c in c; CM '■n P". (N m CO ^ ;N r*". ^r c — ■— rs. r- r- ^ ^ j- x x

PI fS T" TT ♦* (N i(«^*-,(»''^mfO^«rn'4,»r (NrnmL'iroJ^fNrnC^P-'*>rnfNT: PltNC^CSi i««tf>V&f^<4H««f^C9^

vC s r» c r^ !/■ — ^M iT. in CT^ w "^ -* ■

fv C T ** cr — r* rv m xi •-< *?•

r- ^r v£ a — c r^ x: ry t- -r* r*-

xc — (vfvc- vrr^r^i xirL'"cr;'*irnrntNcn

CCMCf^xcrM — rM cr x -r a: CM

■J^LOT iw>'^'^'^---»-r-n-—. -j.-*.^. ^^..j^^.-*. •T> "1 *-• iD r"^ t?" J") rr *- -^ r" •* ir

— o-r^T' ir x>r^a.c o— rvrr«^ir ^rr^urc o — cr- c c c- ^- c o c c c c o ^ c in LI ir LO ir sC x

a. at or a. a a; cr u: ;x or c. ,r> a a a tr a a x- or or x c

CNITT-U-. xr-aicc — c

IT. O" L""! Ifl if in L" j -x en cr a: cr a.

r»-. ■- ir^cr^cr c* c—'rjp'-f-mscr^Q: r-r-p^r-p'-r-f'Ctra.a x&xc a- IT. m m if kT x: if' in if in ir. L" ir x if in xx-a-crccc; Jocrnrorixcr cccrcrar.

F-2

Page 107: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

•S. U

c c c c * ■ • •

V Pv —• fV

1 c

>-. H >-

r~ rs c —

r^ \r c c^ 3-* ir. ~ pn

-r "^ rn ^-

— r^ ^- ^r

r. (N ex rs c cr kx cr

P-3

Page 108: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c c c c C _ C X vf

ccccccccc- c c- C C C- c c c x •£■ -r x

c c c c c, c w * -X -C 'C sO w

c c c c c c c c c c c c

f"» W fN fV f CV c c c c c c

■^r r -o i^i f\ <N cs ^ fN f'. CN cs L0 rv occccoc ccccccc

CN fS — — ccccccc

■M r*v ^ r*. rs; «?■ c c c c

r«J fN "N (S. c c c c

c c c =c»cccccc ccc.cc CC.wC-CCCC CCCCCCCCC c

C C c c

cere

— C ^- CL ps* rr c cr — c in r^ cc c c \x ^-

IT ^ tf 9 0* CB .rir, r»-ctN«xc iT:r«.xcc^c or-xca — in

vrccr^if. xx-Tir, ex o >r r^ x c ■«? u-

— r. x- r* a> c a.

_- J: r^- — r^ ifl j" >*" r^- r^ ir c i o." T ^i ^% rv (s

r^c^ir/X'^^cF^^rnr^',r!^C3:'c>4fNtxc>JC-:'*xrnr,,~cr^o',^-T—--rafN r'p^ticvo ^ ^ J- C^ITLT— cr^CNcr^-vvr*'. c— ^-cacr-scc r^c *z a c r~ z ■*: c r~ c

>«■»«>««*) On «• (\ (S

ir> r- •- r- irx x^ccx^^in-rom^rrj r^-^-C iJ<Ni-*rr, •^■•r CL c; * ir ■

^- ^: N

^•c ccc ccecc C'C ■rcciniroco

C C' c c c \t> IT IT* C C

CCCCCOOCC ccccocooccc c .LO J^ ir) L*" o c in J^ IT c c m c c c c c c c-

C C -T . o J^ J"'

CCCC COCC1

L* O J* C- U" if: C tT.

r^rr, rn^tNLOcNu-j-^r^ccN^xrnXf^rNr^i^^c^x^rNL^r^^f^fn-^^r^^rxcN^^^^^rrrnrs-^u-^

^ L r L U c c: >i rv u- a I 0/ c fN LO in r- u. b VJ ■^- — r. OJ r-

x: -s- c i^ -s-

in a. in o •- at ^ r" r- a- r- rr^ rs

in-fTrc cx«-'r,*ir*rnoimo*main>xcrfcr^mx?c\e ^cp'-cic cr. ^'^inr^rri^-(Nr-fso^rc.^rr^<rvN»-«a'-yc'0*'xr'C soxisc

IT ON r* <XJ C ^ IT. '•I %£» r" in •- a- x C O ^r *■ 'n

ic oc •-(0*-*rM — •-oits«-««-i-H-^f\,'-i«-(«r <-(•-<

c c e x c cr IT r- cr r r rv c c r- r- a i c- -r ^ 'n c Ln -^ •

•-fl/l'rt^-— —lU")!.^.

t ^ C- C C ^ C: C f\ ^ X5 -o ^ M TJ L*> c* ^ o c

1 tf> « ff v 'Lr<*1n«>«?T,inL':'*>-^

c cr CM r^ c ^L> ry r* m x

i,~ C •-rNrr,^-!/-. ^f-.at o-c—-r:r^^-irix>p^ccc»->f\r''Trm,X'Pkc&C' c -"•cvm^Tin^cr^crec^-o.r^-r ir«xr*ccc o CCCC O-C'-C'CiC C Z C-C CC CC C-C^^^'^p-^^^-^^^CNrvr^fNCSf^f*. {N)(\f,.''^',"',r''*^r'"^',^'*1|^,T IT iT. W IT ^ IT LT- tT IT' *t C X) \C O *X ^i X C' <X. C X: sO s*, X; vC vC vT X Ci X k£> (fi Si* «£• lO *£ •£■ K' tf 'Xl C 1*9 ^) VC X %X X: C' s£ X .? cr a a a a a a c ^ cr a cr- c: OJ ca a- c- cr c" or to a a x a: cr cr ot a u ci a' ;r it> &> a^- tr ct- a x c cr a cr a x cr cr cr

