electronic structure, spectroscopic (ir, raman, uv-vis

23
Research Article Electronic Structure, Spectroscopic (IR, Raman, UV-Vis, NMR), Optoelectronic, and NLO Properties Investigations of Rubescin E (C 31 H 36 O 7 ) Molecule in Gas Phase and Chloroform Solution Using Ab Initio and DFT Methods Richard Arnaud Yossa Kamsi , 1,2 Geh Wilson Ejuh , 2,3,4 Fidèle Tchoffo, 1 Pierre Mkounga, 5 and Jean-Marie Bienvenu Ndjaka 1,2 1 University of Yaounde I, Faculty of Science, Department of Physics, P.O. Box 812, Yaounde, Cameroon 2 CETIC (Centre d’Excellence Africain en Technologies de l’Information et de la Communication), Universit´ e de Yaound´ e I, B.P. 8390, Yaound´ e, Cameroon 3 University of Bamenda, National Higher Polytechnic Institute, Department of Electrical and Electronic Engineering, P. O. Box 39, Bambili, Cameroon 4 University of Dschang, IUT Bandjoun, Department of General and Scientific Studies, P.O. Box 134, Bandjoun, Cameroon 5 University of Yaounde I, Faculty of Science, Department of Chemistry, P.O. Box 812, Yaounde, Cameroon Correspondence should be addressed to Richard Arnaud Yossa Kamsi; [email protected] Received 12 October 2018; Accepted 28 November 2018; Published 2 January 2019 Academic Editor: J¨ org Fink Copyright © 2019 Richard Arnaud Yossa Kamsi et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Quantum chemical methods were used to study the electronic structure and some physicochemical properties of Rubescin E molecule. Good agreement with experiment was found for 3 J H-H coupling constant, IR, 1 H NMR, and 13 C NMR. e excitation energy and oscillator strength calculated by TD-DFT also complement with experiment. Large values were obtained for dipole moment, polarizability, first static hyperpolarizability, electric susceptibility, refractive index, and dielectric constant, meaning that Rubescin E has strong optical and phonon application and can be a good candidate as NLOs material. e 3D analysis of the title molecule leads us to the conclusion that electron can easily be transferred from furan to tetrahydrofuran ring. e global reactivity descriptors were evaluated. Mulliken, ESP, and NBO charges comparisons were carried out and described. 1. Introduction Many molecules from plant research were found nowadays to have application in the field of medicine, where there are use for the treatment of many diseases among which we found malaria caused by plasmodium falciparum. e new limonoid name Rubescin E (C 31 H 36 O 7 ), extracted from the roots of Trichilia Rubescens, collected from Cameroon, has been evaluated against erythrocytic stages of strain 3D7 plasmodium falciparum and also exhibited significant antiplasmodial in vitro activity with IC 50 value of 1.13M [1]. e FT-IR performed on Rubescin E molecule revealed the presence of , -unsaturated carbonyl moiety at 1720 cm −1 and 1664 cm −1 . ese values can be obtained theoretically by performing the vibrational frequencies calculation on the title molecule and used to explain the different motion of atoms or group of atoms in a molecular system. e 1D ( 1 H, 13 C NMR) and 2D NMR spectra were run on a Bruker AV spectrometer [1] in order to predict the structure of the title molecule and were done in this work in order to take out similarities between experiment done previously and theoretical calculation performed here. In this work, quantum chemical calculation was per- formed in order to take out the electronic structure (energy Hindawi Advances in Condensed Matter Physics Volume 2019, Article ID 4246810, 22 pages https://doi.org/10.1155/2019/4246810

Upload: others

Post on 29-Apr-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Research ArticleElectronic Structure Spectroscopic (IR Raman UV-Vis NMR)Optoelectronic and NLO Properties Investigations of RubescinE (C31H36O7) Molecule in Gas Phase and Chloroform SolutionUsing Ab Initio and DFT Methods

Richard Arnaud Yossa Kamsi 12 GehWilson Ejuh 234 Fidegravele Tchoffo1

Pierre Mkounga5 and Jean-Marie Bienvenu Ndjaka 12

1University of Yaounde I Faculty of Science Department of Physics PO Box 812 Yaounde Cameroon2CETIC (Centre drsquoExcellence Africain en Technologies de lrsquoInformation et de la Communication)Universite de Yaounde I BP 8390 Yaounde Cameroon3University of Bamenda National Higher Polytechnic Institute Department of Electrical and Electronic EngineeringP O Box 39 Bambili Cameroon4University of Dschang IUT Bandjoun Department of General and Scientific Studies PO Box 134 Bandjoun Cameroon5University of Yaounde I Faculty of Science Department of Chemistry PO Box 812 Yaounde Cameroon

Correspondence should be addressed to Richard Arnaud Yossa Kamsi richardkamsiyahoofr

Received 12 October 2018 Accepted 28 November 2018 Published 2 January 2019

Academic Editor Jorg Fink

Copyright copy 2019 Richard Arnaud Yossa Kamsi et al This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

Quantum chemical methods were used to study the electronic structure and some physicochemical properties of Rubescin Emolecule Good agreement with experiment was found for 3JH-H coupling constant IR 1H NMR and 13C NMR The excitationenergy and oscillator strength calculated by TD-DFT also complement with experiment Large values were obtained for dipolemoment polarizability first static hyperpolarizability electric susceptibility refractive index and dielectric constant meaning thatRubescin E has strong optical and phonon application and can be a good candidate as NLOs material The 3D analysis of the titlemolecule leads us to the conclusion that electron can easily be transferred from furan to tetrahydrofuran ringThe global reactivitydescriptors were evaluated Mulliken ESP and NBO charges comparisons were carried out and described

1 Introduction

Many molecules from plant research were found nowadaysto have application in the field of medicine where thereare use for the treatment of many diseases among whichwe found malaria caused by plasmodium falciparum Thenew limonoid name Rubescin E (C31H36O7) extracted fromthe roots of Trichilia Rubescens collected from Cameroonhas been evaluated against erythrocytic stages of strain3D7 plasmodium falciparum and also exhibited significantantiplasmodial in vitro activity with IC50 value of 113120583M [1]The FT-IR performed on Rubescin E molecule revealed the

presence of 120572 120573-unsaturated carbonyl moiety at 1720 cmminus1and 1664 cmminus1 These values can be obtained theoreticallyby performing the vibrational frequencies calculation on thetitle molecule and used to explain the different motion ofatoms or group of atoms in a molecular system The 1D(1H 13C NMR) and 2D NMR spectra were run on a BrukerAV spectrometer [1] in order to predict the structure ofthe title molecule and were done in this work in order totake out similarities between experiment done previously andtheoretical calculation performed here

In this work quantum chemical calculation was per-formed in order to take out the electronic structure (energy

HindawiAdvances in Condensed Matter PhysicsVolume 2019 Article ID 4246810 22 pageshttpsdoiorg10115520194246810

2 Advances in Condensed Matter Physics

gap charge distributions NLO properties vibrational fre-quencies NMR and UV-vis calculation) and some physico-chemical properties (3JH-H chemical coupling-coupling con-stant the global reactivity descriptors and some geometricalparameters such as bonds lengths and bonds angles) ofRubescin E molecule To the best of our knowledge notheoretical studywas performed yet on the titlemolecule thatis what motivated us to investigate the electronic structurethe spectroscopic and some physicochemical propertiesof Rubescin E molecule Except for NMR UV-vis 3JH-Hchemical coupling-coupling constant and the vibrationalfrequencies obtained for the two 120572 120573-unsaturated carbonylmoiety most of our results were not compared and weare optimistic that it can be used as threshold for futureexperimental or theoretical research Hartree Fock andDFT (using B3LYP and B3PW91 functionals) methods wereused for these purposes These properties were calculatedby employing the triple split valence basis set along withpolarization functions with and without diffuse functions asimplemented in Gaussian 09 Rev A02 in both gas phase andin a solution of chloroformThe methods and basis sets usedare among the most widely used [2ndash5] and provide excellentresults which are generally very close to experiments [6ndash8]

2 Computational Methods

Theoretical calculations were performed on Rubescin Eusing HF and DFT methods at the B3LYP and B3PW91levels as implemented in Gaussian 09W code [9] All thesecalculations were done in gas phase and in a solution ofchloroform No geometry restriction was applied duringthe optimization procedure The solvent effects were treatedwithin the conductor-like polarizable continuum model(CPCM) For the geometry optimization the 6-311G(dp) and6-311++G(dp) basis set were used in both gas and solventConvergence criteria in which both the maximum force anddisplacement are smaller than the cut-off of 0000015 and0000060 and RMS force and displacement less than thecut-off values of 0000010 and 0000040 were used in thecalculations in order to increase the accuracy of our resultsThe chemical 3JH-H proton-proton coupling constant func-tion of angle between two C-H vectors was calculated fromthe optimization output using the original Karplus equation[10] The optimized form of our molecule was then used todetermine the global reactivity descriptors electronic andNLOs properties The net charges were also evaluated usingMPA ESP and NBOs methods at the three levels mentionedabove and all this was done in both gas phase and chloroformwith the 6-311++G(dp) basis set In order to confirm thestability of our molecule the vibrational frequencies (IR andRaman) were evaluated at the 6-311G(dp) and no imaginaryfrequencies were found leading us to the results that ourmolecule was stable at the levels and basis set consideredThetime dependent density functional theory (TD-DFT) fieldwas used in gas phase with the 6-311++G(dp) basis in orderto understand the electronic transition of our molecule andthe obtained results were compared to experimentTheGIAO(gauge independent atomic orbital) method was used on theoptimized form of our molecule in a solution of chloroform

to determine the 1H and 13C NMR spectra parameters at thethree levels and with the 6-311++G(dp) basis set In orderto compare the calculated values of 1H and 13C chemicalshift with experimental results the reference and widelyusedmolecule TMS (tetramethylsilane) for this purpose wereexploited at the same level at the same phase and with thesame basis set

3 Results and Discussion

31 Optimized Structure The optimized geometry ofRubescin E obtained using the B3LYP6-311++G(dp)method in chloroform is shown in Figure 1 The value ofthe total electronic energy of the molecule obtained at theB3LYP shows that Figure 1 is the most stable structure of themolecule The total electronic energy calculated within thetwo methods in gas and in a solution of chloroform with the6-311++G(dp) is given in Table 1

32 Structural Properties A part of the optimized geometri-cal parameters (bond length bond angle) and total electronicenergy of the title molecule both in gas and in a solution ofchloroform are given in Table 1 using the three levels andwith the 6-311++G(dp) basis set The total description of themolecular geometry of Rubescin Emolecule in gas phase andin a solution of chloroform using ab initio (RHF) and DFT(B3LYP and B3PW91) methods with the 6-311++G(dp) basisset can be obtained from Supplementary Material S1

The atom numbering scheme adopted for this purposeis the same as in Figure 1 The energy differences betweenthe two used phases increase when we move from B3PW91to B3LYP and to RHF and are found to be approximatively048 eV 049 eV and 057 eV respectively The optimizedbond length and bond angle of Rubescin E are also listedin Table 1 with some specific experimental values [12ndash14]found in the literature for some groups of compounds suchas furan ethylene oxide and tetrahydrofuran present in ourmolecule It can be observed fromTable 1 that the values of thebond length obtained at B3LYP are slightly higher than thoseobtained at the B3PW91 level These differences are foundbetween 00034 A and 00107 A for C-C 00061 A and 00095A for C-O and 00007 A and 00013 A for C=C in gas phaseThe value of C=O bond length is better at the DFT methodssince its values are closer to 210 A found in literature [11] Itcan also been observed that the calculated bonds length usingHartree Fock and DFT methods are very close to the valuesfound in literature for the specific groups of compoundspresent in our molecule These observed differences variedfrom 00012 A at the B3LYP level to 00363 A at the RHF levelfrom 00002 A at the B3PW91 level to 00288 A at the B3LYPlevel and from 00019 A at the B3LYP level to 00259 A at theRHF level for C-C C-O and C=C bonds both in gas phaseand in chloroform solution respectively

The bonds angles of the studied molecule are slightlydifferent when we move from one phase to another at eachlevel with larger values obtained at the RHF level From ourresults it can be seen that the C-C-C bond angle varies from963773∘ to 1293418∘ from 966032∘ to 1288385∘ and from964146∘ to 1287371∘ at the gas phase respectively at the RHF

Advances in Condensed Matter Physics 3

Table 1 Optimized geometric parameters in gas phase and in chloroform solution of Rubescin E at the RHF B3LYP and B3PW91 level withthe 6-311++G (dp) basis sets

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

Bond lengthR1 (C1-C2) 15503 15490 15603 15583 15521 15500R2 (C1-C3) 15698 15672 15811 15777 15719 15684R3 (C1-C20) 15167 15157 15221 15215 15153 15147R4 (C1-C22) 15474 15481 15510 15509 15439 15438R5 (C2=O7) 11900 11948 12167 12213 12152 12197 210bR6 (C2-C34) 15041 14992 14966 14910 14920 14867R7 (C3-C4) 15898 15887 15973 15968 15866 15860R8 (C3-C40) 14814 14800 14972 14958 14931 14918 1462bR9 (C3-O59) 13994 14024 14311 14335 14236 14256 1428bR10 (C4-C5) 15515 15518 15549 15548 15473 15471R11 (C4-C12) 15707 15733 15756 15787 15676 15707R12 (C4-C36) 15501 15503 15543 15543 15471 15472R13 (C5-C6) 15428 15442 15477 15487 15401 15410R14 (C5-C46) 14556 14553 14720 14717 14686 14684 1462bR15 (C5-O61) 14206 14235 14568 14590 14473 14492 1428bR16 (C6-C26) 15259 15260 15306 15307 15246 15248R17 (C6-C42) 15352 15350 15373 15373 15298 15298R18 (C6-C51) 15703 15708 15810 15814 15724 15728R19 (C8-C16) 15423 15424 15477 15481 15405 15408R20 (C8-C20) 15256 15244 15348 15335 15276 15264 1536cR21 (C8-C29) 15405 15402 15479 15468 15416 15406 1536cR22 (C8-C32) 15036 15036 15010 15010 14958 14960R23 (C9-O11) 14120 14133 14389 14411 14304 14324 1428cR24 (C9-C12) 15288 15302 15357 15373 15311 15329R25 (C9-C20) 14997 14993 15044 15042 14999 14998 1536cR26 (O11-C29) 14261 14287 14530 14551 14438 14457 1428cR27 (C12-O60) 14104 14131 14339 14369 14255 14283R28 (C14-C51) 15035 15041 15003 15010 14953 14959R29 (C14-C53) 14493 14505 14428 14438 14387 14397 1430aR30 (C14=C57) 13411 13410 13621 13619 13614 13614 1364aR31 (O15-C55) 13382 13412 13609 13638 13548 13574 1364aR32 (O15-C57) 13467 13496 13659 13686 13592 13616 1364aR33 (C26-C40) 15162 15158 15190 15181 15137 15129R34 (C32=C34) 13270 13285 13431 13445 13422 13436R35 (C40-O59) 14010 14054 14353 14395 14282 14320 1428bR36 (C46-C48) 15086 15076 15135 15123 15088 15077R37 (C46-O61) 14005 14051 14326 14376 14254 14297 1428bR38 (C48-C51) 15407 15405 15478 15475 15408 15405R39 (C53=C55) 13381 13381 13567 13567 13559 13559 1364aR40 (O60-C62) 13485 13397 13805 13700 13743 13650R41 (C62-C63) 15033 15030 14998 15000 14956 14952R42 (C62=O65) 11810 11873 12059 12113 12046 12098R43 (C63=C64) 13222 13230 13402 13403 13394 13398R44 (C63-C71) 15153 15159 15127 15135 15071 15083

4 Advances in Condensed Matter Physics

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

R45 (C64-C67) 15001 15002 14954 14959 14898 14901Bond anglesA1 (C2-C1-C3) 1153869 1151538 1153519 1150591 1153042 1149661A2 (C2-C1-C20) 1049116 1052360 1048861 1053058 1050195 1054353A3 (C2-C1-C22) 1046632 1048093 1048467 1050548 1047619 1050065A4 (C3-C1-C20) 1054487 1049239 1060693 1053428 1059491 1051727A5 (C3-C1-C22) 1100598 1104677 1093407 1099326 1094774 1101062A6 (C20-C1-C22) 1166507 1165134 1166409 1164160 1166212 1164196A7 (C1-C2-O7) 1226712 1221731 1225890 1220461 1226012 1220599A8 (C1-C2-C34) 1188294 1190297 1185520 1188580 1185112 1188095A9 (O7-C2-C34) 1183115 1186060 1186750 1189135 1186899 1189368A10 (C1-C3-C4) 1174677 1172546 1175179 1173499 1174703 1172908A11 (C1-C3-C40) 1204116 1203391 1205229 1203696 1204781 1203201A12 (C1-C3-O59) 1135239 1136346 1132288 1134708 1132740 1135007A13 (C4-C3-C40) 1197989 1198618 1196777 1197275 1197605 1198264A14 (C4-C3-O59) 1109192 1113348 1106687 1110566 1107288 1111433A15 (C3-C4-C5) 1082815 1080767 1085292 1083020 1084460 1081898A16 (C3-C4-C12) 1169097 1169148 1166545 1168466 1168336 1170260A17 (C3-C4-C36) 1073533 1075825 1072145 1073890 1072213 1073820A18 (C5-C4-C12) 1109502 1112590 1108879 1111131 1110310 1113284A19 (C5-C4-C36) 1082096 1083900 1082857 1085557 1080890 1083471A20 (C12-C4-C36) 1047402 1042361 104883 1042585 1047988 1041530A21 (C4-C5-C6) 1223963 1225160 1222095 1222513 1222181 1222697A22 (C4-C5-C46) 1261434 1260858 1262488 1261993 1261315 1260739A23 (C4-C5-O61) 1137557 1135947 1137382 1136922 1140173 1139553A24 (C6-C5-C46) 1084092 1084312 1082407 1082667 1082513 1082900A25 (C6-C5-O61) 1093436 1091575 1097850 1096384 1096935 1095481A26 (C5-C6-C26) 1069225 1071323 1071725 1073025 1071359 1072931A27 (C5-C6-C42) 1147934 1148607 1144807 1145006 1145313 1145541A28 (C5-C6-C51) 1018612 1018830 1019281 1020115 1018916 1019777A29 (C26-C6-C42) 1088679 1086162 1091102 1089149 1091443 1089314A30 (C26-C6-C51) 1138205 1138653 1139931 1140014 1139406 1139367A31 (C42-C6-C51) 1105307 1104727 1101102 1100888 1101443 1101222A32 (C16-C8-C20) 1178467 1178806 1175220 1175381 1173986 1173974A33 (C16-C8-C29) 1083950 1085431 1084117 1085195 1085270 1086672A34 (C16-C8-C32) 1095455 1094283 1095034 1093293 1096190 1094415A35 (C20-C8-C29) 963773 964321 966032 966193 964146 964285 1015cA36 (C20-C8-C32) 1063315 1062487 1064280 1063876 106432 1063732A37 (C29-C8-C32) 1182843 1182659 1183155 1184200 1183462 1184575A38 (O11-C9-C12) 1132108 1131065 1132048 1132060 1131493 1131724A39 (O11-C9-C20) 1033360 1031494 1038285 1036622 1038971 1037399 1040cA40 (C12-C9-C20) 1092549 1094574 1087908 1089954 1084814 1086640A41 (C9-O11-C29) 1111841 1112217 1098976 1099018 1098190 1098362 1106cA42 (C4-C12-C9) 1104259 1106951 1100123 1103980 1098110 1101418A43 (C4-C12-O60) 1111499 1114570 1109644 1114849 1113257 1119073

