electrospinning a thermoelectric polymer - … a thermoelectric polymer enma490 spring 2012 by:...

37
Electrospinning a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon Komal Syed Matt Widstrom 1

Upload: truongngoc

Post on 03-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospinning a Thermoelectric Polymer

ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon Komal Syed Matt Widstrom

1

Page 2: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Motivation � People using too

much energy

� Need renewable sources

� A tremendous amount of energy is wasted as heat

http://www.heatingoil.com/category/blog/opec-blog/

http://www.savewaveenergy.com/store/alternative_energy

2

Page 3: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Thermoelectrics

� Bismuth Telluride most common thermoelectric �  Expensive

� Polymers �  Good electrical conductivity �  Naturally poor thermal conductivity

3

Page 4: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Design Goals � Design a thermoelectric device using electrospun

conductive polymer fibers � Predict thermoelectric properties of our device

�  Target: Power factor on order of PEDOT:PSS thin film �  Power Factor = 4.8 x 10-6 W/mK2 �  Efficiency = .006%

� Predict size of electrospun fibers based on easily measurable processing parameters to within 9% error

4

Page 5: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Intellectual Merit � Extend dimensional analysis (Helgeson et.

al. 2008) to electrospinning with carrier polymer and asses accuracy/applicability

� Compare conductivity and thermoelectric parameters of fibers to bulk

5

Page 6: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Broader Impacts and Ethics �  Wasted heat is almost everywhere

�  Efficient conversion of thermal gradient to electricity ΔTà ΔV

�  Optimization of Thermoelectric properties/minimizing cost

�  Increase in fiber alignment by stretching during electrospinning

�  Many thermoelectric devices are either not cost effective or use complicated processing techniques

�  Some of our solvents can be harmful if released in large quantities

�  Electrospinning uses very high voltages

6

Page 7: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Basic Design

High V Power Source

Syringe with electrospinning solution

Glass slide with two grounded Cu electrodes

7

Page 8: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

PEDOT:PSS

� General Properties: �  Conductive polymer �  Soluble in water

� Thermoelectric Properties: �  Electrical Conductivity (thin film) = 850 S/cm

� Bi2Te3 =1100 S/cm (M. Takelishi et al., Japan Symposium on Thermophysical properties, 2006.)

�  Seebeck coefficient (thin film) = ~10 μV/K � Bi2Te3 =287 μV/K (Proceedings of SPIE. 5836, 711)

http://clevios.com/media/webmedia_local/media/datenblaetter/81076210_Clevios_PH_1000_20101222.pdf

8

Page 9: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Material Selection �  Electrospin PEDOT:PSS

�  Good electrical properties

�  Research reveals pure PEDOT:PSS very difficult to electrospin

�  Carrier polymer required for electrospinning: Polyacrylonitrile (PAN)

�  Dopant: Sorbitol

�  Copper electrodes �  Lower workfunction than PEDOT-ohmic contact

9

Page 10: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Materials Science Aspects

Material Properties

Processing

Materials Chemistry

Solid State Physics

Electrospinning voltage Electrospinning flow rate Shear thinning

Electrical conductivity Thermal conductivity Seebeck coefficient Viscosity Surface tension Dielectric constant Polymer entanglement

Density of states Fermi level shift

Weight percent calculations Solution miscibility Solubility Carrier polymers

Characterization

SEM Tensiometer Viscometer LCR meter Nanovoltmeter

10

Page 11: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Technical Approach: VRH � We will test Variable Range Hopping � Electrical conductivity:

�  𝜎= 𝜎↓0 exp[−( 𝑇↓0 /𝑇 )↑𝛾 ] � PEDOT:PSS and PAN can be arranged

either in parallel or in series within the fiber �  𝜎↓𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝜎↓𝑃𝐴𝑁 𝜑↓𝑃𝐴𝑁 + 𝜎↓𝑃𝐸𝐷𝑂𝑇 𝜑↓𝑃𝐸𝐷𝑂𝑇   

�  𝜎↓𝑆𝑒𝑟𝑖𝑒𝑠 = 1/𝜑↓𝑃𝐴𝑁 /𝜎↓𝑃𝐴𝑁  + 𝜑↓𝑃𝐸𝐷𝑂𝑇 /𝜎↓𝑃𝐸𝐷𝑂𝑇   

�  Lichtenecker equation is an in-between case

�  log(𝜎↓𝑇 )= 𝜑↓𝑃𝐸𝐷𝑂𝑇 log(𝜎↓𝑃𝐸𝐷𝑂𝑇 )+ 𝜑↓𝑃𝐴𝑁 log(𝜎↓𝑃𝐴𝑁 )