F-4

Page 109: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c c c c t c <r c c-cccccccocc c eccccccoeeccocc C C C O C » iC X C <£

-eccccccccccooccccccccccoccccccoccc

t'. < *: c c c c c

■ • • • • c c c- c eco&eecc OCCOCSCCC' o c c t c c c c c c c c c

r^. 3 IT ^ cv r> r~ ^

«.<'eooifi'CTXccr-r-»^'if-«tf»«p-«r-f«r-x»*r»»«ce<>cco«"e,»"»-ri" o -i r^ — c^

-* C^ f^l CC cs. IT* '^ *-• C. ■«?■ ^ '^ f: fN fN vc v ^c v>J i' C — J1 -^ ».'. T-

^■r*^rxa'r,cvcu1"L3coi/ix«^-

-*f>30rN*-i(NCN — (NCS«-"' . cs »- CN rs (>* '■n fnmtNes—rM(N,»-i(N-«<Nr»>cjrorM— »<<NmcN — omoi't^moitsrsf-i

I-

CfV\rircr(vr». x ■^ (N in

CCN. *- rr- •>- *- w- {^ <? f.

p. -- •- r c «- • ^ J^ ;% o JD m i

■o c <N CN CM c^ cc- ^ r- c; tr vo in

^ o

C «£ VD IT

,r*irr'*»rn'r •^■^••T

ic c m a «- •M V M C '•* ■ in ;o I** rN

(N r** ir c r- pn PJ

c IT e c c y"j ^ w r- rs C*N L"- c Uf> 1

^. ^.-*—.^■crir'Tir/^r'*'r •* si V' ir^ -r i? st ** "^ T*•st'^*>'*>*T'**lf^'*?'?'r3''*ix£''^^,

— ^^ — ^^^u", u^iTir. u-iririiri/"J>ix>xvi,C'X.vC'*r^J,xt-*^r-r--r-r-r-r^r--r'fc

a ^ a a ac r a cr x o e a. a a ^ =■ a? a- ^ a: a a a 0& « » cc.cc ccc'-r-tociaaa*

c OLCccacccrcic ■ ^ ,:. ^. ■*: X' x -x w ^ « TTCT'crctxaroe

F-5

Page 110: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

z. a.

cccocccoccccocccoococeccoccoccoccccocccccocccccccc

ccccccoccoccooccccccoccccccccccccccccccceeccccccco • *•-?-.-* -^f cc^cooc occcccoocccoccccccccccccocsocc. c cnccccoccecco

* p- i a

■ ir- rN ^, r« ^ r* r*. r. r- T T •-

1 J- OJ -? ^T" »*» T *. ^(N-virviTifso p# *>• c X •» ■• C f* IT ♦ C •••» •■ ^ * ^ r* « ff C •" ^ • ^-^^ ■rcN^mmn.r'*'^ c* r* -r r-* r^i c* *■ f- "• .si ■* ** ' if^, C'*>«i*'r*-(v'^^i'*>f*«fi«irir'*

r- o ir — ( -J'-»C •»f'^'*»X />

' in tr r- r- ^ — j- (■**•£

C «- CN C ■ ■•■••••••••■•■•••■

c — — — i-M r* IT

• (Ni *>■ c — t>. t- « o* rs ^ — •

*J. a

• • •

e i » 5 ^ o r- -* <7- c -11- « ^ ui <N - r* -J c. -^ uj ^ - o - cr J -1- - t- <« r- ^D T: -D s»o»iie«r^e«rjo«^i^

/^-T^>-r^lr»in^-^yif-r-?''w*"-T"«,'^'*,"''^-p'^ '•''"''-'>-?,'*1,r>*n':*' 'rr^*4'w"j'^'T-Dt^'*^,*i/%^ tfr*-'>*

L. 5"

-« r* *-• ^- ^ >fi f* <T c .r L*" -■' ." s." 1/ J" tf crt * tt- %f o . . .1 .« ; ^ fr r j

j- c r^ 1 <? c a- ■£ r- cr c C

- -5 - J

F-6

Page 111: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

APPENDIX G

TEST RESULTS ON M100 DETONATORS

Page 112: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c c c ^ ^ c, c c c c c c o o * c ^ ^ ^

COCCwOCC cccccccc.cccccc<^ccccc xa,*r^«£ x-vrxscrxx X «C ■£ X •£

c c c c c

V. v

(M C^. ^ — ^. w, ^ c-si r- rs cccccccccccc

tv rs r* *r CN c c c o c

■«■, ^■. r>4 OJ rv •*" t^j P* rr, rv; fsg rsi rr% r^ ^-

C C C w c

ccccccccocccccoc

occocccccccccccc

c c- c c c c

ecccccoee

< — C'

r. rs rv c^ ^ P^ M v* Cv «■> fs *■• «"■ (N^^CN — 'r^-^-'*,;"-r^'*-'

C ph v f^ 2& f^ •• *£

•-» ji re •* ifi *■ (N. a r- — «r tf vf f

« C- ir. •- -^ -r

r* x — ^- ^ < c ■j- r* *• .r. *z \r L'

C r^ rn "■ ~« -.r JI rj (N sc o- <£ r^ c> -^ tf) ■*>■ r* T ■ ■■••••••••••••••••••"•"

rN.,-Nrg(N»-tfNO.cNC\fv (N;„^^ — ^-r^rsCNc^m^-*-—"cs.

IN f^ *^ «£ \C ,x c j- .r J rr, (s ^- <*■ r- •- •*• rr* ^- ^ cs.