Advances in Condensed Matter Physics 5

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

A44 (C9-C12-O60) 1090864 1087044 1087314 1082508 1084512 1079972A45 (C51-C14-C53) 126042 1260928 1261043 1261692 1262986 1263771A46 (C51-C14-C57) 1293418 1291716 1288385 1286558 1287371 1285448A47 (C53-C14-C57) 1045893 1047043 1050493 1051666 1049597 1050728 10614aA48 (C55-O15-C57) 1071084 1071499 1067602 1068013 1068133 1068678 10674aA49 (C1-C20-C8) 1211479 1210073 1209097 1207705 1209914 1208439A50 (C1-C20-C9) 1187226 1185220 1187478 1183732 1186818 1182898A51 (C8-C20-C9) 1038120 1039439 1042023 1043600 1040389 1042216 1044cA52 (C6-C26-C40) 1114945 1116304 1114804 1115216 1114199 1114969A53 (C8-C29-O11) 1044386 1044819 1046594 104594 1046712 1046043 1075cA54 (C8-C32-C34) 1204664 1204528 1205688 1204387 1204312 1202925A55 (C2-C34-C32) 1252907 1249802 1255569 1252584 1255114 1251913A56 (C3-C40-C26) 1247594 1251561 1243752 1247373 1243541 1247241A57 (C26-C40-O59) 1161404 1159652 1160868 1160753 1159905 1159607A58 (C5-C46-C48) 1100006 1100212 1098202 1098537 1096430 1096699A59 (C48-C46-O61) 1115740 1115456 1117313 1117203 1118859 1118641A60 (C46-C48-C51) 1026704 1027788 1028570 1030253 1026915 1028703A61 (C6-C51-C14) 1168638 1168705 1166829 1166156 1163993 1163329A62 (C6-C51-C48) 1044966 1045425 1042867 1043539 1043511 1044332A63 (C14-C51-C48) 1149685 1148714 1152826 1151809 1152757 1151468A64 (C14-C53-C55) 1061668 1062381 1067966 1068606 1066618 1067168 10614aA65 (O15-C55-C53) 1107484 1106455 1103339 1102350 1104305 1103331 11049aA66 (C14-C57-O15) 1113857 1112607 1110591 1109356 1111339 1110086 11049aA67 (C12-O60-C62) 1231805 1234264 1224520 1222629 1218099 1215920A68 (O60-C62-C63) 1183342 1191473 1186681 1194932 1186273 1193485A69 (O60-C62-O65) 1183753 1179395 1175454 1171467 1176414 1172568A70 (C63-C62-O65) 1230766 1226884 1234720 1230718 1234069 1231015A71 (C62-C63-C64) 1169655 1171950 1162922 1167661 1161754 1166519A72 (C62-C63-C71) 1178479 1173833 1194971 1185815 1197175 1190158A74 (C64-C63-C71) 1250717 1252904 1241105 1245124 1239876 1241815A75 (C63-C64-C67) 1272664 1272197 1272301 1272514 1269123 1267855Total energy (Hartree) -171915539 -171917648 -172982917 -172984726 -172917724 -172919498

B3LYP and B3PW91 level of the theory In CDCl3 the C-C-C bond angles are similar to those obtained at the gasphase The smallest value of C-C-C bond angle was C20-C8-C29 bond angle and the largest C51-C14-C57 bond angle Forthe C-C-O angle the smallest value was 1044386∘ obtainedat the RHF and the largest value was 123472∘ obtained at theB3LYP level both in the gas phaseTheC-O-C bond angle wasfound between 1071084∘ and 1234264∘ obtained at the RHFlevel These bonds angles compared to some known valuesfound in literature [12 14] for specific compound present inour structure show good similaritiesThe little differences arefound between 00268∘ and 15507∘ for C-C-C bond between00595∘ and 30614∘ for C-C-O bond and between 00202∘and 0781∘ for C-O-C bond These observed differences aredue to the fact that these groups of compounds were notisolated

33 Calculated 3119869119867-119867 Coupling Constant The chemical 3JH-Hproton-proton coupling constant was calculated using theoriginal Karplus [10] equation in gas and solvent and itsresults compared to experimental values [1] obtained byextracting Rubescin E in a solution of chloroform From ourresults we found that the calculated parameters both in gasand in chloroform are all similar at all the levels used Theseobtained results are also very close to experiment As pre-dicted in literature [10] we observed from Table 2 that whenthe angles between the two C-H vectors are close enough to00 or 1800 the value of 3JH-H coupling constant is greater (with31198691800 gt 311986900) and is very small when the angle is close to 900

34 Electronic Properties341 Mulliken ESP and Natural Charge Distribution TheMulliken atomic charges of our molecule calculated at all

6 Advances in Condensed Matter Physics

Figure 1 Ground state geometry of Rubescin E at B3LYP6-311++G(dp) in chloroform solution

the levels in gas phase and chloroform show positive chargefor all the hydrogen atoms The net charge on all theatoms varies from -1109653e to 1980512e from -1164916eto 1904034e and from -0891775e to 1524787e respectivelyin gas phase at the RHF B3PW91 and B3LYP levels In asolution of chloroform the charges varied from -1064962e to1826589e from -1206706e to 1904292e and from -0945041eto 1550492e with some oxygen atoms charges being positiveand can be explained by the fact that the oxygen is related toextremely negative carbon atoms The most positive chargeatoms are C63 C5 C8 and the most negative charge atoms areC71 C62 C67

The electrostatic charges were evaluated in this workusing the CHelpG scheme of Breneman model We foundfrom our results that the most positive charges atom is C4followed by C62 and C2 and the most negative charge atom isC12 followed by C5 and C7 The observation made at all levelsand basis set in gas phase and in a solution of chloroform isthat the most positive charge atoms are directly related to themost negative charge atoms

The natural atomic charges obtained using the naturalbonding orbitalmethodwere also used to evaluate the atomiccharge of Rubescin E Positive and negative charges werefound for all hydrogen and oxygen atoms respectively Inthis case all carbon atoms directly linked to hydrogen atomswere found to have negative charges except for those linked tooxygen atomsThemost negative charge atom was calculatedusing HF method and was observed for O65 (-069456e) andO60 (-068330e) respectively in chloroform and gas phaseThemost positive charge atomwas found to beC62 in both gas(097067e 080601e and 081407e respectively at the RHF

B3PW91 and B3LYP levels) and solvent (098887e 081804eand 082650e respectively at the RHF B3PW91 and B3LYPlevels) this is due to the fact that C62 is related to negativecharge atoms (O65 O60 and C63) Mulliken electrostatic andnatural atomic charge distributions are graphically shown inFigure 2 From Figure 2 one can observe that for almost allthe methods used for charge description the most positiveand negative charge atoms were calculated at the RHF levelin both gas and chloroform and this is due to the fact thatthe effect of electron correlation is not well described in HFmethod

342 Global Reactivity Descriptors In order to understandthe relationships between structure stability and reactivity ofRubescin Emolecule the global reactivity descriptors param-eters such as chemical hardness (H) chemical potential (120583119888119901)chemical softness (s) electronegativity (119883) and electrophilic-ity index (120596) were calculated The finite difference equationgiven by (1) was used to calculate the ionization potentialand electron affinity which are generally used to calculate theabove cited parameters

119868119875 = 119864119902=119873+1 minus 119864119902=119873119864119860 = 119864119902=119873 minus 119864119902=119873minus1

(1)

The IP and EA calculated from (1) were then used to calculate119867 120583119888119901 s119883 and120596 using equations found in the literature [15ndash17] All these parameters calculated using the twomethods ingas phase are presented in Table 3 A high value of 120583119888119901 and 120596characterizes a good electrophile while a small value standsfor good nucleophile

Advances in Condensed Matter Physics 7

Table2Ex

perim

entaland

calculated3J H

-Hproton

-protoncoup

lingconstant

ofRu

bescin

Ein

gasp

hase

andin

chloroform

solutio

n

PARA

MET

ERS

RHF

B3LY

PB3

PW91

EXP[1]

Gaz

CDCl3

Gaz

CDCl3

Gaz

CDCl3

Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)H10-C9-C12-H13

455506

620

438143

649

4813

93579

459537

614

4832

85576

4616

62610

40

H10-C9-C20-H21

1695

395

1265

1698

194

1267

168824

1261

168658

1259

1685

1258

1682201

1256

120

H27-C26-C40-H41

-110

718

1065

-120311

1059

-101794

1070

-1089

1066

-104324

1069

-112

981064

65

H28-C26-C40-H41

1053029

296

103995

283

1063433

307

1053319

296

1061668

305

10496

4292

13H33-C32-C34-H35

-02873

11-012

311

-05893

11-0366

11-0566

11-033

3111

100

H47-C46-C48-H49

-613

614

382

-611286

385

-619

356

374

-618

438

375

-615

482

379

-614

875

380

42

H47-C46-C48-H50

5874

37417

587503

417

580428

427

578579

430

5853

4420

58304

4424

42

H49-C48-C51-H52

-425704

669

-421786

675

-439616

646

-433642

656

-445718

636

-439227

647

42

H50-C48-C51-H52

-164

093

1221

-163817

1218

-16522

1232

-164

673

1227

-165874

1237

-165259

1232

11H54-C53-C55-H56

-03838

11-02856

11-032

7511

-02429

11-039

2111

-03074

11H66-C64-C67-H68

-177906

1299

-177979

1299

17846

741299

1787874

131784147

1299

178548

1299

H66-C64-C67-H69

-569125

443

-569428

443

-603746

395

-599

903

4-6040

07395

-601923

397

70H66-C64-C67-H70

606324

391

604696

394

566811

447

56944

9442

566504

447

567234

446

70

8 Advances in Condensed Matter Physics

05

minus15

minus10

minus05

0

05

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

minus15

minus10

minus05

0

05

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Mul

liken

char

ges

Mul

liken

char

ges

Chloroform

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

ESP

char

ges

ESP

char

ges

Chloroform

minus10

minus05

0

05

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Chloroform

minus10

minus05

0

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Nat

ural

atom

ic ch

arge

s

Nat

ural

atom

ic ch

arge

s

Gas

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

Figure 2 Charge distribution on Rubescin E calculated at the RHF B3PW91 and B3LYP levels in both gas phase and chloroform solutionand with the 6-311++G(dp) basis set

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 2: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

2 Advances in Condensed Matter Physics

gap charge distributions NLO properties vibrational fre-quencies NMR and UV-vis calculation) and some physico-chemical properties (3JH-H chemical coupling-coupling con-stant the global reactivity descriptors and some geometricalparameters such as bonds lengths and bonds angles) ofRubescin E molecule To the best of our knowledge notheoretical studywas performed yet on the titlemolecule thatis what motivated us to investigate the electronic structurethe spectroscopic and some physicochemical propertiesof Rubescin E molecule Except for NMR UV-vis 3JH-Hchemical coupling-coupling constant and the vibrationalfrequencies obtained for the two 120572 120573-unsaturated carbonylmoiety most of our results were not compared and weare optimistic that it can be used as threshold for futureexperimental or theoretical research Hartree Fock andDFT (using B3LYP and B3PW91 functionals) methods wereused for these purposes These properties were calculatedby employing the triple split valence basis set along withpolarization functions with and without diffuse functions asimplemented in Gaussian 09 Rev A02 in both gas phase andin a solution of chloroformThe methods and basis sets usedare among the most widely used [2ndash5] and provide excellentresults which are generally very close to experiments [6ndash8]

2 Computational Methods

Theoretical calculations were performed on Rubescin Eusing HF and DFT methods at the B3LYP and B3PW91levels as implemented in Gaussian 09W code [9] All thesecalculations were done in gas phase and in a solution ofchloroform No geometry restriction was applied duringthe optimization procedure The solvent effects were treatedwithin the conductor-like polarizable continuum model(CPCM) For the geometry optimization the 6-311G(dp) and6-311++G(dp) basis set were used in both gas and solventConvergence criteria in which both the maximum force anddisplacement are smaller than the cut-off of 0000015 and0000060 and RMS force and displacement less than thecut-off values of 0000010 and 0000040 were used in thecalculations in order to increase the accuracy of our resultsThe chemical 3JH-H proton-proton coupling constant func-tion of angle between two C-H vectors was calculated fromthe optimization output using the original Karplus equation[10] The optimized form of our molecule was then used todetermine the global reactivity descriptors electronic andNLOs properties The net charges were also evaluated usingMPA ESP and NBOs methods at the three levels mentionedabove and all this was done in both gas phase and chloroformwith the 6-311++G(dp) basis set In order to confirm thestability of our molecule the vibrational frequencies (IR andRaman) were evaluated at the 6-311G(dp) and no imaginaryfrequencies were found leading us to the results that ourmolecule was stable at the levels and basis set consideredThetime dependent density functional theory (TD-DFT) fieldwas used in gas phase with the 6-311++G(dp) basis in orderto understand the electronic transition of our molecule andthe obtained results were compared to experimentTheGIAO(gauge independent atomic orbital) method was used on theoptimized form of our molecule in a solution of chloroform

to determine the 1H and 13C NMR spectra parameters at thethree levels and with the 6-311++G(dp) basis set In orderto compare the calculated values of 1H and 13C chemicalshift with experimental results the reference and widelyusedmolecule TMS (tetramethylsilane) for this purpose wereexploited at the same level at the same phase and with thesame basis set

3 Results and Discussion

31 Optimized Structure The optimized geometry ofRubescin E obtained using the B3LYP6-311++G(dp)method in chloroform is shown in Figure 1 The value ofthe total electronic energy of the molecule obtained at theB3LYP shows that Figure 1 is the most stable structure of themolecule The total electronic energy calculated within thetwo methods in gas and in a solution of chloroform with the6-311++G(dp) is given in Table 1

32 Structural Properties A part of the optimized geometri-cal parameters (bond length bond angle) and total electronicenergy of the title molecule both in gas and in a solution ofchloroform are given in Table 1 using the three levels andwith the 6-311++G(dp) basis set The total description of themolecular geometry of Rubescin Emolecule in gas phase andin a solution of chloroform using ab initio (RHF) and DFT(B3LYP and B3PW91) methods with the 6-311++G(dp) basisset can be obtained from Supplementary Material S1

The atom numbering scheme adopted for this purposeis the same as in Figure 1 The energy differences betweenthe two used phases increase when we move from B3PW91to B3LYP and to RHF and are found to be approximatively048 eV 049 eV and 057 eV respectively The optimizedbond length and bond angle of Rubescin E are also listedin Table 1 with some specific experimental values [12ndash14]found in the literature for some groups of compounds suchas furan ethylene oxide and tetrahydrofuran present in ourmolecule It can be observed fromTable 1 that the values of thebond length obtained at B3LYP are slightly higher than thoseobtained at the B3PW91 level These differences are foundbetween 00034 A and 00107 A for C-C 00061 A and 00095A for C-O and 00007 A and 00013 A for C=C in gas phaseThe value of C=O bond length is better at the DFT methodssince its values are closer to 210 A found in literature [11] Itcan also been observed that the calculated bonds length usingHartree Fock and DFT methods are very close to the valuesfound in literature for the specific groups of compoundspresent in our molecule These observed differences variedfrom 00012 A at the B3LYP level to 00363 A at the RHF levelfrom 00002 A at the B3PW91 level to 00288 A at the B3LYPlevel and from 00019 A at the B3LYP level to 00259 A at theRHF level for C-C C-O and C=C bonds both in gas phaseand in chloroform solution respectively

The bonds angles of the studied molecule are slightlydifferent when we move from one phase to another at eachlevel with larger values obtained at the RHF level From ourresults it can be seen that the C-C-C bond angle varies from963773∘ to 1293418∘ from 966032∘ to 1288385∘ and from964146∘ to 1287371∘ at the gas phase respectively at the RHF

Advances in Condensed Matter Physics 3

Table 1 Optimized geometric parameters in gas phase and in chloroform solution of Rubescin E at the RHF B3LYP and B3PW91 level withthe 6-311++G (dp) basis sets

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

Bond lengthR1 (C1-C2) 15503 15490 15603 15583 15521 15500R2 (C1-C3) 15698 15672 15811 15777 15719 15684R3 (C1-C20) 15167 15157 15221 15215 15153 15147R4 (C1-C22) 15474 15481 15510 15509 15439 15438R5 (C2=O7) 11900 11948 12167 12213 12152 12197 210bR6 (C2-C34) 15041 14992 14966 14910 14920 14867R7 (C3-C4) 15898 15887 15973 15968 15866 15860R8 (C3-C40) 14814 14800 14972 14958 14931 14918 1462bR9 (C3-O59) 13994 14024 14311 14335 14236 14256 1428bR10 (C4-C5) 15515 15518 15549 15548 15473 15471R11 (C4-C12) 15707 15733 15756 15787 15676 15707R12 (C4-C36) 15501 15503 15543 15543 15471 15472R13 (C5-C6) 15428 15442 15477 15487 15401 15410R14 (C5-C46) 14556 14553 14720 14717 14686 14684 1462bR15 (C5-O61) 14206 14235 14568 14590 14473 14492 1428bR16 (C6-C26) 15259 15260 15306 15307 15246 15248R17 (C6-C42) 15352 15350 15373 15373 15298 15298R18 (C6-C51) 15703 15708 15810 15814 15724 15728R19 (C8-C16) 15423 15424 15477 15481 15405 15408R20 (C8-C20) 15256 15244 15348 15335 15276 15264 1536cR21 (C8-C29) 15405 15402 15479 15468 15416 15406 1536cR22 (C8-C32) 15036 15036 15010 15010 14958 14960R23 (C9-O11) 14120 14133 14389 14411 14304 14324 1428cR24 (C9-C12) 15288 15302 15357 15373 15311 15329R25 (C9-C20) 14997 14993 15044 15042 14999 14998 1536cR26 (O11-C29) 14261 14287 14530 14551 14438 14457 1428cR27 (C12-O60) 14104 14131 14339 14369 14255 14283R28 (C14-C51) 15035 15041 15003 15010 14953 14959R29 (C14-C53) 14493 14505 14428 14438 14387 14397 1430aR30 (C14=C57) 13411 13410 13621 13619 13614 13614 1364aR31 (O15-C55) 13382 13412 13609 13638 13548 13574 1364aR32 (O15-C57) 13467 13496 13659 13686 13592 13616 1364aR33 (C26-C40) 15162 15158 15190 15181 15137 15129R34 (C32=C34) 13270 13285 13431 13445 13422 13436R35 (C40-O59) 14010 14054 14353 14395 14282 14320 1428bR36 (C46-C48) 15086 15076 15135 15123 15088 15077R37 (C46-O61) 14005 14051 14326 14376 14254 14297 1428bR38 (C48-C51) 15407 15405 15478 15475 15408 15405R39 (C53=C55) 13381 13381 13567 13567 13559 13559 1364aR40 (O60-C62) 13485 13397 13805 13700 13743 13650R41 (C62-C63) 15033 15030 14998 15000 14956 14952R42 (C62=O65) 11810 11873 12059 12113 12046 12098R43 (C63=C64) 13222 13230 13402 13403 13394 13398R44 (C63-C71) 15153 15159 15127 15135 15071 15083