11

Page 12: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Technical Approach: VRH � Seebeck coefficient

�  𝑆= 𝑘↓𝐵↑2 /2𝑒 (𝑇↓0 𝑇)↑1/2  ( 𝑑𝑙𝑛𝑁(𝐸)/𝑑𝐸 )↓𝐸=𝐸𝑓 

ST = Sa * σa + Sb * σb

σa + σb

σa>>σb

ST = Sa

Annika Lenz, Hans Kariis, Anna Pohl, Petter Persson, Lars Ojamae. (2011). The Electronic Structure and Reflectivity of PEDOT:PSS from Density Functional Theory. Chemical Physics, 384, 1-3

Park, Sungeun, Sung Ju Tark, and Donghwan Kim. "Effect of Sorbitol Doping in PEDOT:PSS on the Electrical Performance of Organic Photovoltaic Devices." Current Applied Physics 11.6 (2011): 1299-301

12

Page 13: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Technical Approach: VRH

Using image J DOS information was extracted around the Fermi energy. Optimal Seebeck Coefficient: 6.20E-04 V/K corresponds to a Fermi energy shift of 0.075 eV and 1.8% sorbitol.

13

Page 14: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospinning: Solutions Prepared

� Design (Ideal) Solution

-PEDOT:PSS and sorbitol in EG:NMP -PAN in DMF -Individual solutions mixed

� Clevios -  Successfully

electrospun -  7.1 wt% Clevios

(water + PEDOT) -  0.08% wt%

PEDOT -  8 wt% PAN -  DMF solvent

� Diluted Solution

- Ratio PEDOT:PSS to PAN reduced from 5% to 3.34% - Attempted to electrospin: Failed

Page 15: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Background: Electrospinning

� Underlying theory based on “electrohydrodynamics” (Taylor & Melcher, 1966)

�  In 2001, Hohman et al. predict 3 modes that apply to electrospinning/electrospraying: �  Rayleigh mode

� Dominated by surface tension effects � Applies when low/no electric field

�  Axisymmetrical conducting mode �  Whipping conducting mode

15

Dominate due to surface charge effects at high field strengths

Page 16: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Whipping vs. Axisymmetrical Modes

�  Take-home message: Balance of electromechanical stresses with intrinsic stresses within fluid (viscosity/capillary stresses) lead to formation of stable jet

16

Decreasing Applied Electric Field POLYMER ENGINEERING AND SCIENCE, 2005, 705

Page 17: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospin Modeling: Dimensional Analysis (Helgeson et. al. 2008)

�  captures the jet dynamics during the streching regime

𝛱=   (𝜀− 𝜀↓0 ) 𝐸↑2 𝑅↓𝑗↑3 /𝜋𝜂↓𝑒 𝑄 

𝑂ℎ= 𝜂↓0 /(𝜌𝛾𝑅↓𝑗 )↑0.5  

�  captures free resistance to jet breaking up into droplets and surface flow disturbances which lead to capillary breakup

Simplified expression (Helgeson et. al. 2007)

Page 18: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospin Modeling: Experimental Observations

𝑂ℎ=𝐻𝛱1↑−𝑚  Rj  ∝  solution  parameters

(Figure from Helgeson et. al. 2007)

PEO-water PEO-water-ethanol poly(ethylene terephthalate- co-ethylene isophthalate)-chloroform- Dimethylformamide poly(methyl methacrylate)-dimethylformamide

18

Page 19: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospin Modeling: Experimental Observations

𝑂ℎ=𝐻𝛱↑−𝑚  Rj  ∝  solution  parameters

(Figure from Helgeson et. al. 2008)

19

Page 20: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospin Modeling: Determination of Rj and Rf relation

�  Usually, this approximation made:

�  Derivation from volume conservation:

�  Wang et. al. 2007 determined experimentally:

𝑅↓𝑓 = 𝑅↓𝑗 𝑤↓𝑝↑0.5 

𝑤↓𝑝 = 𝜋𝑅↓𝑓↑2 𝑙↓𝑓 /𝜋𝑅↓𝑗↑2 𝑙↓𝑗  →𝑤↓𝑝 = 𝑅↓𝑓↑2 𝑙↓𝑓 /𝑅↓𝑗↑2 𝑙↓𝑗  

𝑅↓𝑓 = 𝑅↓𝑗 𝑤↓𝑝↑0.9653 = 𝑅↓𝑗 𝑤↓𝑝↑0.5 𝑤↓𝑝↑0.4653   ;  √𝑙↓𝑗 /𝑙↓𝑓    = 𝑤↓𝑝↑0.4653 

Extra term inverse extension ratio, dominated by solvent evaporation

20

Page 21: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospin Modeling: Determination of Rj and Rf relation

(Data from El-Aufy 2004) Limited data, differing solvent evaporation ratesà No smooth fit possible

21

Page 22: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospin Modeling: Determination of Rj and Rf relation

Estimate solvent evaporationà qualitatively correct fit at low wp (region of interest for design)à use fit in calculationsà assume (Wang et. al. 2007) b/c PAN in DMF is dominating the fit curve

𝑅↓𝑓 = 𝑅↓𝑗 𝑤↓𝑝↑0.9653 

22

Page 23: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospin Modeling: Dimensional Analysis Helgeson 2007 Plot

23

Page 24: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospin Modeling: Dimensional Analysis Helgeson 2008 Plot

24

Page 25: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Effect of viscosity:

�  Too low viscosity à jet breaks up to polymer droplets à electrospraying

�  Low viscosity causes formation of beaded fiber �  Very high viscosity à unable to pump the solution �  There is a viscosity range which electrospining is

effective �  As viscosity increases so does the average fiber

diameter

25

Page 26: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Viscosity of Diluted Solution:

� Viscosity was measured by cone and plate viscometer

� Data was inaccurate due to excessive noise

� Qualitative analysis: Electrospinning failed due to very low viscosity �  Diluted “solution” turned out to

be suspension of polymer, not solution

�  Fluid broke up into droplets rather than forming stable Taylor cone

Page 27: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Viscosity Tests on Clevios Solution: �  Viscosity was measured by cone and plane viscometer �  Shear-Thinning Fluid : �  Still within the window of electrospinning

σ= kɵᵒn n=0.43 (power law index)

27

Page 28: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Electrospinning Result: Fibers from Clevios Solution

Fiber diameter range: 100-250nm

28

Page 29: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

TE Modeling Results: σll (S/cm)

σLi (S/cm)

PFll (W/mK2)

PFLi (W/mK2)

ηll (%) ηLi (%)

Ideal Solution

.125 1.48 E-11 4.79 E-6 5.67 E-16 .006 7.33 E-13

Diluted Solution

.103 1.21 E-11 3.98 E-6 4.67 E-16 .005 6.03 E-13

Clevios .024 5.81 E-12 9.21 E -7 2.23 E-16 .001 2.88 E-13

�  Goal: �  PF = 4.8 x 10-6 W/mK2 � η = .006 %

29

Page 30: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

TE Measurements on Prototype � Seebeck Coefficient: 𝑆=− ∆𝑉/∆𝑇  � Measure using voltmeter and thermocouple

while heating � Measured a value of 6.36 𝝁𝐕/𝐊 � Attempted to measure electrical conductivity

using four point probe: 𝑅=   𝑙/𝜎𝐴  � Unable to obtain measurements using 4 pt.

probe

Page 31: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Conclusions: Thermoelectric Goals and Insight from Results � Goal: to fabricate nanofiber TE device

that rivaled that of PEDOT:PSS thin films in terms of Power Factor and efficiency

�  Insight from Results: If percolation is reached, can obtain similar efficiency to a doped PEDOT:PSS thin film �  (Less conductive polymer required)

31

Page 32: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Conclusion: Electrospinning Goals and Results

�  Goal: Predict diameter of electrospun fibers based on easily measurable processing parameters

�  Results: Helgeson model does not fully agree to experimental observations of complex systems

�  Insight from Results: Dimensional analysis still useful as engineering design tool

�  Future work: Design electrospinning solution using PEO as carrier polymer �  Cleaner environmental impact: use water as solvent �  Obtain accurate trends of dielectric constants, viscosities,

and surface tension in polymer solutions to make more robust model

32

Page 33: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon
Page 34: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Facilities �  Dr. Hu – electrospinning device & SEM

�  Dr. Rabin – electrical conductivity and Seebeck coefficient

�  Physics Machine Shop (Setup prepared) and LCR

meter in Undergraduate Teaching Lab(KIM)- Dielectric Constant Measurements

�  Dr. Calabrese and Dr. Raghvan for rheology measurements

�  Dr. Phaneuf’s lab for solution preparation

Page 35: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

Acknowledgements �  First and foremost, we would like to thank Dr.

