electronic supplementary information for both liquid & solid ...s1 electronic supplementary...

15
S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for Both Liquid & Solid-state Lithium Ion Batteries Shenghui Shen, a Shengzhao Zhang, a Shengjue Deng, a Guoxiang Pan, b Yadong Wang, c Qi Liu, d Xiuli Wang, a Xinhui Xia, *a,e Jiangping Tu* a a State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: [email protected] b Department of Materials Chemistry, Huzhou University, Huzhou, 313000, China c School of Engineering, Nanyang Polytechnic, 569830, Singapore d Department of Physics, City University of Hong Kong, Kowloon, 999077, Hong Kong e Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China Shenghui Shen and Shengzhao Zhang contributed equally to this work. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 17-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S1

Electronic Supplementary Information

Bioinspired Large-scale Production of Multidimensional High-rate Anodes

for Both Liquid & Solid-state Lithium Ion Batteries

Shenghui Shen,a Shengzhao Zhang,a Shengjue Deng,a Guoxiang Pan,b Yadong Wang,c Qi

Liu,d Xiuli Wang,a Xinhui Xia,*a,e Jiangping Tu*a a State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and

Applications for Batteries of Zhejiang Province, and Department of Materials Science and

Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail:

[email protected] Department of Materials Chemistry, Huzhou University, Huzhou, 313000, China

c School of Engineering, Nanyang Polytechnic, 569830, Singapored Department of Physics, City University of Hong Kong, Kowloon, 999077, Hong Kong

e Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College

of Chemistry, Nankai University, Tianjin 300071, China

Shenghui Shen and Shengzhao Zhang contributed equally to this work.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2019

Page 2: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S2

0 200 400 600 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

51.77%

Wei

ght (

%)

Temperature (oC)

2D-TNO@Puffed rice carbon

7.8%

Fig. S1. TG curves of the 2-TNO@puffed rice carbon sample.

10 100

dV/d

W (c

m3 g

-1 n

m-1)

Pore width (nm)

1D-TNO 2D-TNO 3D-TNO 0D-TNO

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

Volu

me

(cm

3 g-1)

Relative Pressure (P/P0)

1D-TNO 2D-TNO 3D-TNO 0D-TNO

a b

Fig. S2 (a) N2 adsorption-desorption isothermal analysis of 0D/1D/2D/3D-TNO samples; (b)

Pore size distribution of 0D/1D/2D/3D-TNO samples.

Page 3: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S3

a b

c d

Fig. S3 SEM (a-b) and TEM-HRTEM (c-d) images of 0D-TNO sample.

400 800 1200 1600 2000

Inte

nsity

(a.u

.)

Raman shift (cm-1)

0D-TNO

265

541

643

893

997

10 20 30 40 50 60 70 80

Inte

nsity

(a.u

.)

2 (degree)

0D-TNO

(2

00)

(3

00)

(011

)

(400

)

(2

1-5)

(4

1-1)

(5

1-5)

(7

00)

(0

20)

(5

06)

(9

0-2)

(7

0-12

)

(7

2-4)

a b

Fig. S4 XRD pattern (a) and Raman spectra (b) of 0D-TNO sample.

As shown in the XRD pattern of 0D-TNO sample (Fig. S2a), the sample presents the same

peaks as the 1D/2D/3D-TNO samples, verifying the successful synthesis of the pure

Page 4: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S4

Ti2Nb10O29 phase without any purity. In Raman spectra (Fig. S2b), characteristic peaks of

Ti2Nb10O29 (265 cm–1, 541 cm-1, 643 cm-1, 893 cm-1 and 997 cm-1) could be detected in the

sample, further confirming the successful synthesis of Ti2Nb10O29.

Fig. S5. Z0–ω-0.5 plots of 0D/1D/2D/3D-TNO samples in the low frequency range.

Page 5: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S5

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.5

Cur

rent

(mA

)

Voltage (V vs. Li+/Li)

0.2 mV s-1

0.4 mV s-1

0.7 mV s-1

1.1 mV s-1

2D-TNO

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.5

Cur

rent

(mA

)

Voltage (V vs. Li+/Li)

0.2 mV s-1

0.4 mV s-1

0.7 mV s-1

1.1 mV s-1

1D-TNO

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.5

Cur

rent

(mA

)

Voltage (V vs. Li+/Li)

0.2 mV s-1

0.4 mV s-1

0.7 mV s-1

1.1 mV s-1

3D-TNO

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.5

Cur

rent

(mA

)

Voltage (V vs. Li+/Li)

0.2 mV s-1

0.4 mV s-1

0.7 mV s-1

1.1 mV s-1

0D-TNO

0.2 0.4 0.7 1.140

60

80

100

C

ontr

ibut

ion

Rat

io (%

)

Scan Rate (mV s-1)

0D-TNO 1D-TNO 2D-TNO 3D-TNO

e

a b

c d

Fig. S6. CV curves of 1D-TNO (a), 2D-TNO (b), 3D-TNO (c) and 0D-TNO (d)

electrode at scan rates of 0.2, 0.4, 0.7 and 1.1 mV s-1. (e) Capacitive contribution

ratios of the multidimensional TNO electrodes at scan rates of 0.2, 0.4, 0.7 and 1.1

mV s-1, respectively.