4 Advances in Condensed Matter Physics

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

R45 (C64-C67) 15001 15002 14954 14959 14898 14901Bond anglesA1 (C2-C1-C3) 1153869 1151538 1153519 1150591 1153042 1149661A2 (C2-C1-C20) 1049116 1052360 1048861 1053058 1050195 1054353A3 (C2-C1-C22) 1046632 1048093 1048467 1050548 1047619 1050065A4 (C3-C1-C20) 1054487 1049239 1060693 1053428 1059491 1051727A5 (C3-C1-C22) 1100598 1104677 1093407 1099326 1094774 1101062A6 (C20-C1-C22) 1166507 1165134 1166409 1164160 1166212 1164196A7 (C1-C2-O7) 1226712 1221731 1225890 1220461 1226012 1220599A8 (C1-C2-C34) 1188294 1190297 1185520 1188580 1185112 1188095A9 (O7-C2-C34) 1183115 1186060 1186750 1189135 1186899 1189368A10 (C1-C3-C4) 1174677 1172546 1175179 1173499 1174703 1172908A11 (C1-C3-C40) 1204116 1203391 1205229 1203696 1204781 1203201A12 (C1-C3-O59) 1135239 1136346 1132288 1134708 1132740 1135007A13 (C4-C3-C40) 1197989 1198618 1196777 1197275 1197605 1198264A14 (C4-C3-O59) 1109192 1113348 1106687 1110566 1107288 1111433A15 (C3-C4-C5) 1082815 1080767 1085292 1083020 1084460 1081898A16 (C3-C4-C12) 1169097 1169148 1166545 1168466 1168336 1170260A17 (C3-C4-C36) 1073533 1075825 1072145 1073890 1072213 1073820A18 (C5-C4-C12) 1109502 1112590 1108879 1111131 1110310 1113284A19 (C5-C4-C36) 1082096 1083900 1082857 1085557 1080890 1083471A20 (C12-C4-C36) 1047402 1042361 104883 1042585 1047988 1041530A21 (C4-C5-C6) 1223963 1225160 1222095 1222513 1222181 1222697A22 (C4-C5-C46) 1261434 1260858 1262488 1261993 1261315 1260739A23 (C4-C5-O61) 1137557 1135947 1137382 1136922 1140173 1139553A24 (C6-C5-C46) 1084092 1084312 1082407 1082667 1082513 1082900A25 (C6-C5-O61) 1093436 1091575 1097850 1096384 1096935 1095481A26 (C5-C6-C26) 1069225 1071323 1071725 1073025 1071359 1072931A27 (C5-C6-C42) 1147934 1148607 1144807 1145006 1145313 1145541A28 (C5-C6-C51) 1018612 1018830 1019281 1020115 1018916 1019777A29 (C26-C6-C42) 1088679 1086162 1091102 1089149 1091443 1089314A30 (C26-C6-C51) 1138205 1138653 1139931 1140014 1139406 1139367A31 (C42-C6-C51) 1105307 1104727 1101102 1100888 1101443 1101222A32 (C16-C8-C20) 1178467 1178806 1175220 1175381 1173986 1173974A33 (C16-C8-C29) 1083950 1085431 1084117 1085195 1085270 1086672A34 (C16-C8-C32) 1095455 1094283 1095034 1093293 1096190 1094415A35 (C20-C8-C29) 963773 964321 966032 966193 964146 964285 1015cA36 (C20-C8-C32) 1063315 1062487 1064280 1063876 106432 1063732A37 (C29-C8-C32) 1182843 1182659 1183155 1184200 1183462 1184575A38 (O11-C9-C12) 1132108 1131065 1132048 1132060 1131493 1131724A39 (O11-C9-C20) 1033360 1031494 1038285 1036622 1038971 1037399 1040cA40 (C12-C9-C20) 1092549 1094574 1087908 1089954 1084814 1086640A41 (C9-O11-C29) 1111841 1112217 1098976 1099018 1098190 1098362 1106cA42 (C4-C12-C9) 1104259 1106951 1100123 1103980 1098110 1101418A43 (C4-C12-O60) 1111499 1114570 1109644 1114849 1113257 1119073

Advances in Condensed Matter Physics 5

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

A44 (C9-C12-O60) 1090864 1087044 1087314 1082508 1084512 1079972A45 (C51-C14-C53) 126042 1260928 1261043 1261692 1262986 1263771A46 (C51-C14-C57) 1293418 1291716 1288385 1286558 1287371 1285448A47 (C53-C14-C57) 1045893 1047043 1050493 1051666 1049597 1050728 10614aA48 (C55-O15-C57) 1071084 1071499 1067602 1068013 1068133 1068678 10674aA49 (C1-C20-C8) 1211479 1210073 1209097 1207705 1209914 1208439A50 (C1-C20-C9) 1187226 1185220 1187478 1183732 1186818 1182898A51 (C8-C20-C9) 1038120 1039439 1042023 1043600 1040389 1042216 1044cA52 (C6-C26-C40) 1114945 1116304 1114804 1115216 1114199 1114969A53 (C8-C29-O11) 1044386 1044819 1046594 104594 1046712 1046043 1075cA54 (C8-C32-C34) 1204664 1204528 1205688 1204387 1204312 1202925A55 (C2-C34-C32) 1252907 1249802 1255569 1252584 1255114 1251913A56 (C3-C40-C26) 1247594 1251561 1243752 1247373 1243541 1247241A57 (C26-C40-O59) 1161404 1159652 1160868 1160753 1159905 1159607A58 (C5-C46-C48) 1100006 1100212 1098202 1098537 1096430 1096699A59 (C48-C46-O61) 1115740 1115456 1117313 1117203 1118859 1118641A60 (C46-C48-C51) 1026704 1027788 1028570 1030253 1026915 1028703A61 (C6-C51-C14) 1168638 1168705 1166829 1166156 1163993 1163329A62 (C6-C51-C48) 1044966 1045425 1042867 1043539 1043511 1044332A63 (C14-C51-C48) 1149685 1148714 1152826 1151809 1152757 1151468A64 (C14-C53-C55) 1061668 1062381 1067966 1068606 1066618 1067168 10614aA65 (O15-C55-C53) 1107484 1106455 1103339 1102350 1104305 1103331 11049aA66 (C14-C57-O15) 1113857 1112607 1110591 1109356 1111339 1110086 11049aA67 (C12-O60-C62) 1231805 1234264 1224520 1222629 1218099 1215920A68 (O60-C62-C63) 1183342 1191473 1186681 1194932 1186273 1193485A69 (O60-C62-O65) 1183753 1179395 1175454 1171467 1176414 1172568A70 (C63-C62-O65) 1230766 1226884 1234720 1230718 1234069 1231015A71 (C62-C63-C64) 1169655 1171950 1162922 1167661 1161754 1166519A72 (C62-C63-C71) 1178479 1173833 1194971 1185815 1197175 1190158A74 (C64-C63-C71) 1250717 1252904 1241105 1245124 1239876 1241815A75 (C63-C64-C67) 1272664 1272197 1272301 1272514 1269123 1267855Total energy (Hartree) -171915539 -171917648 -172982917 -172984726 -172917724 -172919498

B3LYP and B3PW91 level of the theory In CDCl3 the C-C-C bond angles are similar to those obtained at the gasphase The smallest value of C-C-C bond angle was C20-C8-C29 bond angle and the largest C51-C14-C57 bond angle Forthe C-C-O angle the smallest value was 1044386∘ obtainedat the RHF and the largest value was 123472∘ obtained at theB3LYP level both in the gas phaseTheC-O-C bond angle wasfound between 1071084∘ and 1234264∘ obtained at the RHFlevel These bonds angles compared to some known valuesfound in literature [12 14] for specific compound present inour structure show good similaritiesThe little differences arefound between 00268∘ and 15507∘ for C-C-C bond between00595∘ and 30614∘ for C-C-O bond and between 00202∘and 0781∘ for C-O-C bond These observed differences aredue to the fact that these groups of compounds were notisolated

33 Calculated 3119869119867-119867 Coupling Constant The chemical 3JH-Hproton-proton coupling constant was calculated using theoriginal Karplus [10] equation in gas and solvent and itsresults compared to experimental values [1] obtained byextracting Rubescin E in a solution of chloroform From ourresults we found that the calculated parameters both in gasand in chloroform are all similar at all the levels used Theseobtained results are also very close to experiment As pre-dicted in literature [10] we observed from Table 2 that whenthe angles between the two C-H vectors are close enough to00 or 1800 the value of 3JH-H coupling constant is greater (with31198691800 gt 311986900) and is very small when the angle is close to 900

34 Electronic Properties341 Mulliken ESP and Natural Charge Distribution TheMulliken atomic charges of our molecule calculated at all

6 Advances in Condensed Matter Physics

Figure 1 Ground state geometry of Rubescin E at B3LYP6-311++G(dp) in chloroform solution

the levels in gas phase and chloroform show positive chargefor all the hydrogen atoms The net charge on all theatoms varies from -1109653e to 1980512e from -1164916eto 1904034e and from -0891775e to 1524787e respectivelyin gas phase at the RHF B3PW91 and B3LYP levels In asolution of chloroform the charges varied from -1064962e to1826589e from -1206706e to 1904292e and from -0945041eto 1550492e with some oxygen atoms charges being positiveand can be explained by the fact that the oxygen is related toextremely negative carbon atoms The most positive chargeatoms are C63 C5 C8 and the most negative charge atoms areC71 C62 C67

The electrostatic charges were evaluated in this workusing the CHelpG scheme of Breneman model We foundfrom our results that the most positive charges atom is C4followed by C62 and C2 and the most negative charge atom isC12 followed by C5 and C7 The observation made at all levelsand basis set in gas phase and in a solution of chloroform isthat the most positive charge atoms are directly related to themost negative charge atoms

The natural atomic charges obtained using the naturalbonding orbitalmethodwere also used to evaluate the atomiccharge of Rubescin E Positive and negative charges werefound for all hydrogen and oxygen atoms respectively Inthis case all carbon atoms directly linked to hydrogen atomswere found to have negative charges except for those linked tooxygen atomsThemost negative charge atom was calculatedusing HF method and was observed for O65 (-069456e) andO60 (-068330e) respectively in chloroform and gas phaseThemost positive charge atomwas found to beC62 in both gas(097067e 080601e and 081407e respectively at the RHF

B3PW91 and B3LYP levels) and solvent (098887e 081804eand 082650e respectively at the RHF B3PW91 and B3LYPlevels) this is due to the fact that C62 is related to negativecharge atoms (O65 O60 and C63) Mulliken electrostatic andnatural atomic charge distributions are graphically shown inFigure 2 From Figure 2 one can observe that for almost allthe methods used for charge description the most positiveand negative charge atoms were calculated at the RHF levelin both gas and chloroform and this is due to the fact thatthe effect of electron correlation is not well described in HFmethod

342 Global Reactivity Descriptors In order to understandthe relationships between structure stability and reactivity ofRubescin Emolecule the global reactivity descriptors param-eters such as chemical hardness (H) chemical potential (120583119888119901)chemical softness (s) electronegativity (119883) and electrophilic-ity index (120596) were calculated The finite difference equationgiven by (1) was used to calculate the ionization potentialand electron affinity which are generally used to calculate theabove cited parameters

119868119875 = 119864119902=119873+1 minus 119864119902=119873119864119860 = 119864119902=119873 minus 119864119902=119873minus1

(1)

The IP and EA calculated from (1) were then used to calculate119867 120583119888119901 s119883 and120596 using equations found in the literature [15ndash17] All these parameters calculated using the twomethods ingas phase are presented in Table 3 A high value of 120583119888119901 and 120596characterizes a good electrophile while a small value standsfor good nucleophile

Advances in Condensed Matter Physics 7

Table2Ex

perim

entaland

calculated3J H

-Hproton

-protoncoup

lingconstant

ofRu

bescin

Ein

gasp

hase

andin

chloroform

solutio

n

PARA

MET

ERS

RHF

B3LY

PB3

PW91

EXP[1]

Gaz

CDCl3

Gaz

CDCl3

Gaz

CDCl3

Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)H10-C9-C12-H13

455506

620

438143

649

4813

93579

459537

614

4832

85576

4616

62610

40

H10-C9-C20-H21

1695

395

1265

1698

194

1267

168824

1261

168658

1259

1685

1258

1682201

1256

120

H27-C26-C40-H41

-110

718

1065

-120311

1059

-101794

1070

-1089

1066

-104324

1069

-112

981064

65

H28-C26-C40-H41

1053029

296

103995

283

1063433

307

1053319

296

1061668

305

10496

4292

13H33-C32-C34-H35

-02873

11-012

311

-05893

11-0366

11-0566

11-033

3111

100

H47-C46-C48-H49

-613

614

382

-611286

385

-619

356

374

-618

438

375

-615

482

379

-614

875

380

42

H47-C46-C48-H50

5874

37417

587503

417

580428

427

578579

430

5853

4420

58304

4424

42

H49-C48-C51-H52

-425704

669

-421786

675

-439616

646

-433642

656

-445718

636

-439227

647

42

H50-C48-C51-H52

-164

093

1221

-163817

1218

-16522

1232

-164

673

1227

-165874

1237

-165259

1232

11H54-C53-C55-H56

-03838

11-02856

11-032

7511

-02429

11-039

2111

-03074

11H66-C64-C67-H68

-177906

1299

-177979

1299

17846

741299

1787874

131784147

1299

178548

1299

H66-C64-C67-H69

-569125

443

-569428

443

-603746

395

-599

903

4-6040

07395

-601923

397

70H66-C64-C67-H70

606324

391

604696

394

566811

447

56944

9442

566504

447

567234

446

70

8 Advances in Condensed Matter Physics

05

minus15

minus10

minus05

0

05

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

minus15

minus10

minus05

0

05

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Mul

liken

char

ges

Mul

liken

char

ges

Chloroform

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

ESP

char

ges

ESP

char

ges

Chloroform

minus10

minus05

0

05

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Chloroform

minus10

minus05

0

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Nat

ural

atom

ic ch

arge

s

Nat

ural

atom

ic ch

arge

s

Gas

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

Figure 2 Charge distribution on Rubescin E calculated at the RHF B3PW91 and B3LYP levels in both gas phase and chloroform solutionand with the 6-311++G(dp) basis set

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 3: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 3

Table 1 Optimized geometric parameters in gas phase and in chloroform solution of Rubescin E at the RHF B3LYP and B3PW91 level withthe 6-311++G (dp) basis sets

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

Bond lengthR1 (C1-C2) 15503 15490 15603 15583 15521 15500R2 (C1-C3) 15698 15672 15811 15777 15719 15684R3 (C1-C20) 15167 15157 15221 15215 15153 15147R4 (C1-C22) 15474 15481 15510 15509 15439 15438R5 (C2=O7) 11900 11948 12167 12213 12152 12197 210bR6 (C2-C34) 15041 14992 14966 14910 14920 14867R7 (C3-C4) 15898 15887 15973 15968 15866 15860R8 (C3-C40) 14814 14800 14972 14958 14931 14918 1462bR9 (C3-O59) 13994 14024 14311 14335 14236 14256 1428bR10 (C4-C5) 15515 15518 15549 15548 15473 15471R11 (C4-C12) 15707 15733 15756 15787 15676 15707R12 (C4-C36) 15501 15503 15543 15543 15471 15472R13 (C5-C6) 15428 15442 15477 15487 15401 15410R14 (C5-C46) 14556 14553 14720 14717 14686 14684 1462bR15 (C5-O61) 14206 14235 14568 14590 14473 14492 1428bR16 (C6-C26) 15259 15260 15306 15307 15246 15248R17 (C6-C42) 15352 15350 15373 15373 15298 15298R18 (C6-C51) 15703 15708 15810 15814 15724 15728R19 (C8-C16) 15423 15424 15477 15481 15405 15408R20 (C8-C20) 15256 15244 15348 15335 15276 15264 1536cR21 (C8-C29) 15405 15402 15479 15468 15416 15406 1536cR22 (C8-C32) 15036 15036 15010 15010 14958 14960R23 (C9-O11) 14120 14133 14389 14411 14304 14324 1428cR24 (C9-C12) 15288 15302 15357 15373 15311 15329R25 (C9-C20) 14997 14993 15044 15042 14999 14998 1536cR26 (O11-C29) 14261 14287 14530 14551 14438 14457 1428cR27 (C12-O60) 14104 14131 14339 14369 14255 14283R28 (C14-C51) 15035 15041 15003 15010 14953 14959R29 (C14-C53) 14493 14505 14428 14438 14387 14397 1430aR30 (C14=C57) 13411 13410 13621 13619 13614 13614 1364aR31 (O15-C55) 13382 13412 13609 13638 13548 13574 1364aR32 (O15-C57) 13467 13496 13659 13686 13592 13616 1364aR33 (C26-C40) 15162 15158 15190 15181 15137 15129R34 (C32=C34) 13270 13285 13431 13445 13422 13436R35 (C40-O59) 14010 14054 14353 14395 14282 14320 1428bR36 (C46-C48) 15086 15076 15135 15123 15088 15077R37 (C46-O61) 14005 14051 14326 14376 14254 14297 1428bR38 (C48-C51) 15407 15405 15478 15475 15408 15405R39 (C53=C55) 13381 13381 13567 13567 13559 13559 1364aR40 (O60-C62) 13485 13397 13805 13700 13743 13650R41 (C62-C63) 15033 15030 14998 15000 14956 14952R42 (C62=O65) 11810 11873 12059 12113 12046 12098R43 (C63=C64) 13222 13230 13402 13403 13394 13398R44 (C63-C71) 15153 15159 15127 15135 15071 15083