Phaneuf for helping and guiding us throughout the semester with this project. In addition, we would like to thank all the faculty members who have met with us, helped us, and let us borrow their labs and grad students. Without these resources, we would not have been able to accomplish what we did. Lastly, we would like to extend our sincerest appreciation to the entire faculty of the Materials Science department. It is the education and guidance that you provided over the years that enabled us to come this far.

35

Page 36: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

References �  [1] Nidhi Dubey and Mario Leclerc. (2011). Conducting Polymers: Efficient Thermoelectric Materials.  Journal of Polymer

Science Part B: Polymer Physics, 49 (7). http://onlinelibrary.wiley.com/doi/10.1002/polb.22206/pdf �  [2] Kaiser, A. B. "Thermoelectric Power and Conductivity of Heterogeneous Conducting Polymers." Physical Review B 40.5

(1989): 2806-813. �  [3] David K. Taggart, et al. Enhanced Thermoelectric Metrics in Ultra-long Electrodeposited PEDOT Nanowires. Nanoletters,

2010. �  [4] Farshad Faghani. Thermal Conductivity Measurement of PEDOT:PSS by 3-Omega Technique. Thesis, Linkoping University,

2010. �  [5] Afaf Khamis El-Aufy. (2004). Nanofibers and Nanocomposites Poly(3,4-ethylene dioxythiophene)/Poly(styrenesulfonate)

by Electrospinning. (Doctoral dissertation). �  [6] Dale S. Pearson et al. Effect of molecular Weight and Orientation on the Conductivity of Conjugated Polymers.

Macromolecules Vol. 26, 2003. �  [7] Environmental Fate and Effects of Ethylene Glycol used at Airports. American Chemistry Council. February 2000.

http://www.huntsman.com/performance_products/media/fate_and_effects.pdf �  [8] G. Long, M. E. Meek, and M. Lewis. N,N-dimethylformamide. World Health Organization, United Nations Environment

Programme, and the International Labor Organization. 2001. http://www.who.int/ipcs/publications/cicad/en/cicad31.pdf �  [9] Environmental Profile N-Methylpyrrolidone. EPA, 1998. http://nepis.epa.gov �  [10] D. A. Saville. ELECTROHYDRODYNAMICS: The Taylor-Melcher Leaky Dielectric Model. Annu. Rev. Fluid Mech. 1997. 29:27–

64.  �  [11] Moses M. Hohman, Michael Shin, Gregory Rutledge, and Michael P. Brenner. Electrospinning and electrically forced jets.

II. Applications. Phys. Fluids, Vol. 13, No. 8, August 2001. �  [12] Sergey V. Fridrikh, Jian H. Yu, Michael P. Brenner, and Gregory C. Rutledge. Controlling the Fiber Diameter during

Electrospinning. Phys. Rev. Lett., 2003, 90, 14, 144502-1-144502-4. �  [13] Matthew E. Helgeson & Norman J. Wagner. (2007). A Correlation for the Diameter of Electrospun Polymer

Nanofibers. AIChE Journal, 53(1),  51-55. DOI 10.1002/aic. �  [14] Matthew E. Helgeson, Kristie N. Grammatikos, Joseph M. Deitzel, Norman J. Wagner. (2008). Theory and kinematic

measurements of the mechanics of stable electrospun polymer jets. Polymer, 49, 2924–2936. �  [15] Weiwei Zuo, Meifang Zhu, Wen Yang, Hao Yu, Yanmo Chen, Yu Zhang. Experimental Study on Relationship Between Jet

Instability and Formation of Beaded Fibers During Electrospinning. POLYMER ENGINEERING AND SCIENCE, 2005, 704-709. �  [16] Nishuang Liu, Guojia Fang, Jiawei Wan, Hai Zhou, Hao Long and Xingzhong Zhao. (2011). Electrospun PEDOT:PSS–PVA

nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J. Mater. Chem., 21, 18962. �  [17] Jaewon Choi, Jeongwoo Lee, Jinsub Choi, Dongsoo Jung, Sang Eun Shim. (2010). Electrospun PEDOT:PSS/PVP nanofibers

as the chemiresistor in chemical vapour sensing. Synthetic Metals, 160, 1415–1421. �  [18] Ali Shakouri and Suquan Li. (1999).  Thermoelectric Power Factor for Electrically Conducive Polymers.  Proceeding of