^-i Li ^ f^ LT' i-l —• i/- (N -^ r* C- '.D

■^- j^ r* r- r^ j": «r T C i/l }^^^^>JJJ^J^J(^:^^------:-:O-:^JJO-:O-^-:-:J-:CJJOOC:

u

^ ^ ^%- J ^ j ^ ^%' ^%' ^ ^ ^ ^ «•■; ^ ^ -> ^ -> ■-> ^ -> ^ -^ -■ •=■ ~ ^ ^ - ^ -^ ^ -^ -^ -^ ^ ^ - - - ^ -^ ^ •- -

— (N '•■ 5; 5. s. c £c cc c c-c OCC— -.•^ — — — — — -« — ^(^^^(N^'^^-^^CHillll^X. i.oiiixicci~i::-r-r^r:-r-r~r~r-t~r-r-r~t~t^r-r-i-r-r~r-i--r-r-r~r--r-

c= =- cr o: a; 3. a o a. a re. ct E cr a- a a cr. a a c- a or IT- <r CL c^ K: oi' rr a: x x a T. o ■X a: a ca wO-tr"

G-l

Page 113: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

a a a. 3

OOCOOCOOOOOOOOOOOOOOOOCOCOOCCCCCOCOCCOCCCOCCOCO

ccccoceoooocoooooooooooooeooocoococcoooccccooocccc. ''"'''''' r-' r ~ CCOCCCCOOOOOOOOOOOOOCCOOOOOCCCiOCOCOOOOCOCCJCCOOCCOC

= a- •->

in

<

f

- • J J^ J J J * in ^r- ^y T oo oc -

h- o 10 t-t ^ \

S»«tnoD^— er. CNin«oDoo»r~r~mino>m — "ro^m — r^wmiM — — r-r~Tf«MO—nrx — •w'^'wam-^ostNvo

......••. .....•••••••••••••••••••••••••••••••■•_^

u h w •n

-2 ft 1 c

vC a: 5. c a: I c U' U 1 3: J.

(- !- f- H c ~

^c X u c = -J in a- «t

— H « x J a. « c

U

< < M F-

►- I- =1 W

<ro'a\CT'^CKCT'0«oc ooooooc w ««« *« w •■ , ^m. dv. «v- ^v. #v- rtr-. fT" fT^ fn Cf, CT. rTi m J-T^ «V- ,

oc ac a maDK cc cr oc _ asarcroDODCDCOCDCJODo: or CD ct AD cc (x>cccr-ccrocDcca.a'oooDtrcc

cr c^ o^ c^ a o- (T C' O' a- o- cr a^ c- o- o-' o- o- rt> o c cscDC&CDtC'coaDcc.'Oosccaoacicr cc on co a:

G-2

Page 114: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c c c c c c c c c vi w i N! X C «£

cccccccccccccccccoc c c c c c cocccccccccc

cccccc— ccoccccc— cccccocc:cc:cc O -X C cr if. if; tr '"" cr. ■XJ a J" ■=» \£ c cccrcccccccc.cc

CCCCOC ccccccc c c c c c c c c c ccccccccoc

If- V.

Ifc. < A-

c C •"■ ^ cr-—r-c^r^rr,— ire i

c — cs ^'J J^ cc cr> T -n u-. if ca-u-ccror^ir'x

cx^x^c- ^rr-srcs.c rsrs'txa-s-cr r-'n c^^c f\ j

-i.

cscz. --^Hr-ru^r-r-i^-^x rioo«crkii)iAmri>o,<trtC4^< CM CV C X f^ X in T: IT a ir> I O C r' ^-

- f. .« ■?■ j. j^ j^ a- tc> iT/ p^ r* v- x c^ — r^ r* CN ^ r*; CN; x « /^ ir c c: jn o-' r^ o cr u- rn o rn a i^ r^ x rsi x r r^

cococcccooecocceeoocecocccccscococoo^cccoocc c IT. c IT. ir. c o IT* ir. c c o IT- -n o ir !/•- c o o o c c u". o c c -o c ir i/i in c cr c c- IT o c c c iT' c ir c IT. in m

<*)XJ". r-r-^r-r-CNt-^T-^^- u". -^i r^ CM

a i r-vcx^-^oc csr^u-r*xxcxr-xc p*

2. >

H ;0 B r— •^■n^(NrrCNJP»-tC-5,<XX'Xl-^C ,^ — r^-^fNjf^^—*c«-«'S'^xxtr>vXfNC:',r»C'»-XXm—•xmrMmcMf^r-^tr^

o -r -*• T* ^» ^ ^ T l'y>^fJ'^'l^•^■^^l^!•T"S**^J0'5, u-,^-?i(^w>^*-in^^.^-.y-)rri-rrO 1.1 •?■«"-*

cr a or. a cc ccaoora c:crcr(x-crcr2D aora.a.ccGja.accL^erti.ecccratxaacocro-axjjya,

G-3

Page 115: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c c c c c Z ■*. \L ^

ccccccccccc - c c -c r .c x c c c c o c c c c c C C C c

-cc—cc^ccccc— ccccc '■'"••••••••••••••i

C C > C cc cccccccc DCC

r c IT ir r^ o. U"J a u, i/n o v cr> a COCCCCCCCC—CCC c c cc. ccc ccccc

c c c o c c co^cccccCCCC c c c- c c c

U? — J^ L'. C ^ C ^r p^ C

— CN TT w C -^ ^c c c

t% -^ r- c c^ ji u- (y vc a; cr c i

— "w o w "^r C1

cv r- o c a ir ^ r- /**, ^: c w ^ c '^ >i

c* c r* ^ r~ r~ ^roirr-r'^-r-tyroercNTrm^ifimfNi^- ■ntN^iajcrtx, *-icc LT, •-i«-i^ ~r-«XifN'-». c '"T'^cxr*'''^^

o r-- ♦- cr f rs ■<?■ -c x -c r* x —i r* c

f>i'^-',n^'fN,wr^r^ir)^H^rm*^fMscm^fcs'j'u-j

» ir- r*- c I -<■ -* CN

t- tl. o ^ ^ ■<?■■■*' "^ J-. ■^ ^ LO -• -r in .n m .r, -;« «i -*

*- c c »- a t" o- p' rn r \r tfi :N cr r- ui jn ^ m ^ r* o so o r" *j^ ^ a* • • • •