4 Advances in Condensed Matter Physics

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

R45 (C64-C67) 15001 15002 14954 14959 14898 14901Bond anglesA1 (C2-C1-C3) 1153869 1151538 1153519 1150591 1153042 1149661A2 (C2-C1-C20) 1049116 1052360 1048861 1053058 1050195 1054353A3 (C2-C1-C22) 1046632 1048093 1048467 1050548 1047619 1050065A4 (C3-C1-C20) 1054487 1049239 1060693 1053428 1059491 1051727A5 (C3-C1-C22) 1100598 1104677 1093407 1099326 1094774 1101062A6 (C20-C1-C22) 1166507 1165134 1166409 1164160 1166212 1164196A7 (C1-C2-O7) 1226712 1221731 1225890 1220461 1226012 1220599A8 (C1-C2-C34) 1188294 1190297 1185520 1188580 1185112 1188095A9 (O7-C2-C34) 1183115 1186060 1186750 1189135 1186899 1189368A10 (C1-C3-C4) 1174677 1172546 1175179 1173499 1174703 1172908A11 (C1-C3-C40) 1204116 1203391 1205229 1203696 1204781 1203201A12 (C1-C3-O59) 1135239 1136346 1132288 1134708 1132740 1135007A13 (C4-C3-C40) 1197989 1198618 1196777 1197275 1197605 1198264A14 (C4-C3-O59) 1109192 1113348 1106687 1110566 1107288 1111433A15 (C3-C4-C5) 1082815 1080767 1085292 1083020 1084460 1081898A16 (C3-C4-C12) 1169097 1169148 1166545 1168466 1168336 1170260A17 (C3-C4-C36) 1073533 1075825 1072145 1073890 1072213 1073820A18 (C5-C4-C12) 1109502 1112590 1108879 1111131 1110310 1113284A19 (C5-C4-C36) 1082096 1083900 1082857 1085557 1080890 1083471A20 (C12-C4-C36) 1047402 1042361 104883 1042585 1047988 1041530A21 (C4-C5-C6) 1223963 1225160 1222095 1222513 1222181 1222697A22 (C4-C5-C46) 1261434 1260858 1262488 1261993 1261315 1260739A23 (C4-C5-O61) 1137557 1135947 1137382 1136922 1140173 1139553A24 (C6-C5-C46) 1084092 1084312 1082407 1082667 1082513 1082900A25 (C6-C5-O61) 1093436 1091575 1097850 1096384 1096935 1095481A26 (C5-C6-C26) 1069225 1071323 1071725 1073025 1071359 1072931A27 (C5-C6-C42) 1147934 1148607 1144807 1145006 1145313 1145541A28 (C5-C6-C51) 1018612 1018830 1019281 1020115 1018916 1019777A29 (C26-C6-C42) 1088679 1086162 1091102 1089149 1091443 1089314A30 (C26-C6-C51) 1138205 1138653 1139931 1140014 1139406 1139367A31 (C42-C6-C51) 1105307 1104727 1101102 1100888 1101443 1101222A32 (C16-C8-C20) 1178467 1178806 1175220 1175381 1173986 1173974A33 (C16-C8-C29) 1083950 1085431 1084117 1085195 1085270 1086672A34 (C16-C8-C32) 1095455 1094283 1095034 1093293 1096190 1094415A35 (C20-C8-C29) 963773 964321 966032 966193 964146 964285 1015cA36 (C20-C8-C32) 1063315 1062487 1064280 1063876 106432 1063732A37 (C29-C8-C32) 1182843 1182659 1183155 1184200 1183462 1184575A38 (O11-C9-C12) 1132108 1131065 1132048 1132060 1131493 1131724A39 (O11-C9-C20) 1033360 1031494 1038285 1036622 1038971 1037399 1040cA40 (C12-C9-C20) 1092549 1094574 1087908 1089954 1084814 1086640A41 (C9-O11-C29) 1111841 1112217 1098976 1099018 1098190 1098362 1106cA42 (C4-C12-C9) 1104259 1106951 1100123 1103980 1098110 1101418A43 (C4-C12-O60) 1111499 1114570 1109644 1114849 1113257 1119073

Advances in Condensed Matter Physics 5

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

A44 (C9-C12-O60) 1090864 1087044 1087314 1082508 1084512 1079972A45 (C51-C14-C53) 126042 1260928 1261043 1261692 1262986 1263771A46 (C51-C14-C57) 1293418 1291716 1288385 1286558 1287371 1285448A47 (C53-C14-C57) 1045893 1047043 1050493 1051666 1049597 1050728 10614aA48 (C55-O15-C57) 1071084 1071499 1067602 1068013 1068133 1068678 10674aA49 (C1-C20-C8) 1211479 1210073 1209097 1207705 1209914 1208439A50 (C1-C20-C9) 1187226 1185220 1187478 1183732 1186818 1182898A51 (C8-C20-C9) 1038120 1039439 1042023 1043600 1040389 1042216 1044cA52 (C6-C26-C40) 1114945 1116304 1114804 1115216 1114199 1114969A53 (C8-C29-O11) 1044386 1044819 1046594 104594 1046712 1046043 1075cA54 (C8-C32-C34) 1204664 1204528 1205688 1204387 1204312 1202925A55 (C2-C34-C32) 1252907 1249802 1255569 1252584 1255114 1251913A56 (C3-C40-C26) 1247594 1251561 1243752 1247373 1243541 1247241A57 (C26-C40-O59) 1161404 1159652 1160868 1160753 1159905 1159607A58 (C5-C46-C48) 1100006 1100212 1098202 1098537 1096430 1096699A59 (C48-C46-O61) 1115740 1115456 1117313 1117203 1118859 1118641A60 (C46-C48-C51) 1026704 1027788 1028570 1030253 1026915 1028703A61 (C6-C51-C14) 1168638 1168705 1166829 1166156 1163993 1163329A62 (C6-C51-C48) 1044966 1045425 1042867 1043539 1043511 1044332A63 (C14-C51-C48) 1149685 1148714 1152826 1151809 1152757 1151468A64 (C14-C53-C55) 1061668 1062381 1067966 1068606 1066618 1067168 10614aA65 (O15-C55-C53) 1107484 1106455 1103339 1102350 1104305 1103331 11049aA66 (C14-C57-O15) 1113857 1112607 1110591 1109356 1111339 1110086 11049aA67 (C12-O60-C62) 1231805 1234264 1224520 1222629 1218099 1215920A68 (O60-C62-C63) 1183342 1191473 1186681 1194932 1186273 1193485A69 (O60-C62-O65) 1183753 1179395 1175454 1171467 1176414 1172568A70 (C63-C62-O65) 1230766 1226884 1234720 1230718 1234069 1231015A71 (C62-C63-C64) 1169655 1171950 1162922 1167661 1161754 1166519A72 (C62-C63-C71) 1178479 1173833 1194971 1185815 1197175 1190158A74 (C64-C63-C71) 1250717 1252904 1241105 1245124 1239876 1241815A75 (C63-C64-C67) 1272664 1272197 1272301 1272514 1269123 1267855Total energy (Hartree) -171915539 -171917648 -172982917 -172984726 -172917724 -172919498

B3LYP and B3PW91 level of the theory In CDCl3 the C-C-C bond angles are similar to those obtained at the gasphase The smallest value of C-C-C bond angle was C20-C8-C29 bond angle and the largest C51-C14-C57 bond angle Forthe C-C-O angle the smallest value was 1044386∘ obtainedat the RHF and the largest value was 123472∘ obtained at theB3LYP level both in the gas phaseTheC-O-C bond angle wasfound between 1071084∘ and 1234264∘ obtained at the RHFlevel These bonds angles compared to some known valuesfound in literature [12 14] for specific compound present inour structure show good similaritiesThe little differences arefound between 00268∘ and 15507∘ for C-C-C bond between00595∘ and 30614∘ for C-C-O bond and between 00202∘and 0781∘ for C-O-C bond These observed differences aredue to the fact that these groups of compounds were notisolated

33 Calculated 3119869119867-119867 Coupling Constant The chemical 3JH-Hproton-proton coupling constant was calculated using theoriginal Karplus [10] equation in gas and solvent and itsresults compared to experimental values [1] obtained byextracting Rubescin E in a solution of chloroform From ourresults we found that the calculated parameters both in gasand in chloroform are all similar at all the levels used Theseobtained results are also very close to experiment As pre-dicted in literature [10] we observed from Table 2 that whenthe angles between the two C-H vectors are close enough to00 or 1800 the value of 3JH-H coupling constant is greater (with31198691800 gt 311986900) and is very small when the angle is close to 900

34 Electronic Properties341 Mulliken ESP and Natural Charge Distribution TheMulliken atomic charges of our molecule calculated at all

6 Advances in Condensed Matter Physics

Figure 1 Ground state geometry of Rubescin E at B3LYP6-311++G(dp) in chloroform solution

the levels in gas phase and chloroform show positive chargefor all the hydrogen atoms The net charge on all theatoms varies from -1109653e to 1980512e from -1164916eto 1904034e and from -0891775e to 1524787e respectivelyin gas phase at the RHF B3PW91 and B3LYP levels In asolution of chloroform the charges varied from -1064962e to1826589e from -1206706e to 1904292e and from -0945041eto 1550492e with some oxygen atoms charges being positiveand can be explained by the fact that the oxygen is related toextremely negative carbon atoms The most positive chargeatoms are C63 C5 C8 and the most negative charge atoms areC71 C62 C67

The electrostatic charges were evaluated in this workusing the CHelpG scheme of Breneman model We foundfrom our results that the most positive charges atom is C4followed by C62 and C2 and the most negative charge atom isC12 followed by C5 and C7 The observation made at all levelsand basis set in gas phase and in a solution of chloroform isthat the most positive charge atoms are directly related to themost negative charge atoms

The natural atomic charges obtained using the naturalbonding orbitalmethodwere also used to evaluate the atomiccharge of Rubescin E Positive and negative charges werefound for all hydrogen and oxygen atoms respectively Inthis case all carbon atoms directly linked to hydrogen atomswere found to have negative charges except for those linked tooxygen atomsThemost negative charge atom was calculatedusing HF method and was observed for O65 (-069456e) andO60 (-068330e) respectively in chloroform and gas phaseThemost positive charge atomwas found to beC62 in both gas(097067e 080601e and 081407e respectively at the RHF

B3PW91 and B3LYP levels) and solvent (098887e 081804eand 082650e respectively at the RHF B3PW91 and B3LYPlevels) this is due to the fact that C62 is related to negativecharge atoms (O65 O60 and C63) Mulliken electrostatic andnatural atomic charge distributions are graphically shown inFigure 2 From Figure 2 one can observe that for almost allthe methods used for charge description the most positiveand negative charge atoms were calculated at the RHF levelin both gas and chloroform and this is due to the fact thatthe effect of electron correlation is not well described in HFmethod

342 Global Reactivity Descriptors In order to understandthe relationships between structure stability and reactivity ofRubescin Emolecule the global reactivity descriptors param-eters such as chemical hardness (H) chemical potential (120583119888119901)chemical softness (s) electronegativity (119883) and electrophilic-ity index (120596) were calculated The finite difference equationgiven by (1) was used to calculate the ionization potentialand electron affinity which are generally used to calculate theabove cited parameters

119868119875 = 119864119902=119873+1 minus 119864119902=119873119864119860 = 119864119902=119873 minus 119864119902=119873minus1

(1)

The IP and EA calculated from (1) were then used to calculate119867 120583119888119901 s119883 and120596 using equations found in the literature [15ndash17] All these parameters calculated using the twomethods ingas phase are presented in Table 3 A high value of 120583119888119901 and 120596characterizes a good electrophile while a small value standsfor good nucleophile

Advances in Condensed Matter Physics 7

Table2Ex

perim

entaland

calculated3J H

-Hproton

-protoncoup

lingconstant

ofRu

bescin

Ein

gasp

hase

andin

chloroform

solutio

n

PARA

MET

ERS

RHF

B3LY

PB3

PW91

EXP[1]

Gaz

CDCl3

Gaz

CDCl3

Gaz

CDCl3

Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)H10-C9-C12-H13

455506

620

438143

649

4813

93579

459537

614

4832

85576

4616

62610

40

H10-C9-C20-H21

1695

395

1265

1698

194

1267

168824

1261

168658

1259

1685

1258

1682201

1256

120

H27-C26-C40-H41

-110

718

1065

-120311

1059

-101794

1070

-1089

1066

-104324

1069

-112

981064

65

H28-C26-C40-H41

1053029

296

103995

283

1063433

307

1053319

296

1061668

305

10496

4292

13H33-C32-C34-H35

-02873

11-012

311

-05893

11-0366

11-0566

11-033

3111

100

H47-C46-C48-H49

-613

614

382

-611286

385

-619

356

374

-618

438

375

-615

482

379

-614

875

380

42

H47-C46-C48-H50

5874

37417

587503

417

580428

427

578579

430

5853

4420

58304

4424

42

H49-C48-C51-H52

-425704

669

-421786

675

-439616

646

-433642

656

-445718

636

-439227

647

42

H50-C48-C51-H52

-164

093

1221

-163817

1218

-16522

1232

-164

673

1227

-165874

1237

-165259

1232

11H54-C53-C55-H56

-03838

11-02856

11-032

7511

-02429

11-039

2111

-03074

11H66-C64-C67-H68

-177906

1299

-177979

1299

17846

741299

1787874

131784147

1299

178548

1299

H66-C64-C67-H69

-569125

443

-569428

443

-603746

395

-599

903

4-6040

07395

-601923

397

70H66-C64-C67-H70

606324

391

604696

394

566811

447

56944

9442

566504

447

567234

446

70

8 Advances in Condensed Matter Physics

05

minus15

minus10

minus05

0

05

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

minus15

minus10

minus05

0

05

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Mul

liken

char

ges

Mul

liken

char

ges

Chloroform

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

ESP

char

ges

ESP

char

ges

Chloroform

minus10

minus05

0

05

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Chloroform

minus10

minus05

0

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Nat

ural

atom

ic ch

arge

s

Nat

ural

atom

ic ch

arge

s

Gas

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

Figure 2 Charge distribution on Rubescin E calculated at the RHF B3PW91 and B3LYP levels in both gas phase and chloroform solutionand with the 6-311++G(dp) basis set

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 4: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

4 Advances in Condensed Matter Physics

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

R45 (C64-C67) 15001 15002 14954 14959 14898 14901Bond anglesA1 (C2-C1-C3) 1153869 1151538 1153519 1150591 1153042 1149661A2 (C2-C1-C20) 1049116 1052360 1048861 1053058 1050195 1054353A3 (C2-C1-C22) 1046632 1048093 1048467 1050548 1047619 1050065A4 (C3-C1-C20) 1054487 1049239 1060693 1053428 1059491 1051727A5 (C3-C1-C22) 1100598 1104677 1093407 1099326 1094774 1101062A6 (C20-C1-C22) 1166507 1165134 1166409 1164160 1166212 1164196A7 (C1-C2-O7) 1226712 1221731 1225890 1220461 1226012 1220599A8 (C1-C2-C34) 1188294 1190297 1185520 1188580 1185112 1188095A9 (O7-C2-C34) 1183115 1186060 1186750 1189135 1186899 1189368A10 (C1-C3-C4) 1174677 1172546 1175179 1173499 1174703 1172908A11 (C1-C3-C40) 1204116 1203391 1205229 1203696 1204781 1203201A12 (C1-C3-O59) 1135239 1136346 1132288 1134708 1132740 1135007A13 (C4-C3-C40) 1197989 1198618 1196777 1197275 1197605 1198264A14 (C4-C3-O59) 1109192 1113348 1106687 1110566 1107288 1111433A15 (C3-C4-C5) 1082815 1080767 1085292 1083020 1084460 1081898A16 (C3-C4-C12) 1169097 1169148 1166545 1168466 1168336 1170260A17 (C3-C4-C36) 1073533 1075825 1072145 1073890 1072213 1073820A18 (C5-C4-C12) 1109502 1112590 1108879 1111131 1110310 1113284A19 (C5-C4-C36) 1082096 1083900 1082857 1085557 1080890 1083471A20 (C12-C4-C36) 1047402 1042361 104883 1042585 1047988 1041530A21 (C4-C5-C6) 1223963 1225160 1222095 1222513 1222181 1222697A22 (C4-C5-C46) 1261434 1260858 1262488 1261993 1261315 1260739A23 (C4-C5-O61) 1137557 1135947 1137382 1136922 1140173 1139553A24 (C6-C5-C46) 1084092 1084312 1082407 1082667 1082513 1082900A25 (C6-C5-O61) 1093436 1091575 1097850 1096384 1096935 1095481A26 (C5-C6-C26) 1069225 1071323 1071725 1073025 1071359 1072931A27 (C5-C6-C42) 1147934 1148607 1144807 1145006 1145313 1145541A28 (C5-C6-C51) 1018612 1018830 1019281 1020115 1018916 1019777A29 (C26-C6-C42) 1088679 1086162 1091102 1089149 1091443 1089314A30 (C26-C6-C51) 1138205 1138653 1139931 1140014 1139406 1139367A31 (C42-C6-C51) 1105307 1104727 1101102 1100888 1101443 1101222A32 (C16-C8-C20) 1178467 1178806 1175220 1175381 1173986 1173974A33 (C16-C8-C29) 1083950 1085431 1084117 1085195 1085270 1086672A34 (C16-C8-C32) 1095455 1094283 1095034 1093293 1096190 1094415A35 (C20-C8-C29) 963773 964321 966032 966193 964146 964285 1015cA36 (C20-C8-C32) 1063315 1062487 1064280 1063876 106432 1063732A37 (C29-C8-C32) 1182843 1182659 1183155 1184200 1183462 1184575A38 (O11-C9-C12) 1132108 1131065 1132048 1132060 1131493 1131724A39 (O11-C9-C20) 1033360 1031494 1038285 1036622 1038971 1037399 1040cA40 (C12-C9-C20) 1092549 1094574 1087908 1089954 1084814 1086640A41 (C9-O11-C29) 1111841 1112217 1098976 1099018 1098190 1098362 1106cA42 (C4-C12-C9) 1104259 1106951 1100123 1103980 1098110 1101418A43 (C4-C12-O60) 1111499 1114570 1109644 1114849 1113257 1119073

