electronic supplementary information for - the … supplementary information for: nitrogenase...

8
Electronic Supplementary Information for: Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein by Ross D. Milton, Sofiene Abdellaoui, Nimesh Khadka, Dennis R. Dean, Dónal Leech, Lance C. Seefeldt and Shelley D. Minteer Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016

Upload: vutuong

Post on 18-Mar-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

ElectronicSupplementaryInformationfor:

Nitrogenasebioelectrocatalysis:heterogeneousammoniaandhydrogenproductionbyMoFeprotein

by

RossD.Milton,SofieneAbdellaoui,NimeshKhadka,DennisR.Dean,DónalLeech,LanceC.SeefeldtandShelleyD.Minteer

Electronic Supplementary Material (ESI) for Energy & Environmental Science.This journal is © The Royal Society of Chemistry 2016

SupplementaryFiguresandTables

Figure S1 – Cyclic voltammetry of a BSA control bioelectrode in the absence (dashedline) andpresence (solid line) of 50mMNO2

-, evaluatedat a scan rateof 2mv s-1 inHEPESbuffer(pH7.4,250mM)intheabsence(redlines)orpresence(blacklines)of200µMCc+.

-1.4-1.3-1.2-1.1-1.0-0.9-0.8-10

0

10

20

30

40

50

60

E / V (vs. SCE)

Cur

rent

Den

sity

( j )

/ µA

cm

-2

FigureS2-Cyclicvoltammetryofadditionalcontrolbioelectrodesinthe(a)absenceorpresence of 50mM (b)N3

- or (c)NO2-, evaluated at a scan rate of 2mv s-1 inHEPES

buffer (pH 7.4, 250 mM). Complete MoFe protein bioelectrodes (prepared with WTMoFeprotein)arecomparedagainstbioelectrodeswithoutCc+/Cc (blackdashed line),without polymer and MoFe protein (black dotted line), as blank glassy carbon (GC)electrodesonly(redsolidline)orwithoutCc+/CcandMoFeprotein(reddashedline).

-1.4-1.3-1.2-1.1-1.0-0.9-0.8-20-10

0102030405060708090

100

E / V (vs. SCE)

Cur

rent

Den

sity

( j )

/ µA

cm

-2

-1.4-1.3-1.2-1.1-1.0-0.9-0.80

50

100

150

200

250

300

350

400

450

E / V (vs. SCE)

Cur

rent

Den

sity

( j )

/ µA

cm

-2

-1.4-1.3-1.2-1.1-1.0-0.9-0.8-20

0

20

40

60

80

100

120

140

160

E / V (vs. SCE)

Cur

rent

Den

sity

( j )

/ µA

cm

-2a b

cComplete WT MoFe bioelectrode

Polymer + WT MoFe protein (no Cc+)

GC electrode + Cc+ (no polymer/MoFe protein)

GC Electrode only (no polymer/MoFe protein/Cc+)

Polymer (no Cc+/MoFe protein)

Figure S3 – Bulk bioelectrosynthetic reduction of 50 mM (a) N3

- and (b) NO2- by β-

98TyràHisMoFeproteinbioelectrodes(blacklines),operatinginstirredHEPESbuffer(pH7.4, 250mM) containing200µMCc+ (Eapplied = -1.25Vvs. SCE). Control bioelectrodes(redlines)werepreparedusingapo-MoFeprotein(redlines).Substrateswereinjectedat120s.

0 250 500 750 1000 1250 1500 1750 20000

50

100

150

200

250

300

350

400

Time / s

Cur

rent

Den

sity

( j )

/ µA

cm

-2

0 250 500 750 1000 1250 1500 1750 20000

250

500

750

1000

1250

1500

1750

2000

2250

2500

Time / s

Cur

rent

Den

sity

( j )

/ µA

cm

-2

a

b

FigureS4–CalibrationstandardsforNH3usingortho-phthalaldehyde(detailedbelow,n

=3).

0 2 4 6 8 10 12 14 16 18 20 220

1000

2000

3000

4000

5000

NH3 / nmol

Fluo

resc

ence

/ A.

U.

Table S1 – Catalytic current densities extracted from cyclic voltammograms ofrespectiveMoFeproteinbioelectrodes(-1.35Vvs.SCE)operatingat2mVs-1inHEPESbuffer (pH 7.4, 0.2 M) containing 200 µM Cc+ (n = 3, mean ± SD). Catalytic currentdensitiesarereportedcorrectedtocorrespondingcurrentdensitiesobtainedfromapo-MoFeproteincontrolbioelectrodes(errorspropagated).