ft C

cr 3& <je dc 4r cccorrxicrcro" ootrcr crxa-aatto-ccrc-a'cco-. cocccoccocccc—i

G-4

Page 116: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c cccccccccccccccccccccc cc cc u c c c c c •£. xccu;»ri.>c^^r ■c x. >c x x x >£ c c c c c c c c c

c*> x N r* i c c c c o c

cccccccc

c c c c o c

cocccccccc cccccccccccccc c c o c c c c c c

cr-a a xacir^— ccc— crcva—'^•-c—^airr^c *CCO*-Csr*or*-ff — a a — r* -^ cr ^J «• <t o rs CN c fS -- (N fS. fV

r- v ^- -- ^

CN cs. ^ —

^-r^r-r^a if^-*-r^'^-a,c. r-ir. v£r^o --ca eve •-c*.t c c c a --Trc ~ e^ rt •fr*lmf**'*y~'cTC\TVf**i'*}

^,^^-r^r^P o^irnr" -r»*-'C^c;ccrr''^oir (NX ^r-^,^-,rN;cr- ■f CS f*> "C

f* r* f*- a

■ r* v •* c c* c fi

• ••*•••••••■•••••••• •

« ^: ^ _ rv — ^- c

cnr-0'r-w(N^L')0^tNsrr-oor^csiv£jcr-'*ictN^^^r-ocNCs-r(N^(M^ic-.

W-HCfN^-^^O*— -H^^^O-^-^-^^fM — " — O -^^-i—.-HC ^^^r^-^ — (N-^C ^^--^fSCN^CNCN

•f" ^f rT ^ 'T J^ JH ir>«rJ^•*'^^'*>.A^■'*u^'r^'^'^^•?*'^,T',■ • ^ <■ t? tf> < jr)r^m-^',^,ir.Lr'*>^-»r-^-rLi-

»- CN, f^i r» u" X

T C C^ S o e r- r* r- r* r- r- li w en or a cr

O- C-*"(Nr"^-.OiCr'C

3,-cicDcraa ccwtrcrccacccca.c: ax Ciracra cccccaa.coa.uccrCTcrcca'

c =■ c c- o c c c r-r-r-tr.ee a. X.G. rx a a. cr cr cc a «■ a cc a a

C c — ~ x cr

u r a <r a- cr cr cc. x CD a cc ce cc cr a x x i

G-5

Page 117: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c c c c c c c X * >x

c c c c c c X ^ £ X. *C sC

c c ^ ^ ^ ^ ccccccccc

cocccceccoccor-ccccccocccccccccccccc ccccccccccccccc

c ccccccccccooc coc ccccccccc re- cce c C C C C CO

r-L'"Ccr»*(NT"C",?,'ir'»-ar-s£,'^xcfs.\£ir^r^*fir^'CPir'*,3'c-^fN.cvt>^C"C\£fv''r'rvCTcr^wr*xa

p* 'X !■»•■* S *£ **f)<"irr-'Or*,-occr'<roo»^j,c crcD^ocr^-oir— c-— ^•i^r-cr^a^ — ■•cO'rrs ■>r ^ m JC 'J^

— ^ (u «- C: rr c P* '

c^c><0'^c^rr--^-^«^rvj^or^'«'^^-^CN'^^of\'^CN;CNO^Cs'--i-H-^--«-^c:--^«-t^---r>*--»--CNtCN^«-i--

cs IT cr ^ »- —- r-

X < > ^-< fsi *-> — fSJ (N O

urc x — srr^c '•c p- -^ cr f^. -n -r 3

c \r ^r — C" ^ in CM -« (N

r * r *~ t- ■ "* r- "^ f^ -c ~ 'J3 — cr T c or*c * M O OC '♦ 1^

« ^^ -_ — ^ ,^ ^ _^ ^^ -^ .^ -■ _r ^- ^ ^ ^ ^ ^^ ^^ „ T^ „ „, ^ — ^ ^ * ^ LJ^ /-, ^ -- .- ■:- ro .* ^ -^ ^ ^. T* -r, ■ y-i L" ^ r^ wt ^

a. c -T ^» -* «• ^- •- st a a a x u a. r. tr c: rr CT:

cc C Z ~- C\ e* . ^ir. or-c.ee —fsj^-t irxr-ciosc ^-rsim'-ir^r-cc c ^ u*'U"-irirtr«iririr^X'\r-£-x*£*c^'^'xr^p-r-r-r-rp-r-rkr-cccr

cc^ a. xccQ-crcDaeccLOLflcaa aaccacxcra cactfraLorccxcracrxiSOi: erxar-a c: r. x xxa xxa a,ciCrccxfu:cocoaxc:xx.xxxa

xo-caxaaxr xxcLaLC5X b.xa x oca crx'ox a- a

G-6

Page 118: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

c c o c c c » »£ X ^ w X

cc ccccccccc cccccccccococcc X^XXXX^iJ"'*. x ^ r x x x ^£> x x. »c i

c c c ^ c O X vi. X X

ccccrc— cccccc

CC cccocc-ccccccc ^ r- "■. '^ f^i C — C C C CC CO CCCCCCCCC

t*\ *$ CK ^ ''*• t*" ** ?* ' cccccccccccc

cc cccc- cccc c c c c c c: o c c c c

-_ >- u

x rv r- r^ c ■ . WM m «- c <ii

r- — o-c£*»u.cp-a— cc o—'^•rr-cr-wi^r-*-

a. cr^r^xc ^-xrN' ,,,.-_ ••••••••

'L"^xm--^crxfs)aJoc7. inr^x^ccm^^wc^^-^^^o-xx. r-cu~-x^^x^c;^.. -.--rs^

Inr ^J-. r^u-. x-ir—xxirr-mx<T<r. ir^irir. cNOfMir.^^ oxxcxirirrsc. LOCS-IT,

,...•.- •'••'' X'ncN" x^ c ^•r-'Xir)''?