Advances in Condensed Matter Physics 5

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

A44 (C9-C12-O60) 1090864 1087044 1087314 1082508 1084512 1079972A45 (C51-C14-C53) 126042 1260928 1261043 1261692 1262986 1263771A46 (C51-C14-C57) 1293418 1291716 1288385 1286558 1287371 1285448A47 (C53-C14-C57) 1045893 1047043 1050493 1051666 1049597 1050728 10614aA48 (C55-O15-C57) 1071084 1071499 1067602 1068013 1068133 1068678 10674aA49 (C1-C20-C8) 1211479 1210073 1209097 1207705 1209914 1208439A50 (C1-C20-C9) 1187226 1185220 1187478 1183732 1186818 1182898A51 (C8-C20-C9) 1038120 1039439 1042023 1043600 1040389 1042216 1044cA52 (C6-C26-C40) 1114945 1116304 1114804 1115216 1114199 1114969A53 (C8-C29-O11) 1044386 1044819 1046594 104594 1046712 1046043 1075cA54 (C8-C32-C34) 1204664 1204528 1205688 1204387 1204312 1202925A55 (C2-C34-C32) 1252907 1249802 1255569 1252584 1255114 1251913A56 (C3-C40-C26) 1247594 1251561 1243752 1247373 1243541 1247241A57 (C26-C40-O59) 1161404 1159652 1160868 1160753 1159905 1159607A58 (C5-C46-C48) 1100006 1100212 1098202 1098537 1096430 1096699A59 (C48-C46-O61) 1115740 1115456 1117313 1117203 1118859 1118641A60 (C46-C48-C51) 1026704 1027788 1028570 1030253 1026915 1028703A61 (C6-C51-C14) 1168638 1168705 1166829 1166156 1163993 1163329A62 (C6-C51-C48) 1044966 1045425 1042867 1043539 1043511 1044332A63 (C14-C51-C48) 1149685 1148714 1152826 1151809 1152757 1151468A64 (C14-C53-C55) 1061668 1062381 1067966 1068606 1066618 1067168 10614aA65 (O15-C55-C53) 1107484 1106455 1103339 1102350 1104305 1103331 11049aA66 (C14-C57-O15) 1113857 1112607 1110591 1109356 1111339 1110086 11049aA67 (C12-O60-C62) 1231805 1234264 1224520 1222629 1218099 1215920A68 (O60-C62-C63) 1183342 1191473 1186681 1194932 1186273 1193485A69 (O60-C62-O65) 1183753 1179395 1175454 1171467 1176414 1172568A70 (C63-C62-O65) 1230766 1226884 1234720 1230718 1234069 1231015A71 (C62-C63-C64) 1169655 1171950 1162922 1167661 1161754 1166519A72 (C62-C63-C71) 1178479 1173833 1194971 1185815 1197175 1190158A74 (C64-C63-C71) 1250717 1252904 1241105 1245124 1239876 1241815A75 (C63-C64-C67) 1272664 1272197 1272301 1272514 1269123 1267855Total energy (Hartree) -171915539 -171917648 -172982917 -172984726 -172917724 -172919498

B3LYP and B3PW91 level of the theory In CDCl3 the C-C-C bond angles are similar to those obtained at the gasphase The smallest value of C-C-C bond angle was C20-C8-C29 bond angle and the largest C51-C14-C57 bond angle Forthe C-C-O angle the smallest value was 1044386∘ obtainedat the RHF and the largest value was 123472∘ obtained at theB3LYP level both in the gas phaseTheC-O-C bond angle wasfound between 1071084∘ and 1234264∘ obtained at the RHFlevel These bonds angles compared to some known valuesfound in literature [12 14] for specific compound present inour structure show good similaritiesThe little differences arefound between 00268∘ and 15507∘ for C-C-C bond between00595∘ and 30614∘ for C-C-O bond and between 00202∘and 0781∘ for C-O-C bond These observed differences aredue to the fact that these groups of compounds were notisolated

33 Calculated 3119869119867-119867 Coupling Constant The chemical 3JH-Hproton-proton coupling constant was calculated using theoriginal Karplus [10] equation in gas and solvent and itsresults compared to experimental values [1] obtained byextracting Rubescin E in a solution of chloroform From ourresults we found that the calculated parameters both in gasand in chloroform are all similar at all the levels used Theseobtained results are also very close to experiment As pre-dicted in literature [10] we observed from Table 2 that whenthe angles between the two C-H vectors are close enough to00 or 1800 the value of 3JH-H coupling constant is greater (with31198691800 gt 311986900) and is very small when the angle is close to 900

34 Electronic Properties341 Mulliken ESP and Natural Charge Distribution TheMulliken atomic charges of our molecule calculated at all

6 Advances in Condensed Matter Physics

Figure 1 Ground state geometry of Rubescin E at B3LYP6-311++G(dp) in chloroform solution

the levels in gas phase and chloroform show positive chargefor all the hydrogen atoms The net charge on all theatoms varies from -1109653e to 1980512e from -1164916eto 1904034e and from -0891775e to 1524787e respectivelyin gas phase at the RHF B3PW91 and B3LYP levels In asolution of chloroform the charges varied from -1064962e to1826589e from -1206706e to 1904292e and from -0945041eto 1550492e with some oxygen atoms charges being positiveand can be explained by the fact that the oxygen is related toextremely negative carbon atoms The most positive chargeatoms are C63 C5 C8 and the most negative charge atoms areC71 C62 C67

The electrostatic charges were evaluated in this workusing the CHelpG scheme of Breneman model We foundfrom our results that the most positive charges atom is C4followed by C62 and C2 and the most negative charge atom isC12 followed by C5 and C7 The observation made at all levelsand basis set in gas phase and in a solution of chloroform isthat the most positive charge atoms are directly related to themost negative charge atoms

The natural atomic charges obtained using the naturalbonding orbitalmethodwere also used to evaluate the atomiccharge of Rubescin E Positive and negative charges werefound for all hydrogen and oxygen atoms respectively Inthis case all carbon atoms directly linked to hydrogen atomswere found to have negative charges except for those linked tooxygen atomsThemost negative charge atom was calculatedusing HF method and was observed for O65 (-069456e) andO60 (-068330e) respectively in chloroform and gas phaseThemost positive charge atomwas found to beC62 in both gas(097067e 080601e and 081407e respectively at the RHF

B3PW91 and B3LYP levels) and solvent (098887e 081804eand 082650e respectively at the RHF B3PW91 and B3LYPlevels) this is due to the fact that C62 is related to negativecharge atoms (O65 O60 and C63) Mulliken electrostatic andnatural atomic charge distributions are graphically shown inFigure 2 From Figure 2 one can observe that for almost allthe methods used for charge description the most positiveand negative charge atoms were calculated at the RHF levelin both gas and chloroform and this is due to the fact thatthe effect of electron correlation is not well described in HFmethod

342 Global Reactivity Descriptors In order to understandthe relationships between structure stability and reactivity ofRubescin Emolecule the global reactivity descriptors param-eters such as chemical hardness (H) chemical potential (120583119888119901)chemical softness (s) electronegativity (119883) and electrophilic-ity index (120596) were calculated The finite difference equationgiven by (1) was used to calculate the ionization potentialand electron affinity which are generally used to calculate theabove cited parameters

119868119875 = 119864119902=119873+1 minus 119864119902=119873119864119860 = 119864119902=119873 minus 119864119902=119873minus1

(1)

The IP and EA calculated from (1) were then used to calculate119867 120583119888119901 s119883 and120596 using equations found in the literature [15ndash17] All these parameters calculated using the twomethods ingas phase are presented in Table 3 A high value of 120583119888119901 and 120596characterizes a good electrophile while a small value standsfor good nucleophile

Advances in Condensed Matter Physics 7

Table2Ex

perim

entaland

calculated3J H

-Hproton

-protoncoup

lingconstant

ofRu

bescin

Ein

gasp

hase

andin

chloroform

solutio

n

PARA

MET

ERS

RHF

B3LY

PB3

PW91

EXP[1]

Gaz

CDCl3

Gaz

CDCl3

Gaz

CDCl3

Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)H10-C9-C12-H13

455506

620

438143

649

4813

93579

459537

614

4832

85576

4616

62610

40

H10-C9-C20-H21

1695

395

1265

1698

194

1267

168824

1261

168658

1259

1685

1258

1682201

1256

120

H27-C26-C40-H41

-110

718

1065

-120311

1059

-101794

1070

-1089

1066

-104324

1069

-112

981064

65

H28-C26-C40-H41

1053029

296

103995

283

1063433

307

1053319

296

1061668

305

10496

4292

13H33-C32-C34-H35

-02873

11-012

311

-05893

11-0366

11-0566

11-033

3111

100

H47-C46-C48-H49

-613

614

382

-611286

385

-619

356

374

-618

438

375

-615

482

379

-614

875

380

42

H47-C46-C48-H50

5874

37417

587503

417

580428

427

578579

430

5853

4420

58304

4424

42

H49-C48-C51-H52

-425704

669

-421786

675

-439616

646

-433642

656

-445718

636

-439227

647

42

H50-C48-C51-H52

-164

093

1221

-163817

1218

-16522

1232

-164

673

1227

-165874

1237

-165259

1232

11H54-C53-C55-H56

-03838

11-02856

11-032

7511

-02429

11-039

2111

-03074

11H66-C64-C67-H68

-177906

1299

-177979

1299

17846

741299

1787874

131784147

1299

178548

1299

H66-C64-C67-H69

-569125

443

-569428

443

-603746

395

-599

903

4-6040

07395

-601923

397

70H66-C64-C67-H70

606324

391

604696

394

566811

447

56944

9442

566504

447

567234

446

70

8 Advances in Condensed Matter Physics

05

minus15

minus10

minus05

0

05

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

minus15

minus10

minus05

0

05

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Mul

liken

char

ges

Mul

liken

char

ges

Chloroform

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

ESP

char

ges

ESP

char

ges

Chloroform

minus10

minus05

0

05

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Chloroform

minus10

minus05

0

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Nat

ural

atom

ic ch

arge

s

Nat

ural

atom

ic ch

arge

s

Gas

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

Figure 2 Charge distribution on Rubescin E calculated at the RHF B3PW91 and B3LYP levels in both gas phase and chloroform solutionand with the 6-311++G(dp) basis set

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 5: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 5

Table 1 Continued

Levels RHF B3LYP B3PW91Theory a[11] b[12] c[13]Basis set Gaz CDCl3 Gaz CDCl3 Gaz CDCl3

A44 (C9-C12-O60) 1090864 1087044 1087314 1082508 1084512 1079972A45 (C51-C14-C53) 126042 1260928 1261043 1261692 1262986 1263771A46 (C51-C14-C57) 1293418 1291716 1288385 1286558 1287371 1285448A47 (C53-C14-C57) 1045893 1047043 1050493 1051666 1049597 1050728 10614aA48 (C55-O15-C57) 1071084 1071499 1067602 1068013 1068133 1068678 10674aA49 (C1-C20-C8) 1211479 1210073 1209097 1207705 1209914 1208439A50 (C1-C20-C9) 1187226 1185220 1187478 1183732 1186818 1182898A51 (C8-C20-C9) 1038120 1039439 1042023 1043600 1040389 1042216 1044cA52 (C6-C26-C40) 1114945 1116304 1114804 1115216 1114199 1114969A53 (C8-C29-O11) 1044386 1044819 1046594 104594 1046712 1046043 1075cA54 (C8-C32-C34) 1204664 1204528 1205688 1204387 1204312 1202925A55 (C2-C34-C32) 1252907 1249802 1255569 1252584 1255114 1251913A56 (C3-C40-C26) 1247594 1251561 1243752 1247373 1243541 1247241A57 (C26-C40-O59) 1161404 1159652 1160868 1160753 1159905 1159607A58 (C5-C46-C48) 1100006 1100212 1098202 1098537 1096430 1096699A59 (C48-C46-O61) 1115740 1115456 1117313 1117203 1118859 1118641A60 (C46-C48-C51) 1026704 1027788 1028570 1030253 1026915 1028703A61 (C6-C51-C14) 1168638 1168705 1166829 1166156 1163993 1163329A62 (C6-C51-C48) 1044966 1045425 1042867 1043539 1043511 1044332A63 (C14-C51-C48) 1149685 1148714 1152826 1151809 1152757 1151468A64 (C14-C53-C55) 1061668 1062381 1067966 1068606 1066618 1067168 10614aA65 (O15-C55-C53) 1107484 1106455 1103339 1102350 1104305 1103331 11049aA66 (C14-C57-O15) 1113857 1112607 1110591 1109356 1111339 1110086 11049aA67 (C12-O60-C62) 1231805 1234264 1224520 1222629 1218099 1215920A68 (O60-C62-C63) 1183342 1191473 1186681 1194932 1186273 1193485A69 (O60-C62-O65) 1183753 1179395 1175454 1171467 1176414 1172568A70 (C63-C62-O65) 1230766 1226884 1234720 1230718 1234069 1231015A71 (C62-C63-C64) 1169655 1171950 1162922 1167661 1161754 1166519A72 (C62-C63-C71) 1178479 1173833 1194971 1185815 1197175 1190158A74 (C64-C63-C71) 1250717 1252904 1241105 1245124 1239876 1241815A75 (C63-C64-C67) 1272664 1272197 1272301 1272514 1269123 1267855Total energy (Hartree) -171915539 -171917648 -172982917 -172984726 -172917724 -172919498

B3LYP and B3PW91 level of the theory In CDCl3 the C-C-C bond angles are similar to those obtained at the gasphase The smallest value of C-C-C bond angle was C20-C8-C29 bond angle and the largest C51-C14-C57 bond angle Forthe C-C-O angle the smallest value was 1044386∘ obtainedat the RHF and the largest value was 123472∘ obtained at theB3LYP level both in the gas phaseTheC-O-C bond angle wasfound between 1071084∘ and 1234264∘ obtained at the RHFlevel These bonds angles compared to some known valuesfound in literature [12 14] for specific compound present inour structure show good similaritiesThe little differences arefound between 00268∘ and 15507∘ for C-C-C bond between00595∘ and 30614∘ for C-C-O bond and between 00202∘and 0781∘ for C-O-C bond These observed differences aredue to the fact that these groups of compounds were notisolated

33 Calculated 3119869119867-119867 Coupling Constant The chemical 3JH-Hproton-proton coupling constant was calculated using theoriginal Karplus [10] equation in gas and solvent and itsresults compared to experimental values [1] obtained byextracting Rubescin E in a solution of chloroform From ourresults we found that the calculated parameters both in gasand in chloroform are all similar at all the levels used Theseobtained results are also very close to experiment As pre-dicted in literature [10] we observed from Table 2 that whenthe angles between the two C-H vectors are close enough to00 or 1800 the value of 3JH-H coupling constant is greater (with31198691800 gt 311986900) and is very small when the angle is close to 900

34 Electronic Properties341 Mulliken ESP and Natural Charge Distribution TheMulliken atomic charges of our molecule calculated at all

6 Advances in Condensed Matter Physics

Figure 1 Ground state geometry of Rubescin E at B3LYP6-311++G(dp) in chloroform solution

the levels in gas phase and chloroform show positive chargefor all the hydrogen atoms The net charge on all theatoms varies from -1109653e to 1980512e from -1164916eto 1904034e and from -0891775e to 1524787e respectivelyin gas phase at the RHF B3PW91 and B3LYP levels In asolution of chloroform the charges varied from -1064962e to1826589e from -1206706e to 1904292e and from -0945041eto 1550492e with some oxygen atoms charges being positiveand can be explained by the fact that the oxygen is related toextremely negative carbon atoms The most positive chargeatoms are C63 C5 C8 and the most negative charge atoms areC71 C62 C67

The electrostatic charges were evaluated in this workusing the CHelpG scheme of Breneman model We foundfrom our results that the most positive charges atom is C4followed by C62 and C2 and the most negative charge atom isC12 followed by C5 and C7 The observation made at all levelsand basis set in gas phase and in a solution of chloroform isthat the most positive charge atoms are directly related to themost negative charge atoms

The natural atomic charges obtained using the naturalbonding orbitalmethodwere also used to evaluate the atomiccharge of Rubescin E Positive and negative charges werefound for all hydrogen and oxygen atoms respectively Inthis case all carbon atoms directly linked to hydrogen atomswere found to have negative charges except for those linked tooxygen atomsThemost negative charge atom was calculatedusing HF method and was observed for O65 (-069456e) andO60 (-068330e) respectively in chloroform and gas phaseThemost positive charge atomwas found to beC62 in both gas(097067e 080601e and 081407e respectively at the RHF

B3PW91 and B3LYP levels) and solvent (098887e 081804eand 082650e respectively at the RHF B3PW91 and B3LYPlevels) this is due to the fact that C62 is related to negativecharge atoms (O65 O60 and C63) Mulliken electrostatic andnatural atomic charge distributions are graphically shown inFigure 2 From Figure 2 one can observe that for almost allthe methods used for charge description the most positiveand negative charge atoms were calculated at the RHF levelin both gas and chloroform and this is due to the fact thatthe effect of electron correlation is not well described in HFmethod

342 Global Reactivity Descriptors In order to understandthe relationships between structure stability and reactivity ofRubescin Emolecule the global reactivity descriptors param-eters such as chemical hardness (H) chemical potential (120583119888119901)chemical softness (s) electronegativity (119883) and electrophilic-ity index (120596) were calculated The finite difference equationgiven by (1) was used to calculate the ionization potentialand electron affinity which are generally used to calculate theabove cited parameters

119868119875 = 119864119902=119873+1 minus 119864119902=119873119864119860 = 119864119902=119873 minus 119864119902=119873minus1

(1)

The IP and EA calculated from (1) were then used to calculate119867 120583119888119901 s119883 and120596 using equations found in the literature [15ndash17] All these parameters calculated using the twomethods ingas phase are presented in Table 3 A high value of 120583119888119901 and 120596characterizes a good electrophile while a small value standsfor good nucleophile

Advances in Condensed Matter Physics 7

Table2Ex

perim

entaland

calculated3J H

-Hproton

-protoncoup

lingconstant

ofRu

bescin

Ein

gasp

hase

andin

chloroform

solutio

n

PARA

MET

ERS

RHF

B3LY

PB3

PW91

EXP[1]

Gaz

CDCl3

Gaz

CDCl3

Gaz

CDCl3

Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)H10-C9-C12-H13

455506

620

438143

649

4813

93579

459537

614

4832

85576

4616

62610

40

H10-C9-C20-H21

1695

395

1265

1698

194

1267

168824

1261

168658

1259

1685

1258

1682201

1256

120

H27-C26-C40-H41

-110

718

1065

-120311

1059

-101794

1070

-1089

1066

-104324

1069

-112

981064

65

H28-C26-C40-H41

1053029

296

103995

283

1063433

307

1053319

296

1061668

305

10496

4292

13H33-C32-C34-H35

-02873

11-012

311

-05893

11-0366

11-0566

11-033

3111

100

H47-C46-C48-H49

-613

614

382

-611286

385

-619

356

374

-618

438

375

-615

482

379

-614

875

380

42

H47-C46-C48-H50

5874

37417

587503

417

580428

427

578579

430

5853

4420

58304

4424

42

H49-C48-C51-H52

-425704

669

-421786

675

-439616

646

-433642

656

-445718

636

-439227

647

42

H50-C48-C51-H52

-164

093

1221

-163817

1218

-16522

1232

-164

673

1227

-165874

1237

-165259

1232

11H54-C53-C55-H56

-03838

11-02856

11-032

7511

-02429

11-039

2111

-03074

11H66-C64-C67-H68

-177906

1299

-177979

1299

17846

741299

1787874

131784147

1299

178548

1299

H66-C64-C67-H69

-569125

443

-569428

443

-603746

395

-599

903

4-6040

07395

-601923

397

70H66-C64-C67-H70

606324

391

604696

394

566811

447

56944

9442

566504

447

567234

446

70

8 Advances in Condensed Matter Physics

05

minus15

minus10

minus05

0

05

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

minus15

minus10

minus05

0

05

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Mul

liken

char

ges

Mul

liken

char

ges

Chloroform

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

ESP

char

ges

ESP

char

ges

Chloroform

minus10

minus05

0

05

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Chloroform

minus10

minus05

0

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Nat

ural

atom

ic ch

arge

s

Nat

ural

atom

ic ch

arge

s

Gas

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

Figure 2 Charge distribution on Rubescin E calculated at the RHF B3PW91 and B3LYP levels in both gas phase and chloroform solutionand with the 6-311++G(dp) basis set