International Conference on Thermoelectrics. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA459010  

36

Page 37: Electrospinning a Thermoelectric Polymer - … a Thermoelectric Polymer ENMA490 Spring 2012 By: Natan Aronhime Jason Thomen Sepi Parvinian Chris Wolfram Eric Epstein Kevin Mecadon

References �  [19] Alexandre Mantovani Nardes, Rene A. J. Janssen, and Martijn Kemerink. (2008.) A Morphological Model for the Solvent-Enhanced

Coonductivity of PEDOT:PSS Thin Films. Advanced Finctional Materials, 18, 6. �  http://onlinelibrary.wiley.com/doi/10.1002/adfm.200700796/pdf �  [20] N. F. Uvarov. Estimation of Composites Conductivity Using a General Mixing Rule. Solid State Ionics. 2000.

http://144.206.159.178/ft/959/29907/13356419.pdf �  [21] Park, Sungeun, Sung Ju Tark, and Donghwan Kim. "Effect of Sorbitol Doping in PEDOT:PSS on the Electrical Performance of Organic

Photovoltaic Devices." Current Applied Physics 11.6 (2011): 1299-301. �  [22] Annika Lenz, Hans Kariis, Anna Pohl, Petter Persson, Lars Ojamae. (2011). The Electronic Structure and Reflectivity of PEDOT:PSS from

Density Functional Theory. Chemical Physics, 384, 1-3. http://www.sciencedirect.com/science/article/pii/S0301010411001571 �  [23] Snyder, G. Jeffrey and Tristan S. Ursell.  "Thermoelectric Efficiency and Compatibility".  Physical Review Letters:  Volume 91, Number 14

2003 �  [24] Abolghasem Jouyban , Shahla Soltanpour, Hak-Kim Chan. (2004). A simple relationship between dielectric constant of mixed

solvents with solvent composition and temperature. International Journal of Pharmaceutics, 269, 353–360. �  [25] Abolghasem JOUYBAN, Anahita FATHI-AZARBAYJANI, and William Eugene ACREE, Jr. (2004). Surface Tension Calculation of Mixed

Solvents with Respect to Solvent Composition and Temperature by Using Jouyban–Acree Model. Chem. Pharm. Bull., 52(10) 1219—1222. �  [26] Chi Wang, Huan-Sheng Chien, Chia-Hung Hsu, Yin-Chi Wang, Cheng-Ting Wang, and Hsin-An Lu. (2007). Electrospinning of

Polyacrylonitrile Solutions at Elevated Temperatures. Macromolecules , 40, 7973-7983. �  [27] Seeram Ramakrishna, Kazutoshi Fujihara, Wee-Eong Teo, Teik-Cheng Lim, & Zuwei Ma. (2005). An Introduction to Electrospinning And

Nanofibers. World Scientific. �  [28] Ethylene Glycol: Product Guide. (2008). The MEGlobal Group of Companies. Retrieved from: http://www.meglobal.biz/media/

product_guides/MEGlobal_MEG.pdf �  [29] J.T. Baker. (2006). MATERIAL SAFETY DATA SHEET. Mallinckrodt Baker, Inc. Retrieved from: http://talasonline.com/photos/msds/

MSDS_NMP.pdf �  [30] DIMETHYLFORMAMIDE. (1999). Retrieved from: http://cameochemicals.noaa.gov/chris/DMF.pdf �  [31] Di Zhang, Amar B. Karki, Dan Rutman, David P. Young, Andrew Wang, David Cocke, Thomas H. Ho, Zhanhu Guo. (2009). Electrospun

polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer, 50, 4189–4198. �  [32] Ji-Huan He, Yu-Qin Wan, and Jian-Yong Yu. (2008). Effect of Concentration on Electrospun Polyacrylonitrile (PAN) Nanofibers. Fibers

and Polymers, 9(2), 140-142. �  [33] R. Jalili et al. “Fundamental Parameters Affecting Electrospinning of PAN Nanofibers as Uniaxially Aligned Fibers.” Journal of Applied

Polymer Science. 101:6, 2006. �  [34] A. M. Summan. Electrical Conductivity of Heat Treated Polyacrylonitrile and its Copper Halide Complexes. Journal of Polymer

Science Part A: Polymer Chemistry. Vol. 37, Issue 16. Dec. 1998. http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%2910990518%2819990815%2937:16%3C3057::AID-POLA2%3E3.0.CO;2-J/pdf

37