,-. fN •-< *-i O^ CSi (N — CMfNCNtN — OCN-^J^-^^^f^tNCN)N^tN — —«^r' .„^,Oi^«rn^,tNtNCNrsirsc>i—rs.j Pt «w (H W N

r- r» a -- r\ ir: r^ r- r-^ T' LI x; <» x x in *- P-

eiC^f\^i-mox>'fr-mirfvcrf»'-H{N—r-i-t-^c-airkf^cr-^?--c-c'"0-u-£r^cscu-«j

m u"' ^* c r- o- p^ r- •-* 10 £ r" txmr^Ciino-'CNrrrnrNp'CD-Hr^r^xx trc X — XT^-C-JNIT, o

i^<-.C.»-'0*-«Ul-4^'=-^-^Oi—•—«• i ^ — (N (N

— '-1

v. ac-^rr-r cvc-^rvccirxiorer^crvxcr^rcr— r^rec-- = rrr-irMrsj-^c?''^ — o(^ix^4L'>-^c^'«rr'-^'^"'^'>lC:-',■^'-=c^r'~

ffirco^irair^ c-' r-» ^

V s

— f< *»» ^r IT. X »r T < ^ •=■ <■

acctc-TCTCxcrxocaowcrccroa.craicrccccx cr catDCX-x-XiXTOixxxaL c a x. -LI a xxx

G-7

Page 119: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

APPENDIX H

BRUCETON TEST RESULTS ON PREPULSING EFFECTS

I .

Page 120: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

>■

C

c

c.

c

c — II

a-

II

11

h. C

U3 a

c

II *-%

IT

<0 a

c

df

0*

II

C S f

— to >-

"■« ~ «-i ts -n «T J-l « r~ ■:c J.

_ _ _ c e ^ c o c J-

c^ '- l ■ i * * * •t- + ■♦■ + L_ 'L ■x" :»i j Li" ^ ^i '■±. tu

t/j C r* f c rM o- c c c c ;_ r^ T _ 3 cs J1 c ^ o o r_ c o- o c «n r- c c o c < r-' r- uc -< *-• -" o o c^ o

o o Q o o o o ^ o o

-1 —> X

a. -^

II c

II I II

1 II

1 II

~J ^-, j —, -: t J-

I- -< —

H -^ 1/2

cT ■«

c c

ITX XXCX X X XX X

•rcxccc x cxcx crcxcx

i^c xccxc cxx

c. c x c c c

— c

•c a

•-cs^^u^^r^aoc—f^^^^r^^^c^fc<^cc•-evf»'•*l^xr^ccc*-f^''••l^^rp'ao^c■•-

I- i/. O o h] u; 2 i- W

2: 3

tO 2 H-l

Page 121: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

3 O O O C "^ O ■ O O ^ o c:

ft (I II II II II 11 (I II 11 || ||

< > ■J- l«-

r*c e* r* ^ c< JH o*» c^ ,-'* ^ o* -¥»

O1 T a ONvj-j-evtr-^e. c 3^

o* y«' .iV c* c«: o^ n- r** T* r* j* a* co-ccc cocco^-^-

cc c<rccc c—^cc ^ c •T» o\ <y. -^ -^ ^

H-2

Page 122: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

to

x: r. X o

I i ■ f-i Ik w OT

O u X 2 M u o k. = >< z a: O X Q 1- to

M a. i^ I »-i -3 a. O t-

-1 => U) J => u • z

a u o U t U o z ■a

U3 a. a a

X z

o GO O

c CM tl

O

n o

m in h, * u. n^ o z o z M » c m a /n CN u *^ o o •t •r z * • • o t o o -^ ON

w U

R * * <t N o o Z U • •-< « * c »-H 19 o> W

m VC l^l r- o f*>

m o-. ^r m r>< o

II c z

c

s-

Sd

tr

a.

c

Hl O «■•

a.

o o o o ■ I I > LJ III U Ul c

c

o o

CO

J

UJ

>•

o in en cr.

■^ in

o o o o ••- + bJ u o o o o o o o o

o c + u o o o o

o o + Ul

o o

o c o o + ■»■ U Ul o o o o

o o

I n

> Ul

f-

cr

u. o

II X

n x

o II o o 11 o CO

II c

I II X 2 <

o CM

I II a

UJ

II It L5

II X

II a

in so

II io

H

< > a.

U< U

Q

O

o i II

o

■ I II ■ J «^ • Ul b. >• z u o

"-< * o# O

w m w

o

u. D

U c

Ul X

u, o

u. a

o o

OB

r-

<C

in

■♦ >c x

1^ X X X C O X X X I

CMXOOO ooxo

- C O

XXX

xxxoxcxcx

00a o o c

a ^irior-tto^c-»*r»**"n^i/>»crfcODC'0*-<fMm^m»cr'Opa-c«-*cNi v^^(V4^iv^,^^HV4^iV4c>ic<<(Nr4CMr^d)<Mcxc<immmi

T m >o 1- OD a o i t*t ^^ ro fn PI fH 'V

I- « o o u: ui z x. 10

bl X a. a

UJ o w z

H-3

Page 123: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

1/1 H

o oooooooooooo

J CO

cr.

lO n ii ii n n H H H

U, U- U- U- b, U-

a, u < o c o a p o

2 S ******

^ ^. o> <ys <y» o^ ^

b. U. z z o o

OS »>

C C

ii n u. u. o a

c in

n a u. u. z z o o

O (O

o c -• »-•

ID

H-4

Page 124: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

1 i i U- tc 10 C u. ^ a

u ID h. = >- t' QE O oc H Ul *~ a. h, I ■J c -J f- -* 3 u 13 O • C tJ c u; Ul J j

c- CM

II < II

*-

■M c- aHl fN <^ m •- o c • • • C c c

II II II *-* ^^ ^-» li. c L. ^_ o 2 r ir. c u h^ u * ^ *< e < •3 a u: <r v^ X ^^ * »< c o