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 6: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

6 Advances in Condensed Matter Physics

Figure 1 Ground state geometry of Rubescin E at B3LYP6-311++G(dp) in chloroform solution

the levels in gas phase and chloroform show positive chargefor all the hydrogen atoms The net charge on all theatoms varies from -1109653e to 1980512e from -1164916eto 1904034e and from -0891775e to 1524787e respectivelyin gas phase at the RHF B3PW91 and B3LYP levels In asolution of chloroform the charges varied from -1064962e to1826589e from -1206706e to 1904292e and from -0945041eto 1550492e with some oxygen atoms charges being positiveand can be explained by the fact that the oxygen is related toextremely negative carbon atoms The most positive chargeatoms are C63 C5 C8 and the most negative charge atoms areC71 C62 C67

The electrostatic charges were evaluated in this workusing the CHelpG scheme of Breneman model We foundfrom our results that the most positive charges atom is C4followed by C62 and C2 and the most negative charge atom isC12 followed by C5 and C7 The observation made at all levelsand basis set in gas phase and in a solution of chloroform isthat the most positive charge atoms are directly related to themost negative charge atoms

The natural atomic charges obtained using the naturalbonding orbitalmethodwere also used to evaluate the atomiccharge of Rubescin E Positive and negative charges werefound for all hydrogen and oxygen atoms respectively Inthis case all carbon atoms directly linked to hydrogen atomswere found to have negative charges except for those linked tooxygen atomsThemost negative charge atom was calculatedusing HF method and was observed for O65 (-069456e) andO60 (-068330e) respectively in chloroform and gas phaseThemost positive charge atomwas found to beC62 in both gas(097067e 080601e and 081407e respectively at the RHF

B3PW91 and B3LYP levels) and solvent (098887e 081804eand 082650e respectively at the RHF B3PW91 and B3LYPlevels) this is due to the fact that C62 is related to negativecharge atoms (O65 O60 and C63) Mulliken electrostatic andnatural atomic charge distributions are graphically shown inFigure 2 From Figure 2 one can observe that for almost allthe methods used for charge description the most positiveand negative charge atoms were calculated at the RHF levelin both gas and chloroform and this is due to the fact thatthe effect of electron correlation is not well described in HFmethod

342 Global Reactivity Descriptors In order to understandthe relationships between structure stability and reactivity ofRubescin Emolecule the global reactivity descriptors param-eters such as chemical hardness (H) chemical potential (120583119888119901)chemical softness (s) electronegativity (119883) and electrophilic-ity index (120596) were calculated The finite difference equationgiven by (1) was used to calculate the ionization potentialand electron affinity which are generally used to calculate theabove cited parameters

119868119875 = 119864119902=119873+1 minus 119864119902=119873119864119860 = 119864119902=119873 minus 119864119902=119873minus1

(1)

The IP and EA calculated from (1) were then used to calculate119867 120583119888119901 s119883 and120596 using equations found in the literature [15ndash17] All these parameters calculated using the twomethods ingas phase are presented in Table 3 A high value of 120583119888119901 and 120596characterizes a good electrophile while a small value standsfor good nucleophile

Advances in Condensed Matter Physics 7

Table2Ex

perim

entaland

calculated3J H

-Hproton

-protoncoup

lingconstant

ofRu

bescin

Ein

gasp

hase

andin

chloroform

solutio

n

PARA

MET

ERS

RHF

B3LY

PB3

PW91

EXP[1]

Gaz

CDCl3

Gaz

CDCl3

Gaz

CDCl3

Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)H10-C9-C12-H13

455506

620

438143

649

4813

93579

459537

614

4832

85576

4616

62610

40

H10-C9-C20-H21

1695

395

1265

1698

194

1267

168824

1261

168658

1259

1685

1258

1682201

1256

120

H27-C26-C40-H41

-110

718

1065

-120311

1059

-101794

1070

-1089

1066

-104324

1069

-112

981064

65

H28-C26-C40-H41

1053029

296

103995

283

1063433

307

1053319

296

1061668

305

10496

4292

13H33-C32-C34-H35

-02873

11-012

311

-05893

11-0366

11-0566

11-033

3111

100

H47-C46-C48-H49

-613

614

382

-611286

385

-619

356

374

-618

438

375

-615

482

379

-614

875

380

42

H47-C46-C48-H50

5874

37417

587503

417

580428

427

578579

430

5853

4420

58304

4424

42

H49-C48-C51-H52

-425704

669

-421786

675

-439616

646

-433642

656

-445718

636

-439227

647

42

H50-C48-C51-H52

-164

093

1221

-163817

1218

-16522

1232

-164

673

1227

-165874

1237

-165259

1232

11H54-C53-C55-H56

-03838

11-02856

11-032

7511

-02429

11-039

2111

-03074

11H66-C64-C67-H68

-177906

1299

-177979

1299

17846

741299

1787874

131784147

1299

178548

1299

H66-C64-C67-H69

-569125

443

-569428

443

-603746

395

-599

903

4-6040

07395

-601923

397

70H66-C64-C67-H70

606324

391

604696

394

566811

447

56944

9442

566504

447

567234

446

70

8 Advances in Condensed Matter Physics

05

minus15

minus10

minus05

0

05

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

minus15

minus10

minus05

0

05

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Mul

liken

char

ges

Mul

liken

char

ges

Chloroform

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

ESP

char

ges

ESP

char

ges

Chloroform

minus10

minus05

0

05

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Chloroform

minus10

minus05

0

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Nat

ural

atom

ic ch

arge

s

Nat

ural

atom

ic ch

arge

s

Gas

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

Figure 2 Charge distribution on Rubescin E calculated at the RHF B3PW91 and B3LYP levels in both gas phase and chloroform solutionand with the 6-311++G(dp) basis set

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 7: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 7

Table2Ex

perim

entaland

calculated3J H

-Hproton

-protoncoup

lingconstant

ofRu

bescin

Ein

gasp

hase

andin

chloroform

solutio

n

PARA

MET

ERS

RHF

B3LY

PB3

PW91

EXP[1]

Gaz

CDCl3

Gaz

CDCl3

Gaz

CDCl3

Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)Ang

les(∘ )3J H

-H(H

z)H10-C9-C12-H13

455506

620

438143

649

4813

93579

459537

614

4832

85576

4616

62610

40

H10-C9-C20-H21

1695

395

1265

1698

194

1267

168824

1261

168658

1259

1685

1258

1682201

1256

120

H27-C26-C40-H41

-110

718

1065

-120311

1059

-101794

1070

-1089

1066

-104324

1069

-112

981064

65

H28-C26-C40-H41

1053029

296

103995

283

1063433

307

1053319

296

1061668

305

10496

4292

13H33-C32-C34-H35

-02873

11-012

311

-05893

11-0366

11-0566

11-033

3111

100

H47-C46-C48-H49

-613

614

382

-611286

385

-619

356

374

-618

438

375

-615

482

379

-614

875

380

42

H47-C46-C48-H50

5874

37417

587503

417

580428

427

578579

430

5853

4420

58304

4424

42

H49-C48-C51-H52

-425704

669

-421786

675

-439616

646

-433642

656

-445718

636

-439227

647

42

H50-C48-C51-H52

-164

093

1221

-163817

1218

-16522

1232

-164

673

1227

-165874

1237

-165259

1232

11H54-C53-C55-H56

-03838

11-02856

11-032

7511

-02429

11-039

2111

-03074

11H66-C64-C67-H68

-177906

1299

-177979

1299

17846

741299

1787874

131784147

1299

178548

1299

H66-C64-C67-H69

-569125

443

-569428

443

-603746

395

-599

903

4-6040

07395

-601923

397

70H66-C64-C67-H70

606324

391

604696

394

566811

447

56944

9442

566504

447

567234

446

70

8 Advances in Condensed Matter Physics

05

minus15

minus10

minus05

0

05

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

minus15

minus10

minus05

0

05

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Mul

liken

char

ges

Mul

liken

char

ges

Chloroform

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

ESP

char

ges

ESP

char

ges

Chloroform

minus10

minus05

0

05

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Chloroform

minus10

minus05

0

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Nat

ural

atom

ic ch

arge

s

Nat

ural

atom

ic ch

arge

s

Gas

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

Figure 2 Charge distribution on Rubescin E calculated at the RHF B3PW91 and B3LYP levels in both gas phase and chloroform solutionand with the 6-311++G(dp) basis set

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 8: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

8 Advances in Condensed Matter Physics

05

minus15

minus10

minus05

0

05

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

minus15

minus10

minus05

0

05

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Mul

liken

char

ges

Mul

liken

char

ges

Chloroform

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

ESP

char

ges

ESP

char

ges

Chloroform

minus10

minus05

0

05

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Chloroform

minus10

minus05

0

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Nat

ural

atom

ic ch

arge

s

Nat

ural

atom

ic ch

arge

s

Gas

minus10

minus05

0

05

10

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

B3LYPB3PW91RHF

Atoms number

Gas

Figure 2 Charge distribution on Rubescin E calculated at the RHF B3PW91 and B3LYP levels in both gas phase and chloroform solutionand with the 6-311++G(dp) basis set

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 9: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 9

Table 3 Global reactivity descriptors of Rubescin E at the RHF B3LYP and B3PW91 levels in gas phase and in chloroform solution using the6-311++G(dp) basis set

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

IP (eV) 7151 5662 7875 6819 7861 6819EA (eV) -0841 0684 0461 1804 0450 1825120583119888119901 (eV) -3155 -3173 -4168 -4312 -4156 -4322X (eV) 3155 3173 4168 4312 4156 4322H (eV) 3996 2489 3707 2508 3706 2497s (eV)minus1 0250 0402 0270 0399 0270 0400120596 (eV) 1245 2022 2343 3707 2330 3740

HOMO

LUMO

RHF6-311G(dp) B3PW916-311G(dp) B3LYP6-311G(dp)

EH = -8636 eV

EL = eV

Eg=11146 eVEH = -6275 eV

EL = -1922 eV

Eg=4353 eVEH = -6232 eV

EL = -1896 eV

Eg=4 eV

Figure 3 Molecular orbital and the HOMO and LUMO energy of Rubescin E in gas phase

The calculated vertical IP values in gas phase are biggerthan their corresponding values in solvent From Table 3we also found that putting the molecule in solvent increasesits electron affinity From the calculated IP and EA valuesone can conclude that solvent effect increases the capacityof molecule of gaining an electron compared to donating itIt also reduces the harness of our molecule and increasesthe softness Hence the presence of solvent increases thereactivity of the molecule Rubescin

343 Frontier Molecular Orbitals The frontier molecularorbitals of Rubescin E were evaluated using the ab initio andDFT methods The 6-311G(dp) and 6-311++G(dp) basis setswere used for this purpose in gas phase and in chloroformsolutionThe results show that the energy gap of ourmoleculedecreases when diffuse functions are added onto all theatoms We also found that whenever the basis set andmethods used the energy gap is greater than 4 showing thatour molecule is hard and can be used as insulator in manyelectronic devices In Figure 3 the 3Dplots of theHOMOandLUMO orbitals computed at the RHF B3PW91 and B3LYPlevels with the 6-311G(dp) basis set are illustrated in gasphase We observed that the HOMO of Rubescin E is locatedover the furan ring at the three levels and also at the C-Cof cyclohexane ring and C-O of oxiran ring By contrast the

LUMO orbital is located over the cyclohex-2-enone ring C-C and C-O bond of tetrahydrofuran ring We can thereforeconclude that electron can easily be transferred from furanring to tetrahydrofuran ring

The total density of states (DOS) spectrum of RubescinE at the gas phase and in chloroform is given in Figure 4for each level at the 6-311++G(dp) basis set These DOSsspectra presented in Figure 4 were obtained from Gauss-Sum 30 program [18] which was used in order to show thecontributions of different group tomolecular orbital (HOMOand LUMO) From Figure 4 we observe that the HOMO-LUMO energy gap is smaller when we move from RHF toB3PW91 and from B3PW91 to B3LYP level respectively forboth gas and chloroform phases with larger values obtainedin chloroform

344 UV-Vis SpectraAnalysis Timedependent density func-tional theory (TD-DFT) was used in gas phase at the twolevels B3PW91 and B3LYP with the 6-311++G(dp) basis setin order to determine the first six excited states to investigatethe UV-vis absorption spectra of themoleculeThe excitationenergy (E) wavelength (120582) and oscillator strength (f) alongwith their major contributions are given in Table 4 and theirresults are compared to experiment

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 10: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

10 Advances in Condensed Matter Physics

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3LYP Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

Energy (eV)

B3LYP Gas

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

DOS spectrumOccupied orbitalsVirtual orbitals

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Chloroform

minus20 minus15 minus10 minus5 0 5

0123456789

10

Energy (eV)

B3PW91 Gas

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Chloroform

minus20 minus15 minus10 minus5 0 5

0

1

2

3

4

5

6

7

Energy (eV)

RHF Gas

4293 eV

9797 eV9516 eV

4315 eV 4333 eV

4314 eV

Figure 4 Total density of state (DOS) spectrum of Rubescin E at the RHF B3PW91 and B3LYP levels in both gas and chloroform phase andwith the 6-311++G(dp) basis set

Two intense electronic transitions were predicted at44934 eV (27592 nm) and 34415 eV (36027 nm) withoscillator strengths of 00043 and 00014 respectively at theB3PW91 level and 45123 eV (27477 nm) and 34603 eV(35831 nm) with oscillator strengths of 00041 and 00014respectively at the B3LYP levelWe observed from the spectra

that the maximum absorption wavelength corresponds tothe electronic transition from HOMO to LUMO+1 with100 contribution followed by the electronic transition fromHOMO to LUMO with 99 contribution at the two levelsThe experimental absorption spectra of the title moleculepredict two bands at 254 nm and 365 nm The error between

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 11: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 11

Table 4Theoretical absorption wavelength (120582) excitation energy (E) and oscillator strengths of Rubescin E at the B3PW91 and B3LYP levelsin gas with the 6-311++G(dp) basis set

Excited states Exp [1] B3PW91 B3LYP120582 (nm) 120582 (nm) E (eV) f Major contributions 120582 (nm) E (eV) f Major contributions

1 365 36027 34415 00014 H-1 997888rarr L (93) 35831 34603 00014 H-1 997888rarr L (93)2 31218 39715 00000 H 997888rarr L (99) 31369 39524 00000 H 997888rarr L (99)3 254 27592 44934 00043 H-4 997888rarr L (24) 27477 45123 00041 H-4 997888rarr L (28)4 27266 45473 00006 H-4 997888rarr L (50) 27227 45538 00004 H-4 997888rarr L (44)5 26956 45994 00001 H-4 997888rarr L (19) 26847 46182 00001 H-4 997888rarr L (20)6 26121 47465 00000 H 997888rarr L+1 (100) 26316 47113 00000 H 997888rarr L+1 (100)

200 250 300 350 400 450 5000

50

100

150

200

250

300

350

wavelength (nm)

Epsi

lon

B3LYP

200 250 300 350 400 450 5000

50100150200250300350400

Wavelength (nm)

Epsi

lon

B3PW91

UV vis spectrumOscillator strength

UV vis spectrumOscillator strength

Figure 5 Theoretical absorption spectra of Rubescin E at the B3PW91 and B3LYP levels in gas with the 6-311++G(dp) basis set

the theoretical and experimental results range from - 473 nmto 2192 nm at the B3PW91 and from - 669 nm to 2077 nm atthe B3LYP levelThese errors are due to the fact that only onemolecule was considered for simulationThe theoretical UV-vis absorption spectra of Rubescin E in gas phase are shownin Figure 5

345 Dipole Moment (120583119863119872) Average Polarizability (120572) FirstStatic Hyperpolarizability (120573) and Anisotropy of PolarizationIn this work the dipole moment 120583119863119872 average polarizability120572 first static hyperpolarizability 120573 and anisotropy of polar-izability Δ120572 of Rubescin E were evaluated in both gas phaseand chloroform solution in order to define the nonlinearityof Rubescin E The finite-field approach was used for thispurpose Equations (2) (3) (4) and (5) were used to calculatethe polarizability dipole moment anisotropy of polarizabil-ity and first static hyperpolarizability respectively using thex 119910 119911 components obtained from Gaussian 09 W outputThe calculated parameters were presented in Table 5 at thethree levels with the 6-311++G(dp) basis set

120572 = 13 (120572119909119909 + 120572119910119910 + 120572119911119911) (2)

120583119863119872 = (1205832119909 + 1205832119910 + 1205832119911)12 (3)

120572 = 1radic2 [(120572119909119909 minus 120572119910119910)

2 + (120572119910119910 minus 120572119911119911)2

+ (120572119911119911 minus 120572119909119909)2 + 61205722119909119911 + 61205722119909119910 + 61205722119910119911]12

(4)

120573 = [(120573119909119909119909 + 120573119909119910119910 + 120573119909119911119911)2 + (120573119910119910119910 + 120573119910119911119911 + 120573119910119909119909)

2

+ (120573119911119911119911 + 120573119911119909119909 + 120573119911119910119910)2]12

(5)

The calculated values of polarizability and first static hyper-polarizability obtained from Gaussian output are in atomicunit These values were then converted into electrostatic unit(esu) for comparison purpose (for 120572 1 au = 01482 x 10minus24esu for 120573 1 au = 86393 x 10minus33 esu) [19ndash22] From a givingmolecule when these values (120583119863119872 and 120573) are greater thanthose of urea the molecule is said to have good active NLOproperties We observed from our results that the values of120572 120573 and 120583119863119872 are higher in solvent than their correspondingvalue in gas phase 120573 and 120583119863119872 of Rubescin E calculated at the6-311++G(dp) basis set using different methods were greaterthan those of urea These values calculated using the HF6-311D(dp)method (120583119863119872 = 52175Dand120573 = 17603169x10minus33esu) were also higher than those of urea (120583119863119872 = 38851D and120573 = 372811990910minus33esu) obtained using the same method and

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 12: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

12 Advances in Condensed Matter Physics

Table 5 Electric dipole moment polarizability anisotropy of polarization first-order hyperpolarizability and molar refractivity of RubescinE at the RHF B3LYP and B3PW91 levels with the 6-311G (d p) and 6-311++G (d p) basis sets

RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

120583119863119872 (D) 53966 70953 52074 67654 51176 66663120572119909119909 352266 421425 387992 470193 384258 465488120572119909119910 173299 242341 196436 296995 193544 290512120572119910119910 336148 424889 374795 479493 371091 475445120572119909119911 150612 0677331 0715703 -0411779 0795242 -0371934120572119910119911 339268 -123142 444903 00306216 453244 0450373120572119911119911 278550 371379 305049 415461 301619 411131120572tot (lowast10minus24 esu) 477036 600729 526799 673473 521438 667018Δ120572 (lowast10minus24 esu) 109240 98814 125387 116890 124723 115857120573119909119909119909 585850 116324 778905 117687 820568 124840120573119909119909119910 -343404 -403762 -339536 -665203 -290441 -604155120573119909119910119910 225993 154126 -296091 -106843 -366541 -122127120573119910119910119910 923349 129004 276922 -585834 268972 -636805120573119909119909119911 -163605 -235326 -550267 -817313 -580975 -896785120573119909119910119911 -872859 -0242861 -119414 103722 -128764 624556120573119910119910119911 -389332 -656523 -107633 -207304 -108216 -214866120573119909119911119911 -144537 -583711 -734826 -703072 -794692 -691599120573119910119911119911 -508004 -109450 -777921 -196200 -712685 -182588120573119911119911119911 -638532 239632 -167476 -0675756 -968167 578764120573 (lowast10minus33 esu) 7874783 8669154 17477167 37726270 16788815 37430498

Table 6 Calculated values of polarization density (P) average electric field (E) electric susceptibility (120594) refractive index (120578) dielectricconstant (E) magnitude of the displacement (D) and molar refractivity (MR) of Rubescin E molecule obtained at the RHF B3LYP andB3PW91 levels with the 6-311++G(dp) basis set

Parameters RHF B3LYP B3PW91Gas Chloroform Gas Chloroform Gas Chloroform

E (Vmminus1)lowast 109 33873 35365 29597 30078 29386 29924P (Cmminus2)lowast10minus2 83339 107944 75778 86086 83117 79130120594 27787 34473 28916 32324 31945 29865Elowast10minus11 33458 39377 34457 37475 37139 35297120578 19439 21089 19727 20573 20480 19966D (Cmminus2)lowast10minus2 01133 01393 01020 01127 01091 01056MR (esumolminus1) 1203345 1515366 1328875 1698866 1315351 1682585

basis set [21] Hence Rubescin E can be considered to havegood active NLO properties and this is due to the delocalize electron on the furan ring

346 Optoelectronic Properties In order to recognize theoptoelectronic nature of Rubescin E for different devicesapplications some parameters such as electric field (E) elec-tric polarization (P) electric susceptibility (120594) permittivity(E) refractive index (120578) and electric displacement (D) werecalculated using equations given in the literature [23ndash25]We observed from Table 6 that the results of the calculatedparameters are slightly different when we move from onelevel to another and also when the medium changes Thevalue of electric field is greater in a solution of chloroformthan its corresponding value in gas phase This is because the

polarizability increases in presence of a solvent The valuesof electric susceptibility dielectric constant and refractiveindex are greater at B3LYP level compared to their corre-sponding value at the RHF All the calculated parametersof optoelectronic properties obtained at the B3LYP level aresimilar to those obtained at the B3PW91 level None of theseparameters have been determined before either theoreticallyor experimentally

One of the central goals of this study is to understandthe underlying structurendashproperty relationships whichmightform the basis for a ldquomolecular engineeringrdquo approachto electronics optoelectronics and photonics The molarrefractivity of our molecule known to be an importantparameter in quantitative structurendashproperty relationshipanalysis was calculated for this purpose The value of the

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 13: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 13

Table 7 Experimental and calculated 1HNMR chemical shifts 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91

H10 36354 44787 45162 444 H41 32764 38070 37375 397H13 37599 45046 44656 55 H43 00206 01390 01217 -H17 11735 13264 12850 - H44 05304 06752 06653 065H18 14006 14842 15205 134 H45 11410 12581 12916 -H19 08843 09632 09055 - H47 29441 34299 33665 345H21 22212 31228 32220 29 H49 18799 20794 20578 211H23 07480 08702 08499 - H50 16401 20098 20019 151H24 09682 12471 12747 143 H52 21382 26231 26453 252H25 16905 17201 17225 - H54 64241 64756 65064 623H27 17833 20352 19975 19 H56 76008 76737 76347 734H28 17575 21239 21319 19 H58 72432 72352 71892 724H30 31956 37283 37158 377 H66 65053 65963 67294 673H31 33513 35791 35410 355 H68 19939 20486 20556 -H33 74298 74428 75055 707 H69 16905 18891 19108 182H35 59894 61274 61740 595 H70 17037 18508 18560 -H37 03741 04953 04827 - H72 13371 15726 15006 -H38 14776 18588 18632 122 H73 17489 18289 18340 187H39 07281 12414 13276 - H74 21737 22617 22408 -

molar refractivity was calculated at the three levels in bothgas and chloroform using the 6-311++G(dp) basis set TheLorenz-Lorentz equation was used for this calculation [2627] and its results are listed in Table 6

The high values of molar refractivity polarizabilityanisotropy of polarizability and first static hyperpolarizabil-ity of Rubescin E molecule show that the molecule has goodquantitative structurendashproperty relationship analysis andmight therefore form the basis for a ldquomolecular engineeringrdquoapproach to electronics optoelectronics and photonics

35 NMR Study of Rubescin E After the optimization ofthe Rubescin E molecule the 1H and 13C chemical shiftswere calculated at the RHF B3LYP and B3PW91 levels of thetheory using the 6-311++G(dp) basis set In order to comparethe calculated values of 1H and 13C chemical shifts withexperimental results we also need to calculate the absoluteshielding value of 1Hand 13C for the tetramethylsilane (TMS)using the same methods above The GIAO (Gauge InvariantAtomic Orbitals) approach known to provide satisfactorychemical shifts for different nuclei with larger molecules [28]was used for this purpose and the following equation

120575119894 (119901119901119898) = 119894119904119900119905119903119900119901119894119888 (119879119872119878119894) minus 119894119904119900119905119903119900119901119894119888 (119894) (6)

where 119894 is the atom type and was used to convert the chemicalshielding to chemical shifts

The experimental and calculated chemical shifts of 1Halong with their corresponding error are listed in Table 7From our results we observed that all the methods provideresults which are very close to experiment since the errorsbetween the experimental and calculated results are smaller

In order to compare experimental and theoretical resultsa linear correlation of 1H-NMR chemical shifts was estab-lished as shown in Figure 6 The regression line was plottedusing the following equations 120575119888119886119897 = 098880120575119890119909119901 minus 017198120575119888119886119897 = 097379120575119890119909119901 + 018796 and 120575119888119886119897 = 097069120575119890119909119901 +019387 respectively at the RHF B3PW91 and B3LYP levelsof the theory The theoretical results obtained from usingthe 6-311++G(dp) basis set show good correlation withexperiment since and the calculated R-square values arefound to be close to 1 at each level as shown by Figure 6

The calculated and experimental 13C chemical shifts ofour molecule are given in Table 8 and their comparison canbe found in Figure 7 The linear regression line plotted inFigure 7 shows that theoretical results are in good agreementwith experiment This is confirmed by the linear correlationcoefficient calculated here as R-square at the RHF B3PW91and B3LYP levels using the 6-311++G(dp) basis set

The following regression line plotted for each level usingthe general equation 120575119888119886119897 = 119886120575119890119909119901 + 119887 where a and b are givenin Figure 7 shows that the calculated 13C chemical shiftscorrelate very well with experiment The linear correlationcoefficient calculated as R-square found in Figure 7 alsoconfirms this

36 Vibrational Frequencies Analysis The vibrational fre-quencies of our molecule were computed by using B3LYP6-311G(dp) method in both gas phase and chloroform Theexperimental IR vibrational frequencies obtained for the twocarbonyl moiety present in our structure along with thecalculated scaled and unscaled vibrational frequencies IRand Raman frequencies with their approximate descriptions

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 14: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

14 Advances in Condensed Matter Physics

Table 8 Experimental and calculated 13C NMR chemical shift 120575 (ppm) of Rubescin E at the RHF B3LYP and B3PW91 levels in chloroformsolution using the 6-311++G(dp) basis set

Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1] Nuclei Calculated 120575 (ppm) Experimental 120575 (ppm) [1]RHF B3LYP B3PW91 RHF B3LYP B3PW91C1 44217875 56667075 5380495 475 s C34 134341675 139383575 13851605 1313 dC2 206549275 213070575 21062615 2003 s C36 21545175 24454275 2423345 227 qC3 56393275 73459075 7054015 646 s C40 53124275 65723775 6421635 603 dC4 43854075 56324675 5283685 449 s C42 22468475 24495375 2417495 215 qC5 60103575 77293875 7430925 683 d C46 48923175 61540375 5953515 552 dC6 39115675 49868075 4723345 413 s C48 29511075 34706875 3333385 311 tC8 39020275 51568975 4931465 413 s C51 38272375 48003275 4638035 388 dC9 65951775 79364675 7738455 714 d C53 117347375 119574075 11857695 1108 dC12 72763675 87369975 8463375 747 d C55 149815075 151680375 14971195 1429 dC14 130650675 133767875 13173785 1231 s C57 144528075 147708875 14591185 1392 dC16 21641175 23522875 2288275 211 q C62 178475775 182888075 18033025 1674 sC20 44504575 54261975 5316905 506 d C63 132986175 138281375 13647755 1288 sC22 16680575 18585575 1872435 175 q C64 148221575 150697975 15111665 1383 dC26 34988975 41161875 3999065 354 t C67 15275775 17096475 1751975 146 qC29 71816475 83425975 8135795 795 t C71 13518375 15400475 1547155 126 qC32 164415875 166172275 16517515 1516 d

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

B3LYP6-311++G(dp)

Experimental 1H NMR (ppm)

Experimental 1H NMR (ppm)Experimental 1H NMR (ppm)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

Cal

cula

ted

1H N

MR

(ppm

)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

B3PW916-311++G(dp)

minus1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

RHF6-311++G(dp)

y = +100x -0254 max dev150 r=0960 y = +0987x +0127 max dev104 r=0979

y = +0980x +0141 max dev103 r=0981

y = +100x -0254 max dev150 y = +0987x +0127 max dev104

y = +0980x +0141 max dev103

Figure 6 Comparison of experimental and theoretical 1H chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set in chloroform

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 15: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 15

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

Experimental 13C NMR (ppm)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3LYP6-311++G(dp)

0255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

B3PW916-311++G(dp)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

Cal

cula

ted

13C

NM

R (p

pm)

minus250

255075

100125150175200225250275

0 25 50 75 100 125 150 175 200 225 250

RHF6-311++G(dp)

y = +107x -517 max dev836 r=0994 y = +105x +238 max dev648 r=0998

y = +105x +354 max dev541 r=0998

y = +107x -517 max dev836 y = +105x +238 max dev648

y = +105x +354 max dev541

Figure 7 Comparison of experimental and theoretical 13C chemical shifts of Rubescin E calculated at the RHF B3PW91 and B3LYP usingthe 6-311++G(dp) basis set

are given in Table 9 The rest of the vibrational parameterof Rubescin E molecule which is not described in Table 9can be obtained from Supplementary Material S2 The scalefactor was determined as the mean value of the scale factorthat matches correctly for the C=O stretching and the givenexperimental valueThe obtained scale factor was 09706 Noimaginary frequencies were found showing that structure ofthe molecule Rubescin E is stable in both gas and solventFigure 8 gives the representation of the scaled IR intensity andRaman scattering activity

The C=O double bond gives rise to a very intenseabsorption band in IR spectrum The position and intensityof this band range from 1870 cmminus1 to 1540 cmminus1 dependingon the physical state electronic andmass effects of neighbor-ing substituents intra- and intermolecular interactions andconjugations [29] The C=O double bond absorption spectra

were observed experimentally at 1720 cmminus1 and 1664 cmminus1[1] In this study the vibrational mode of C=O was found at172620 cmminus1 and 169057 cmminus1 gas phase and at 170101 cmminus1and 166759 cmminus1 in chloroform There is good agreementbetween the vibrational modes with experimental values

4 Conclusion

In this study the geometry optimization of Rubescin E hasbeen carried out using ab initio HF and density functionaltheoryDFT (B3LYP and B3PW91)methods in both gas phaseand chloroform solution with the 6-311++G(dp) basis setThe optimized parameters were compared to those of someexisting groups of compound present in our molecule sincenone of this have been done before for the title molecule andgood agreement was found In order to confirm the geometry

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 16: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

16 Advances in Condensed Matter Physics

Table9Somec

alculatedscaled

andun

scaled

vibrationalfrequ

encies(cmminus1)IR

(kmm

olminus1)andRa

man

scatterin

gactivities(A4am

uminus1)o

fRub

escinEin

gasp

haseandchloroform

solutio

nob

tained

attheB

3LYP

6-311G(dp)level

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns32778244

317948966

801483

154454

327733

813179017957

02265

2605952

Sym

] sC-

Hgrou

pson

furanrin

g32729127

3174725319

16469

668185

32724528

3174279216

10819

837804

Asym

] sC-

Hgrou

pson

furanrin

g3240

2105

3143004185

09505

457116

3240

612

314339

364

16053

1003155

Asym

] sof

(C53-H54C55-H56)

3189511

309382567

35332

664094

318932

443093644

668

83712

1600412

] sC 40-H41

31754637

308019

9789

118025

2011091

31753082

3080048954

198811

3722174

Sym

] s(C34-H35C32-H33)

31727225

3077540

825

48286

432929

31704225

3075309825

129561

1111091

Asym

] sof

CH3(C36)

3164

5342

3069598174

54628

420037

31604647

3065650759

1313

981037241

] sC 64-H66

3140

7401

3046

517897

107253

481146

31418739

3047617683

289110

1114

035

Asym

] sof

CH3(C36C22)

30964047

3003512559

378710

1288493

31039325

3010814525

5335

1325644

8As

ym] sof

(C29-H30C29-H31)

30870614

2994449558

188484

6214

583094289

300146033

372141

110584

Asym

] sof

CH3(C71)] sC 12-H13

30560169

2964

336393

130488

742148

30620737

29702114

89179489

1627148

Sym

] sof

CH3(C22)

3055640

82963971576

144803

1428654

3056849

296514

353

210392

2348621

Asym

] sof

(C67-H69C67-H70)

302316

612932471117

1413

231209272

30290714

293819

9258

234132

2691

079

Sym

] sof

CH3(C71)

30167818

2926278346

239892

3180136

30180608

2927518976

258983

4866073

Sym

] sof

CH3(C67)

29997383

290974

6151

1000

4319507

29989246

2908956862

34528

899972

] sof

C 20-H21

1720

17795912

172620346

41725832

160679

17536214

1701012758

3262675

247567

] sof

C 62=O65and120573 s

ofC 62-C63=C64-C67

1664

17428596

1690573812

1915

410

326047

171916

781667592766

3749763

962937

] sof

C 2=O7and120573 s

ofC 1

-C2-C34-H35

16998624

1648866528

907515

1275998

169274

911641966

627

1590

973

26444

37] sC 63=C64120573

sH66-C64-C67-H68and120573 s

C 62-C63-C71-H72

16554051

160574

2947

209946

487257

16485716

15991144

52540221

1580979

] sC 34=C32120575

sof

H33-C32-C8and120575 s

ofH35-C34-C2

16272588

1578441036

11593

11251

16259499

157717

1403

14847

240532

Asym

] sof

C=Con

furanrin

g15328277

1486842869

173545

520428

153017

121484266

064

235845

1011704

Sym

] sof

C=Con

furanrin

g15310536

148512

1992

43738

61013

15225028

1476827716

54574

134777

scis

sof

(C29-H30C29-H31)

15184514

1472897858

139129

139129

15140912

146866846

4129483

2737

27120591 sof

CH3(C22C16)a

ndscis

wof

(C29-H30C29-H31)

15036728

1458562616

98386

57612

14985877

1453630069

197850

132898

120591 sof

CH3(C16C22C36)

149939

561454413732

51940

74533

14926161

1447837617

93270

174033

120591 sof

CH3(C42)scis

mof

(C26-H27C26-H28)a

ndscis

wof

(C48-H49C48-H50)

14884029

1443750813

09776

28672

1485682

144111154

67043

78167

120591 sof

CH3(C16C22C36)a

nd120575 m

ofC 20-H21

14855561

1440

989417

29100

52938

148174

021437287994

43280

1410

82scis

sof

(C48-H49C48-H50)a

nd120591 sof

CH3(C42)

14836563

143914

6611

04862

78554

14780624

1433720528

14889

212082

scis

sof

(C26-H27C26-H28)a

nd120591 m

ofCH3(C42)

14794465

1435063105

79832

380149

147031

891426209333

127942

586094

120591 sof

CH3(C67C71)

14635075

1419602275

25457

10126

14597847

1415991159

40997

20734

120591 sof

H21-C20-C9-H10and120591 w

ofCH3(C22)

14428169

139953

2393

53126

65726

14410254

1397794638

844

82148596

] mof

C 3-C40]

mof

C 5-C46rock s

of(C26-H27C40-H41)a

nd120591 m

ofH10-C9-C20-H21

14224074

1379735178

428712

4011

14205762

1377958914

6332

16108875

Sym

CH3um

brellamod

e

14187082

137614

6954

06510

12396

141637

111373879967

06332

115796

Asym

CH3um

brellamod

erock m

(C34-H35C32-H33)120575 m

C 51-H52

14179087

137537

1439

67934

35193

14148341

1372389077

52808

126492

] mof

C 14-C53120575

sof

H52-C51andsym

CH3um

brellamod

e14116946

1369343762

36967

2476

614055801

1363412697

63221

387377

asym

CH3um

brellamod

e(C 67C71)a

nd120575 m

ofH66-C64

14040182

1361897654

57921

13462

14020625

1360000

625

1276

8448755

rock m

of(H35-C34C32-H33)CH3um

brellamod

e(C 22C16)

and120591 m

ofH21-C20-C9-H10

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 17: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 17Ta

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

13994114

1357429058

73054

26928

1399317

135733

749

54113

66084

120591 sof

H10-C9-C20-H21rock m

of(H35-C34C32-H33)a

nd120575 m

ofH13-C12-O60

13927814

1350997958

44872

77674

13939199

135210

2303

87259

131186

120591 sof

H10-C9-C20-H21rock s

of(H35-C34C32-H33)a

nd120575 s

ofH13-C12-O6

13813486

1339908142

08619

16091

137852

37133716

7989

27575

35116

wagg s

of(C29-H30C29-H31)120591 sof

H10-C9-C20-H21120575

mof

H13-C12-C9andCH3um

brellamod

e(C 16)

13737055

1332494335

43307

90916

13710783

1329945951

50163

1766

6] m

ofC 63-C71C

H3um

brellamod

e(C 67C71)120575 s

ofC 64-H66and

120591 mof

H10-C9-C20-H21

13689888

1327919136

44971

104931

13674102

1326387894

54518

202257

rock so

f(H56-C55C53-H54)120575 s

ofC 51-H52w

agg s

of(C48-H49

C 48H50)a

ndwagg m

of(C26-H27C26H28)