MaterialsandMethodsChemicalsAll chemicals were purchased from Sigma-Aldrich (St. Louis, MO), unless specifiedotherwise. Poly(vinylamine) and ethylene glycol diglycidyl ether (EGDGE) werepurchasedfromPolySciences,Inc.Saturatedcalomel(SCE)referenceandglassycarbonworkingelectrodeswerepurchasedfromCHInstruments,Inc.ElectrochemicalanalysisAll electrochemical analyses were performed anaerobically (<1 ppm O2) to avoidcompetitiveO2 reductionat theworkingelectrodeand topreservenitrogenaseMoFeprotein activity. HEPES buffer (pH 7.4) was used as the supporting electrolyte at aconcentration of 250 mM to avoid migration issues associated with N3

- and NO2-.

Electrochemical measurements were performed using a CH Instruments (Inc.)potentiostat (1230b),utilizinga largePt counterelectrode ina traditional3-electrodeconfiguration.CellgrowthandnitrogenaseMoFeproteinpurificationAzotobacter vinelandii strainsDJ995 (wild-typeMoFe protein) andDJ1003 (apo-MoFeprotein) were grown and polyhistidine-tagged proteins were purified as previouslyreported.1Similarly,strainDJ939(β-98Tyr→His)wasgrownandthecorrespondingnon-Histagged MoFe protein was purified as described. Protein manipulation was eitherperformedunderanargonatmosphereinseptum-sealedvials(usingaSchlenkline)orwithinananaerobictent(<1ppmO2,CoyLaboratoryProducts,MI,USA).

NitrogenaseMoFeproteinswereassayedforH+,C2H2andN2activity. nmol/min/mgMoFeprotein

MoFeProtein H2 C2H4 NH3DJ995 2493 2349 606DJ939 1100 600 220

MoFeproteinbioelectrodepreparationPurifiedMoFeprotein(20mgmL-1,15µL)wasthawedanaerobicallyandimmobilizedatthesurfaceofaglassycarbonelectrodebymixingwithpoly(vinylamine)(10mgmL-1,15µL)andEGDGE(10%v/v,2µL);5µLofthismixturewasappliedtothesurfaceofeachglassycarbonelectrodeanddriedunderreducedhumidityfor1hour,priortotesting. Theratioofpolymer:crosslinkerisofimportance;toolittlecrosslinkerresultsinanunstablefilm,whereasexcessivecrosslinkeralsoresultsinanunstablefilmwherebyexcessiveEGDGEontheelectrodesurfaceresultsinafilmthatdoesnotcompletelydry(EGDGEisaliquidatroomtemperature).SinceEGDGEwillcrosslinkbetweenpolymer-polymer, protein-protein and protein-polymer, the concentration of EGDGE alsodependsontheloadingofproteinperelectrode.FortheimmobilizationofnitrogenaseMoFeproteinwithinapoly(vinylamine)film,anapproximateconcentrationof23mol%

EGDGE to poly(vinylamine) was utilized, resulting in approximately one epoxidefunctionality to every two primary amines present on the poly(vinylamine) backbone(wherea10mgmL-1solutionofpoly(vinylamine)approachessaturation).PreviousworkemployingredoxpolymersandusingEGDGEasthecrosslinkerindicateaconcentrationofbetween20-30mol%EGDGEtobeoptimal.2,3Finally,avolumeof5µLof the finalenzyme/polymer/crosslinker mixture was applied to the surface of a 3 mm glassycarbonelectrode; thisvolumeensure thecompleteyetnon-excessivecoverageof thesurfaceoftheworkingelectrode.Ammonia/ammoniumdetectionassayNH3wasquantifiedaspreviously reported.4,5AnNH3detectionreagentwaspreparedbymixing phosphate buffer (pH 7.3, 0.2M, 100mL), 2-mercaptoethanol (25 µL) andortho-phthalaldehyde (270mg dissolved in 5mL of ethanol) and storing in the dark.Following bioelectrosynthetic experiments, 250 µL of the electrolyte solution(containingNH3producedbyMoFeproteinbioelectrodes)wasmixedwith1000µLoftheNH3detectionreagentandincubatedfor30mininthedark.NH3wasquantifiedbyexcitingthesolutionsat410nmandmeasuringtheiremissionreadingsat472nm.Allsamples were quantified as triplicates and corrected against background samplespreparedwithapo-MoFeproteinbioelectrodes.

REFERENCES1. J.Christiansen,P. J.Goodwin,W.N.Lanzilotta,L.C.SeefeldtandD.R.Dean,

Biochemistry,1998,37,12611-12623.2. R. D. Milton, D. P. Hickey, S. Abdellaoui, K. Lim, F. Wu, B. Tan and S. D.

Minteer,Chem.Sci.,2015,6,4867-4875.3. D.P.Hickey,A.J.Halmes,D.W.SchmidtkeandD.T.Glatzhofer,Electrochim.

Acta,2014,149,252-257.4. K.A.Brown,D.F.Harris,M.B.Wilker,A.Rasmussen,N.Khadka,H.Hamby,S.

Keable,G.Dukovic, J.W.Peters,L.C.SeefeldtandP.W.King,Science,2016,352,448-450.

5. J.L.Corbin,Appl.Environ.Microbiol.,1984,47,1027-1030.