— « o t> ^

w Jl ^*

3 U

O O

-3

O

.C T •-

II II c c < 2,

II V5

C

"2

in x

X CXX *t K X XX

^ K cxxxxc xcx cccxxcc

P-XC CCCC C XC cc

- c c

— rsr-Tyirvcr^ac c^cv^-^rir-cr ac-c--T^^^irvrr-erc c —r,fi«rir^i:i^«rcc

f- v t, O 'J.' J-

2. O

U) CD IQ Z

H-5

Page 125: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

«i • •••■••••••••

ii n (i n ti n II n n n it ii 'jm U* fl. '£, 1&, U. T-.. Ii. U* ^. II. U«

^ U. C C C t- c «-■ t t. C (_■ u o T o* :'i0 :• =■"■ :* -v ^e w' e« :* c" rf*

C IfCUClT'CCWClT'Cin z- o-. tr- (r c c ~ a a c» IT* cr O"

H- co-CwOccccc—'^ ti.

C^ -Tv <Tv ^ 3s ^ ^ ^

H-6

Page 126: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

00

I-

it m

>> o i i ■

t- U. w w O w z z

»-l o 3 u. =p >> X K a o:

Q H u i-( DC lb i

M ■J a: O H «t 9 U

J = U • 2 O c o u

-« Ul a z •a

0.

m o io o a to CN I- O -■ • ■'

o ->

C

0. Q. Z X < < et o o o> — o

O 2 in o

o «£ n o o * X

o »-« in ■<»■ O o o Q o o o CM

m o

X IS •• •

o •"

» z II X

• o o-

• z II

e N c c c m /^l ir- <~s c h»

c w« in <f e c o o o a o c in r* Id r- r^ o r^ n r-i 2. "" CM

II o rn r- CM cr a

r^ *-* m

V0 CD CM cr

W c c

in •w • a- • o • o • • o • • « o • »>

H^ o O o o '- o o

1 c I 7

J » O V-* T (Js « m ^1 o •<r •-* ■ if H n n n n n II II a n >-• -H CM ro W •a CO *-» X X X X X U X ij *-\ ~J ^^

< i It

■c a X z X » X > h. U > ^

Z. U J u. H-I BC o UJ 5 H »-« o r* CM m T in SO P- m a> UJ x w UJ u J u

f H > UJ z o * o

« «Mi 94 ml o O o O o o o a o fr\ l-t cr c cr a: yp O o O o o a o o o o r» -0 ^' m w

*-^ I I ♦ •♦- ♦ + + + ■t- H CM a oC s-/ elf o »2 Uj U UJ u u ui UJ UJ u UJ 10 o cr CM o z O

z O 3 10 o CD in CM o o o o o o tt m <r o *^ UJ • < •i

i. O. T o CT< (N o o o o o o »-i r^ • • in o o UJ

c <X r~* X <r. cr a mm c c o o o o u. <») V CM c o CM CM z a> I

u t- t r- CO o\ *-* o o o o o o m « m ■ (j> m u; H s- W w • « • • • • • • • • b. • II II m CM C; u. u. U-

h. o o o O o o o o o o o o c c • • >-4 a o a u •<

J o It II n z X o •-<

z u o o u UJ • o o o o UJ >-» u 11 o o □ o

o-. >■ o ■^ (N m ■* m •o r* 00 w o •J ■< a X I w w X u J J NS

3 o

z •* 01 i

o o X (7- —< •

E-i (7>

* O CD

» o o ^-» -3

-. u in

rr x x x x xx xxxx xxxx

OOOOOXX xooxoccoxocoo

CM O X o o . o o

x o

»-fM»n^iniCf^crO'C:-^fMfn^'in»cf^oca,o*-cMm^'irior^co^o»^«Mi^^rm»or-oo^>o

H OT 5J (J UJ UJ z z u> U. (- w

m x U X u: a

u o w z

H-7

Page 127: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

U f !-■ <Ji r«*

t- o ■C l- ^ 1. •a: •

i o c •c

K u;

u H W IQ ^ u. >a KH ^ < uJ -T > 2 E- u ■« » J Ei)

vD X C U)

1 2 C ►— <T- a: — H C -J

— '-.-(-i-i — oooooo • •••«••••■»• oooooooooooo

ii u ii ii n n ii n a ii H

OQOOOOOC

iroinctrtocm *^ S_* »_J y^ '^ N_- »^ *_y

a, o»cc oooc

a o

c in

U. b. z z o o * <• o IP

c o «-< «-•

s

H-8

Page 128: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

u:

u

t-

at CM «

>• o ■ 1 •

f- u. Uj «0 c U gc z

^- u n. U. a >■ z BE o a

o H DJ M a b, X

*~* J a a t- « s u

•3 3 u • z o o o hi

-l u o 2 ■d

w w: u; CL a a I- JE X t < rt a. CN *-< CN o CO »-< ^ c

CN in o cr

o

c O 2. Ifi c

w* t* & M

o cr

>-

M O *<

C

U

5_>

3

>

^, ^H ^ c O o o o o c C o o o c e

1 1 + ♦ ♦ + + IT' U u u U Id u.< LLJ

IT tM r^ a- >c o c c O* CT- r- -H in o c o CT- CC cr a^ cs o o c: r* CD o^ —. ■^ o o o