Page 6: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S6

a b

c d

e f

Fig. S7. Optical images of pristine cellulose membrane (a) and CGPE (b); SEM images of

pristine cellulose membrane (c) and CGPE (d); (e) Cross-sectional SEM image of CGPE; (f)

SEM image of 2D-TNO electrode with GPE.

Page 7: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S7

a b c

Fig. S8. Contact angle measurements of 1D-TNO (a), 2D-TNO (b), 3D-TNO (c) electrodes

.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-0.2

-0.1

0.0

0.1

0.2

Cur

rent

(mA

)

Voltage (V vs. Li+/Li)

2D-TNO 1st 2D-TNO 2nd 2D-TNO 10th

ba

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5C

urre

nt (m

A)

Voltage (V vs. Li+/Li)

0.1 mV s-1

0.2 mV s-1

0.4 mV s-1

0.8 mV s-1

Fig. S9. (a) The 1st, 2nd and 10th CV curves of the half cells based on 2D-TNO electrode at a

scan rate of 0.1 mV s-1 in solid-state LIBs; (b) CV curves of the half cells based on 2D-TNO

electrode at a scan rate of 0.1, 0.2, 0.4 and 0.8 mV s-1 in solid-state LIBs

Page 8: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S8

Fig. S10. Z0–ω-0.5 plot of 2D-TNO electrode in the low frequency range in solid electrolyte

Page 9: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S9

0 50 100 150 200 250 3000

50

100

150

200

250

300

350

1 C 2D-TNO

Cap

acity

(mA

h g-1

)

Cycle number

0 50 100 150 200 250 300 350 400 450 5000

50

100

150

200

250

300

350

2 C 2D-TNO

Cap

acity

(mA

h g-1

)

Cycle number

a

b

Fig. S11 Cycling performance of 2D-TNO electrode at 1 C (a) and 2 C (b) in solid-state LIBs

Page 10: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S10

0 50 100 150 200 250 300 3501.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Volta

ge (Vvs.L

i/Li+ )

Capacity (mAh g-1)

2D-TNO//LFP 0.2 C 2 C

0 10 20 30 40 50 600

50

100

150

200

250

300

350

400

0.2 C2 C 5 C1 C0.5 C

2D-TNO//LFP

Cap

acity

(mA

h g-1

)

Cycle number

0.2 C

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-0.2

-0.1

0.0

0.1

0.2C

urre

nt (m

A)

Voltage (V vs. Li+/Li)

2D-TNO//LFPba

c

102 1.5x102 2x102 2.5x102 3x102101

102

103

104

2D-TNO//LFP

Pow

er d

ensi

ty (W

kg-1

)

Energy density (Wh kg-1)

d

Fig. S12 Electrochemical properties of full cell (2D-TNO//LFP): (a) CV curve at a scan rate of

0.1 mV s-1 at the second cycle; (b) Rate performance; (c) Charging/discharging curves at 0.2 C

and 2 C; (d) Ragone plot.

Page 11: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S11

200 400 600 800 10000

50

100

150

200

5 C 2D-TNO//LFP

Cap

acity

(mA

h g-1

)

Cycle number

0 50 100 150 200 250 300 350 4000

50

100

150

200

250

300

350

2 C 2D-TNO//LFP

Cap

acity

(mA

h g-1

)

Cycle numberb

a

Fig. S13 Cycling performance at 2 C (a) and 5 C (b) (inset: photos of LEDs powered by the

assembled full cell) of full cell (2D-TNO//LFP).

Page 12: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S12

Table S1. Simulated EIS results of the 0D/1D/2D/3D-TNO and 2D-TNO (solid state)

samples

Electrode Rs (Ω) Rct (Ω) DLi

0D-TNO 5.4 163.5 7.41x10-21

1D-TNO 3.8 75.2 2.24x10-20

2D-TNO 3.1 62.0 2.53x10-20

3D-TNO 4.6 80.6 1.41x10-20

2D-TNO (solid state) 5.2 110.1 9.15x10

-21

Table S2. Rate capacities and cycling performance of multidimensional TNO electrodes

Rate performance (mAh g-1

)