II c

c e

c — — fSi — ^

2 <

n

eg

f- (v CM

w r^ ON in a •-« a o —' »-• m e • VO

u. in *-• c o c l/l n r- >e 1 in

b. • u II e O o o

2 o •

U II II II < u o O c. O u IM it J « B3 2: a- w M

c c C ,_ ■ I i

n H II ii _J --\ ^ r*

«i [i. u. u. > -i > s o: c u. c uJ U J o H # ^-\ oc 2 o 0 o M a- O O'

w m ■~^

« «^ « c i? o

u.; • < —H

U o u z 17> BC UJ o b. u. u. »-( c a o b, 2 o u w O O o Q t) M3 ^ J

_2 U- o

C m

■* X X X X C X

X X

x x c c x x OXXOOOO X XXOXOC

tN O o o X. o o o o o

1- K LI o u: u z z 10 = hi u. J- w

• IO l^ I. k X a o

• x • u o w z

H-9

Page 129: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

T

f-

oooooooocooo

u 10 f- nun n II n n ii II ti II u

TZ ill U.U.L.U.U-U.U.U'ljMtuC^tLi

vu: « cooccccccocc J U! I, t «J O O SJ O C L.1 t/ tJ <J ^

I" *" »■ OH 5^ OT 0» =<f O* 0^ 0» *r<» U moirofcf'OCiromoir

n cr<j>cocooooo»<»< u. ••••••••••••

0s CT CT* C* ^ (7* »* »<

H-10

Page 130: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

:* CN o 1 • ■

u. w W

c u s- S

u = u. 3

» z K o <r f- iJ ►-« a u. 3:

-1 a: a f- « = o z> u • 2

c o o u u o z •a

o. a.

I- r-

O

II C

C ro C

o

u -r

U

II

u.

c u •» o

II

-1 <»>

o ao — o

11 11

*> b. O 2 in o w u z # < c u; »

c

2 ►-I o ^*

—. —. o c o c c o o o o o o o

^N I !♦♦♦♦■♦ EiJ U* Sd U U Sa2 U

u-^orMinooo o

o o o o ♦ + Lb ^ O => O O C O o o

11 c c - z c

10

u. c

3 •< CM

U H II o o o J <t _2

Cf ,-, ■C r- ^T vr —• r-

c in c p" r^ p- a u~. PH

^r a pn ^c -r. «M pn c iT. r^ a c c • o a- CT c • • ■ • ■Pri • • • > C c

1

c — c c i

c. 1 1

II II It II II II II II II X >; X ts X J ^ J *■»

-: a 1 » -1 b. U} u. < <J> ~ > "_2 > £:

u ►- a C UJ c ^ w US

2 •if o

o r- M 17- o cr v^ -c ^^ in *** in o o» w <*

o C w C z c

o a- c P^ u: • «i •** o • ■ ^ u c u ^r c o <-i o a. 2. m I .-^ •* us • II II ^> [M c b. U. u. c O c • • H-l O o Q ^ 3: o —t u. II «t u z u o « o Ld »-< n II c o o o i ^ w to I o J J J

o

o Jl

o

CT-

(MX C

— c

X X

O x o :

o o

x x x x c xcoooxxxo

CO coo

•I o

-Hrsr^<»,ir)vDr*cca^c»^csrr^rm*cp^ccc*c»^fsi^^m*cf^oDao»^cNP^^,ir. _ — w-<.<w-<»H-<-Hr<rNCM(Nr<«tNr»r<r<<Nror<imn<nm

^ IT. * r* OD a o i ^ ^*i f*i t^ ^

I- « o L; u. u_ z z to

• 1.1

a: O

U o 1/3 Z

H-ll

Page 131: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

r-

o

H _ ««^,^,^.—.ocoooo

A O OOOOOOOOOOOO

o u; H w J <: J ii ^ UJ ■a C > [- H Id

c

II II II II II II II II II II II 11 ^-\ r*, r* ^* ^s ?** *~* ?-* r* ^* ^* ^*

COCOOC1COCOOO u o c o o o L; tj t; u u tj ■r-ciT'CtrceiroiAOiA

o If)

in

E-vl2

Page 132: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

DISTRIBUTION LIST

Commander U.S. Army Armament Research

and Development Command ATTN: DRDAR-LC

DRDAR-LCA DRDAR-LCE DRDAR-QA DRDAR-QAT DRDAR-QAS-T (10) DRDAR-SCM DRDAR-SCM-0 DRDAR-TSP DRDAR-TSS (5)

Dover, NJ 07801

Administrator Defense Technical Information Center ATTN: Accessions Division (12) Cameron Station Alexandria, VA 22314

Director U.S. Army Materiel Systems

Analysis Activity ATTN: DRXSY-MP Aberdeen Proving Ground, MD 21005

Commander/Director Chemical Systems Laboratory U.S. Army Armament Research

and Development Command ATTN: DRDAR-LCD

DRDAR-CLB-PA DRDAR-CLJ-L

APG, Edgewood Area, MD 21010

Director Ballistic Research Laboratory U.S. Army Armament Research

and Development Command ATTN: DRDAR-TSB-S Aberdeen Proving Ground, MD 21005

J-l

Page 133: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

,

Chief Benet Weapons Laboratory, LCWSL U.S. Army Armament Research

and Development Command ATTN: DRDAR-LCB

DRDAR-PPI, T. Moraczewski L. Jette

DRDAR-LCB-TL Watervliet, NY 12189

Commander U.S. Army Armament Materiel

Readiness Command ATTN: DRSAR-QA (2)

DRSAR-QAE DRSAR-RDP DRSAR-EN DRSAR-SC DRSAR-LEP-L

Rock Island, IL 61299

Director Industrial Base Engineering Activity ATTN: DRXIB-MT, D. Brim Rock Island, IL 61299

Commander U.S. Army Foreign Science

and Technology Center ATTN: DRXST-SD3 220 Seventh St., N.E. Charlottesville, VA 22901