Cycling performance(at 10 C for 1000 cycles,

mAh g-1

)Electrode

0.5 C 1 C 2 C 5 C 10 C 20 C 40 C CapacityInitial

CapacityRetention

0D-TNO 204 191 184 171 158 139 97 152 96, 63.2%

1D-TNO 263 246 236 222 207 188 164 204 164, 80.4%

2D-TNO 264 254 244 231 217 197 171 216 177, 81.9%

3D-TNO 260 246 236 218 195 170 144 201 148, 73.6%

Page 13: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S13

Table S3. Capacitive contributions of multidimensional TNO electrodes at different scan

rates

Capacitive Contribution (%)

Electrode

0.2 mV s-1 0.4 mV s-1 0.7 mV s-1 1.1 mV s-1

0D-TNO 60% 67.1% 72% 79%

1D-TNO 80.8% 84.6% 87.2% 90.4%

2D-TNO 83.0% 85.7% 88.6% 92.3%

3D-TNO 78.5% 81.7% 84.4% 87.7%

Table S4. Electrochemical comparison of other Ti2Nb10O29 based electrodes for lithium ion

batteries

ElectrodesPreparation

Method

Rate

properties

(mAh g-1)

Capacity

Initial

(mAh g-1)

Capacity

Retention

(mAh g-1)

RateRef

Bulk Ti2Nb10O29

132 (20 C) 212 144 800th, 68% 10 C [1]

V-TNO 150 (10 mA cm-2) 230 220 30th, 95% 2 mA

cm-2 [2]

Ti2Nb10O27.1 180 (5 C) 198 180 80th, 91% 5 C [3]TNO/rGO 165 (2 C) 261 182 50th, 70% -- [4]

TNO/C

Solid-state reaction

Solid-state reaction

Solid-state reaction

Solid-state reaction

Solid-state reaction

145 (30 C) 204 194 100th, 95% 10 C [5]

TNO microspheres

Solvothermal method 59 (30 C) 197 185 200th,

94% 10 C [6]

Page 14: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S14

Mesoporous Ti2Nb10O29

microspheres

Solvothermal method 171 (30 C) 199 173.5 500th

86.8%10 C [7]

TiCr0.5Nb10.5

O29/CNTsHydrolysis

process 206 (20 C) 230 218 100th

95% 10 C [8]

Ti2Nb10O29

/AgSolid state reaction 132 (20 C) 175 142 100th

81% 10 C [9]

Table S5. Rate capacities of 2D-TNO electrode in solid-state batteries

Rate performanceElectrode

0.2 C 0.5 C 1 C 2 C 5 C 10 C 20 C

2D-TNO 244 235 227 216 199 186 159

Table S6. Cycling performance of 2D-TNO electrode in solid-state batteries

Cycling performance

2D-TNOElectrode Capacity

Initial (mAh g-1)Capacity

Retention (mAh g-1)Retention

Rate

1 C (300 cycles) 265 192 72.4%

2 C (500 cycles) 261 174 66.7%

5 C (1000 cycles) 238 146 61.3%

10 C (1000 cycles) 235 128 54.5%

Page 15: Electronic Supplementary Information for Both Liquid & Solid ...S1 Electronic Supplementary Information Bioinspired Large-scale Production of Multidimensional High-rate Anodes for

S15

Reference

[1] Q. Cheng, J. Liang, Y. Zhu, L. Si, C. Guo, Y. Qian, J. Mater. Chem. A 2014, 2, 17258.

[2] T. Takashima, T. Tojo, R. Inada, Y. Sakurai, J. Power Sources 2015, 276, 113.

[3] C. Lin, S. Yu, H. Zhao, S. Wu, G. Wang, L. Yu, Y. Li, Z. Z. Zhu, J. Li, S. Lin, Sci. Rep.

2015, 5, 17836.

[4] G. Liu, B. Jin, K. Bao, Y. Liu, H. Xie, M. Hu, R. Zhang, Q. Jiang, Int. J. Hydrogen Energy

2017, 42, 22965.

[5] W. L. Wang, B.-Y. Oh, J.-Y. Park, H. Ki, J. Jang, G.-Y. Lee, H.-B. Gu, M.-H. Ham, J.

Power Sources 2015, 300, 272.

[6] G. Liu, B. Jin, R. Zhang, K. Bao, H. Xie, J. Guo, M. Wei, Q. Jiang, Int. J. Hydrogen

Energy 2016, 41, 14807.

[7] X. Liu, M. Liu, Y. Hu, M. Hu, X. Duan, G. Liu and J. Ma, Ceram. Int., 2019, 45, 3574-

3581.

[8] L. Hu, R. Lu, L. Tang, R. Xia, C. Lin, Z. Luo, Y. Chen and J. Li, J. Alloys Compd., 2018,

732, 116-123.

[9] W. Mao, K. Liu, G. Guo, G. Liu, K. Bao, J. Guo, M. Hu, W. Wang, B. Li, K. Zhang and Y.

Qian, Electrochim. Acta, 2017, 253, 396-402.