Office of Deputy Chief of Staff for Research, Development, and Acquisition

ATTN: DAMA-ARZ-E DAMA-CSS

Washington, DC 20310

Commander Army Research Office ATTN: George Mayer

J. J. Murray P.O. Box 12211 Research Triangle Park, NC 27709

J-2

Page 134: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Commander U.S. Array Materiel Development

and Readiness Command ATTN: DRCQA-E

DRCQA-P DRCDE-D DRCDMD-FT DRCDMT-FT DECLDC DRCMT DRCMM-M

5001 Eisenhower Avenue Alexandria, VA 22333

Commander U.S. Army Electronics Research

and Development Command ATTN: DELSD-PA-E Fort Monmouth, NJ 07703

Commander U.S. Army Missile Command ATTN: DRSMI-TB (2)

DRSMI-TK DRSMI-M DRSMI-ET DRSMI-QS DRSMI-EAT DRSMI-QP

Redstone Arsenal, AL 35809

Commander U.S. Army Troop Support and

Aviation Materiel Readiness Command ATTN: DRSTS-PLE (2)

DRSTS-Q DRSTS-M

4300 Goodfellow Boulevard St. Louis, MO 63120

Commander U.S. Army Natick Research and

Development Laboratories ATTN: DRDNA-EM Natick, MA 01760

J-3

Page 135: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Commander U.S. Army Mobility Equipment Research

and Development Command ATTN: DRDME-D

DRDME-E DRDME-G DRDME-H DRDME-M DRDME-T DRDME-TQ DRDME-V DROME-ZE DRDME-N

Fort Beivolr, VA 22060

Commander U.S. Army Tank-Automotive

Materiel Readiness Command ATTN: DRSTA-Q (2) Warren, MI 48090

Commander U.S. Array Armament Research

and Development Command ATTN: DRDAR-QAC-E Aberdeen Proving Ground, MD 21010

Commander U.S. Array Aviation Research

and Development Command ATTN: DRDAV-EGX

DRDAV-QR DRDAV-QP DRDAV-QE

St. Louis, MO 63120

Commander U.S. Array Tank-Automotive Research

and Development Command ATTN: DRDTA-UL, Technical Library

DRDTA-RCKM DRDTA-RCKT DRUTA-RTAS DRDTA-TTM DRDTA-JA

Warren, MI 48090

J-4

Page 136: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Commander Rock Island Arsenal ATTN: SARRI-EN

SARRI-ENM SARRI-QA

Rock Island,'IL 61299

Commander Harry Diamond Laboratories ATTN: DELHD-EDE 2800 Powder Mill Road Adelphi, MD 20783

Commander U.S. Army Test and

Evaluation Command ATTN: DRSTE-TD

DRSTE-ME Aberdeen Proving Ground, MD 21005

Commander U.S. Army White Sands Missile Range ATTN: STEWS-AD-L

STEWS-ID STEWS-TD-PM

White Sands Missile Range, NM 88002

Commander Yuma Proving Ground ATTN: Technical Library Yuma, AR 85364

Commander U.S. Army Tropic Test Center ATTN: STETC-TD, Drawer 942 Fort Clayton, Canal Zone

Commander Aberdeen Proving Ground ATTN: STEAP-MT

STEAP-MT-M STEAP-MT-G

Aberdeen Proving Ground, MD 21005

Commander U.S. Army Cold Region Test Center ATTN: STECR-OP-PM APO Seattle, WA 98733

J-5

Page 137: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Commander Dugway Proving Ground ATTN: STEDP-MT Dugway, UT 84022

Commander U.S. Army Electronic Proving Ground ATTN: STEEP-MT Fort Huachuca, AR 85613

Commander Jefferson Proving Ground ATTN: STEJP-TD-1 Madison, IN 47250

Commander U.S. Army Aircraft Development

Test Activity ATTN: STEBG-TD Fort Rucker, AL 36362

President U.S. Army Armor and Engineer Board ATTN: ATZKOAE-TA Fort Knox, KY 40121

President U.S. Army Field Artillery Board ATTN: ATZR-BDOP Fort Sill, OK 73503

Commander Anniston Army Depot ATTN: SDSAN-QA Anniston, AL 36202

Commander Corpus Christi Array Depot ATTN: SDSCC-MEE

Mail Stop 55 Corpus Christi, TX 78419

Commande r Letterkenny Army Depot ATTN: SDSLE-QA Chambersburg, PA 17201

Commander Lexington-Bluegrass Army Depot ATTN: SDSLX-QA Lexington, KY 40507

<f

J-6

Page 138: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Commander New Cumberland Army Depot ATTN: SDSNC-QA New Cumberland, PA 17070

Commander U.S. Army Depot Activity ATTN: SDSTE-PU-0 (2) Pueblo, CO 81001

Commander Red River Army Depot ATTN: SDSRR-QA Texarkana, TX 75501

Commander Sacramento Army Depot ATTN: SDSSA-QA Sacramento, CA 95813

Commander Savanna Array Depot Activity ATTN: SDSSV-S Savanna, IL 61074

Commander Seneca Army Depot ATTN: SDSSE-R Romulus, NY 14541

Commander Sharpe Army Depot ATTN: SDSSH-QE Lathrop, CA 95330

Commander Sierra Array Depot ATTN: SDSSI-DQA Herlong, CA 96113

Commander Tobyhanna Army Depot ATTN: SDSTO-Q Tobyhanna, PA 18466

Commander Tooele Array Depot ATTN: SDSTE-QA Tooele, UT 84074

J-7

Page 139: ELECTROTHERMAL ANALYTICAL RESPONSE INSPECTION OF

Director DARCOM Ammunition Center ATTN: SARAC-DE Savanna, IL 61074

Naval Research Laboratory ATTN: J. M. Krafft, Code 5830

Library, Code 2620 Washington, DC 20375

Air Force Materials Laboratory ATTN: AFML-LTM

AFML-LLP Wright-Patterson Air Force Base, OH 45433

Director Army Materials and Mechanics

Research Center ATTN: DRXMR-PL (5) Watertown, MA 02172

Franklin Research Center ATTN: Charles T. Davey (2)

Joseph F. Heffron (2) 20th Street and the Parkway Philadelphia, PA 19103

1

J-8