1365648

132467856

42088

10219

1364

8154

1323870938

64354

27506

120591 sof

H10-C9-C12-H13120575

mof

C 64-H66rock m

(H35-C34C32-H33)

wagg m

of(C29-H30C29H31)a

ndCH3um

brellamod

e(C 16C36)

13516819

131113

1443

23942

18233

13514078

1310865566

38793

29367

wagg s

of(C26-H27C26-H28)120575 s

ofC 51-H52

13430612

130276

9364

08245

68235

13432284

1302931548

00396

7840

5120591 m

ofH10-C9-C20-H21120575

sof

C 12-H13120575

sof

C 51-H52

1326340

61286550382

60965

52766

13224392

128276

6024

79781

138929

] sof

C 3-C40120575

sof

C 40-H41

13012149

126217

8453

41883

62643

13017097

126265840

971261

69678

] mof

C 5-C6twist so

f(C 26-H27C26-H28)wagg m

of(C48-H49

C 48-H50)120575 m

ofH47-C46-C5rock s

of(H56-C55C53-H54)

12970244

1258113668

17948

71956

12974084

1258486148

13878

215171

] wof

C 9-C12w

agg s

of(C48-H49C48-H50)120575 m

ofH47-C46-C48

120575 sof

C 51-H52twist m

of(C26-H27C26-H28)

12884675

1249813475

35313

15262

1287909

124927173

15765

1413

67120575 s

ofC 46-H47120575

sof

C 12-H13120591

mof

H10-C9-C20-H21andtw

ist m

of(C26-H27C26-H28)

12782074

1239861178

14763

186173

1278004

41239664

268

29774

2953

26] m

ofC 14-C51120575

sof

C 57-H58twist m

of(C48-H49C48-H50)a

nd120575 s

ofC 51-H52

12734643

1235260371

31680

1013

7512718325

1233677525

42401

209966

120575 sof

C 46-H47120575

sof

C 12-H13120575

sof

C 57-H58120591

sof

H10-C9-C20-H21

andtw

ist m

of(C26-H27C26-H28)

12668541

1228848477

38717

53878

12664233

1228430601

68831

164996

120591 sof

H10-C9-C20-C8and120575 m

ofC 32-H33

12532129

1215616513

5916

571932

8212536896

1216078912

1207089

570914

scis

sof

(C32-H33C34-H35)a

nd120591 m

ofC 2

-C1-C20-C9

12522694

1214701318

07185

48164

12519233

1214365601

060

0887087

120575 mof

CHon

furanrin

gtw

ist so

f(C 48-H49C48-H50)tw

ist m

of(C26-H27C26-H28)a

nd120591 m

ofH52-C51-C6-C42

12459092

120853

1924

1779

705

57457

1246

65

12092505

2548417

9140

4] m

ofC 62C 63120591

mof

H66-C64-C67-H68twist so

f(C 29-H30

C 29H31)

12370891

11999

76427

128957

80876

12365792

11994

81824

1176

25188578

twist so

f(C 29-H30C29-H31)120591 m

ofH21-C20-C8-C16androck w

of(C32-H33C34-H35)

12200711

1183468967

149312

31637

12193148

1182735356

195929

78591

twist so

f(C 26-H27C26-H28)a

ndof

(C48-H49C48-H50)120575 s

ofC 51-H52120575

mof

C 55-H56and120591 m

ofC 6

-C5-C4-C36

12019071

1165849887

34760

67455

11991

897

11632140

09804

22135718

120575 sof

C 40-H41120575

mof

C 46-H47and120591 m

ofH13-C12-C4-C3

118540

6114

984382

154074

03306

118010

07114

4697679

187873

14104

twist so

f(C 48-H49C48-H50)120591 m

ofH52-C51-C14-C57scis s

of(C55-H56C53-H54)

11796

911

1144300367

19628

1119

11782209

1142874273

28925

17435

twist m

of(C48-H49C48-H50)120591 m

ofH28-C26-C40-H41120575

mof

C 51-H52and120591 m

ofC 42-C6-C5-C4

11667314

11317

29458

146259

51602

1164

8183

1129873751

93342

93366

120591 mC 1

-C20-C8-C32tw

ist so

f(C 29-H30C29-H31)120591 m

C 3-C4-C12-C9

11575523

1122825731

1552

9047107

115618

741121501778

2817

22116347

Scis

mof

(C32-H33C34-H35)120575 s

ofC 9

-H10and120591 m

C 12-C4-C5-C6

11485582

111410

1454

1465450

35872

11495

402

1115053994

2000358

66811

] mof

C 62-O60and120573 s

C 63-C64-C67-H68

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 18: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

18 Advances in Condensed Matter PhysicsTa

ble9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns

1144341

111001077

178416

35877

11444015

1110069455

270332

78819

twist m

of(C26-H27C26-H28)120591 m

C 4-C5-C6-C4120591

mC 10-C9-C20-C8

11369705

1102861385

16907

96148

113433

71100306

8920658

196536

120591 sH28-C26-C40-H41120591

mH37-C36-C46-C47scis s

(C32-H33

C 34-H35)

11228634

108917

7498

21546

840892

11205923

1086974531

356177

102656

120591 mH33-C32-C8-C20120591

mC 9

-C12-C4-C36120591

mC 41-C40-C26-C28and

120591 mC 42-C6-C51-C48

10994941

1066509277

480338

20757

10962182

106333

1654

6216

955261

] mC 12-O60120575

mof

C 46-H47120575

mof

C 51-H52120591

mC 9

-C20-C1-C22

andtw

ist m

of(C48-H49C48-H50)

10914985

1058753545

281743

16861

10852223

1052665631

299371

30875

] mC 57-O15andscis

sof

(C53-H54C55-H56)

10807072

1048285984

924087

07097

1080906

41048479208

1443970

19949

] mC 12-O60sym120575 s

CH3scis s

of(C32-H33C34-H35)a

nd120591 m

C 2-C1-C3-C40

10717177

1039566169

1231938

67128

10730176

1040

827072

1975919

159455

] mC 62-O60120575

sof

C 46-H47andasym120575 s

ofCH3(C71)

10683452

1036294844

98016

18104

106710

281035089716

2418

7757115

120591 sC 67C 64C 63C 71

10509373

1019409181

133402

07713

1048853

101738741

376705

18533

120575 mof

C 46-H47120575

mof

C 64-H66120591

mC 67-C64-C63-C71

10455983

1014230351

692901

6619

1044

7341

101339

2077

622356

129459

twist m

of(C71-H73C71-H74)120575 m

ofC 26-H27120575

mof

C 53-H54120575

mof

C 48-H50

102714

079963264

7917

797

5289

10272885

996469845

302585

38663

twist s(

C 34H35C32H33)

10224549

9917

81253

09472

27037

102074

06990118

382

63182

41772

] mof

C 48-C51asym120575 s

ofCH3120573

mH66-C64-C63-C62and120591 m

H13-C12-C4-C5

10177638

9872

30886

300425

39798

101531

61984856617

4353

1988798

asym120575 s

ofCH3rock s

of(C29-H30C29-H31)120591 m

C 9-C20-C1-C3

10115509

9812

04373

48801

66943

1009814

9795

1958

63114

137312

120573 sC 51-C14-C53-H54asym120575 m

ofCH3(C42)120573 s

H58-C57-O15-C55

10020581

9719

96357

1216

2625574

9987131

968751707

275923

62284

] mof

C 46-C48120591

mH47-C46-C48-C49120573

mC 1

-C3-C40-C26

9946222

964783534

147581

17537

9931115

963318155

228186

43633

asym120575 m

ofCH3grou

ps120591

mC 3

-C4-C5-C46120591

mC 48-C51-C6-C26

9847888

955245136

99824

21081

9828653

953379341

230630

44849

120591 mC 32-C8-C29-H31asym120575 m

ofCH3grou

ps120591

mH13-C12-C9-H10

9355082

9074

42954

215974

15821

933456

90545232

3516

8943679

rock so

f(C 26-H27C26-H28)asym120575 m

ofCH3120591

mC 40-C3-C1-C22

8944122

8675

79834

67651

61001

8922404

865473188

1614

90132213

twist s(

C 67-H69C67-H70)a

nd120575 s

C 64-H66

8887652

862102244

7164

628098

8863304

8597

40488

95352

61863

120575 sC 64-H66rock m

(C48-H49C48-H50)tw

ist s(

C 67-H69

C 67-H70)

8665271

840531287

11709

06223

8709888

844859136

18110

23985

twist so

f(C 53-H54C55-H56)

8634892

8375

84524

112475

67108

8629942

837104374

104041

1315

53120591 m

H52-C51-C48-H49rock m

(C26-H27C26-H28)rock m

(C22-H23C22-H24)120591 m

H45-C42-C6-H5

84304

888177

57336

1744

6125204

8430694

8177

77318

322094

51332

wagg s

(C34-H35C32-H33)a

nd120591 w

O7=C2-C1-C22

8348182

8097

73654

87574

31907

8313

156

806376132

1517

066936

120591 sH47-C46-C5-C4120591

sC 48-C51-C6-H42

8137477

7893

35269

10138

60149

8100882

785785554

07347

130197

120591 mC 26-C40-C3-C4

8012

001

777164

097

326376

09129

8028851

778798547

5115

8032321

Sym120575 s

CHgrou

pson

furanrin

g7727524

7495

69828

4017

7944199

7696

1974653043

624072

83682

120591 sof

C 71-C63-C62-O60120591

mof

H66-C64-C67-H69

7654691

742505027

71326

7398

7650018

742051746

117201

1419

92Sym120575 m

CHon

furanrin

gand120591 m

C 42-C6-C51-C48

7513

513

728810761

260

4524905

7509877

728458069

50319

44818

120591 mC 5

-C4-C12-C9and120591 m

C 34-C32-C8-C29

7389121

716744737

11644

802055

7391

239

716950183

1619

6300788

Asym120575 s

CHon

furanrin

g7221832

700517704

123489

26117

72344

58701742426

188683

44984

120591 mC 1

-C2-C34-C32120591

mC 4

-C12-O60-C62

6869578

666349066

54224

14738

6858912

6653144

64107183

28493

120591 mH58-C57-C14-C53and120591 m

C 48-C51-C6-C42

668865

64879905

128788

09188

6676

324

6476

03428

184726

18119

120591 mC 9

-C12-C4-C36

6464378

6270

4466

6118100

05746

6467719

6273

68743

219688

1442

120573 mC 67-C64-C63-C71

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 19: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 19

Table9Con

tinued

Gas

phase

Chloroform

solutio

nVibrationalfrequ

encies

Vibrationalfrequ

encies

Exp[1]

Unscaled

Scaled

IRRa

man

Unscaled

Scaled

IRRa

man

Approxim

ated

escriptio

ns6195

628

600975916

1453

592821

6179

459

5994

07523

1931

5845248

120591 sC 53-C55-O15-C57

6168961

598389217

44856

16795

6156735

5972

03295

1037

4528885

120591 sC 57-C14-C51-C48

5907602

573037394

22255

80984

5908644

573138468

48686

1574

35120591 m

O60-C62-C63-C71120591

mC 26-C6-C5-C46

5459651

5295

86147

09299

37502

5495

733

533086101

38923

77962

120591 mC 62-C63-C64-C67120575

mof

CH3(C71)

5383894

522237718

171612

04714

5366383

520539151

2519

7711212

120591 mC 4

-C5-C6-C51

5089443

493675971

12889

2069

5075983

492370351

14410

41594

120591 mC 3

-C4-C5-C46rock m

(C26-H27C26-H28)

475643

4613

7371

12962

45398

47440

5946

0173723

24947

107229

120575 sC 16-C8-C29

4615

318

4476

85846

23465

0597

4614

543

4476

10671

40236

09512

120591 mC 48-C46-C5-C4

4510

159

4374

85423

29275

40628

448867

43540

099

49702

88493

120575 sC 32-H33120591

mC 29-C8-C32-C34

4371112

423997864

14877

16801

4373

603

424239491

49702

2869

120591 mO60-C62-C63-C64androck m

(C26-H27C26-H28)

4162717

403783549

70349

29785

413098

40070506

93286

59324

120591 mC 62-C63-C64-C67

3764872

365192584

06057

15014

3759518

364673246

08549

27432

120575 sC 36-C4-C12

3594

3634865292

10513

02212

3576

319

346902943

040

9934574

120591 mC 22-C1-C3-C40

3471844

336768868

02931

13363

3460298

33564

8906

06318

18682

Asym120575 m

ofCH3grou

ps3094

3730015389

14908

0891

3062399

2970

52703

15054

11169

120573 mC 67-C64-C63-C71

2310

043

224074171

35498

08619

2299752

223075944

78008

16674

120573 mO60-C62-C63-C64

427727

41489519

03353

15162

3952

7538341675

05007

42131

twist m

of(C14-C57C14-C53)

120575=bend

ing120591=ou

tofp

lane

deform

ation120573=in

planed

eformation

w=weakm

=mediums

=str

ongwagg=wagging

twist=

twistingrock=

rockingscis

=sciss

oring]=str

etchingsym

=symmetric

alandasym

=anti-symmetric

al

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 20: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

20 Advances in Condensed Matter Physics

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000

Gas phaseGas phase

Chloroform solutionChloroform solution

050

100150200250300350400450500550600650700750800

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

0

10

20

30

40

50

60

70

80

90

10005001000150020002500300035004000

Tran

smitt

ance

()

Tran

smitt

ance

()

Wavelength (cmlowastlowast-1)

Wavelength (cmlowastlowast-1) Wavenumber (cmlowastlowast-1)

wavenumber (cmlowastlowast-1)

Ram

an sc

atte

ring

act

iviti

es (A

lowastlowast

4am

u)Ra

man

scat

teri

ng a

ctiv

ities

(Alowastlowast

4am

u)

Figure 8 IR spectra (blue) and Raman spectra (red) of Rubescin E in both gas phase (top) and chloroform solution (bottom) using B3LYP6-311G(dp)

of our molecule the 3119869119867-119867 proton-proton coupling constantwas evaluated and the results compared to experiment weresimilar The calculated results have showed that RubescinE possesses a HOMO-LUMO energy gap greater than 4which indicate a hard molecule that can be used as aninsulator in many electronic devices We can also concludefrom the HOMO-LUMO analysis that the electron caneasily be transferred from the furan to tetrahydrofuran ringThe charge analysis performed using Mulliken populationCHepG and NBO methods showed positive charge for allhydrogen atoms it was observed that the most positive(respectively negative) charge atoms were directly linkedto the most negative (respectively positive) charge atomsand also that all the carbon atoms linked to hydrogen wereall negatively charged The calculated first static hyperpo-larizability was found to be more than four times greaterthan the reported value found in the literature for urealeading us to the conclusion that Rubescin E has very goodNLO properties The calculated optoelectronic propertiesshow large values of refractive index dielectric constant

and electrical susceptibility leading us to the conclusionthat Rubescin E has strong optical and phonon applicationGood agreement was found between the calculated andexperimental UV spectrumThe theoretical proton (1H) andcarbon (13C) chemical shift values (with respect to TMS)werereported and compared with experimental data showinga very good agreement for both 1H and 13C NMR Thecalculated vibrational frequencies done using the B3LYP6-311G(dp) functional in both gas and chloroform solutionswere all positive leading us to the conclusion that RubescinE was stable Approximate descriptions of the vibrationalassignments were done in order to take out the differentmotions of atoms in the title molecule

Data Availability

Most of data are already provided in themanuscriptThe data[Figures 2 and 4] used to support the findings of this study areavailable from the corresponding author upon request

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 21: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Advances in Condensed Matter Physics 21

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

We are thankful to the Council of Scientific and Indus-trial Research (CSIR) India for financial support throughEmeritus Professor Scheme (Grant No 21(0582)03EMR-II) to Prof AN Singh of the Physics Department BahamasHindu University India which enabled him to purchase theGaussian Software We are most grateful to Emeritus ProfAN Singh for donating this software toDr GehWilson EjuhUniversity of Dschang IUT-FV Bandjoun Cameroon

Supplementary Materials

The optimized geometry parameters of the Rubescin Emolecule such as bonds length bonds angles and dihedralangle obtained at the three levels RHF B3PW91 and B3LYPusing the 6-311++G(dp) basis set in gas phase and in asolution of chloroform are listed in Supplementary Material1 The vibrational frequencies of the title molecules alongwith the IR intensity and Raman scattering activity of eachvibrational mode obtained at the B3LYP6-311G(dp) basisset in both gas phase and a chloroform solution are listedin SupplementaryMaterial 2 associated with this manuscript(Supplementary Materials)

References

[1] T T Armelle N K Pamela M Pierre et al ldquoAntiplasmodiallimonoids from Trichilia rubescens (Meliaceae)rdquo MedicinalChemistry vol 12 no 7 pp 655ndash661 2016

[2] Y Zhang Z Guo and X-Z You ldquoHydrolysis theory forcisplatin and its analogues based on density functional studiesrdquoJournal of the American Chemical Society vol 123 no 38 pp9378ndash9387 2001

[3] H Tanak F Ersahin Y Koysal E Agar S Isik and MYavuz ldquoTheoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylaminerdquo Journal ofMolecular Modeling vol 15 no 10 pp 1281ndash1290 2009

[4] Y B Alpaslan N Suleymanoglu E Oztekin F Ersahin E Agarand S IsIk ldquoExperimental and semi-empirical and DFT calcu-lational studies on (E)-2-[(24-Dichlorophenylimino) methyl]-p-cresolrdquo Journal of Chemical Crystallography vol 40 no 11 pp950ndash956 2010

[5] M Szafran A Komasa and Z Dega-Szafran ldquoSpectro-scopic and theoretical studies of bis(dimethylphenyl betaine)hydrochloride monohydraterdquo Vibrational Spectroscopy vol 79pp 16ndash23 2015

[6] S Difley L-P Wang S Yeganeh S R Yost and T V VoorhisldquoElectronic properties of disordered organic semiconductorsvia QMMM simulationsrdquo Accounts of Chemical Research vol43 no 7 pp 995ndash1004 2010

[7] G-J Linker P H M V Loosdrecht P V Duijnen and R BroerldquoComparison of ab initio molecular properties of EDO-TTFwith the properties of the (EDO-TTF)2PF6 crystalrdquo ChemicalPhysics Letters vol 487 no 4-6 pp 220ndash225 2010

[8] G W Ejuh F T Nya R A Y Kamsi and J M B NdjakaldquoInvestigation of the electronic optoelectronics and linearand nonlinear optical properties of the molecules heptacene([7]acene) (C30H18) and [7]acene doped with potassium atom(C30H9K9)rdquo Polymer Bulletin pp 1ndash16 2017

[9] M Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A02 Gaussian Inc Wallingford UK 2009

[10] H J Reich Vicinal Proton-Proton Coupling 3JHH vol 14University of Wisconsin Chemistry 2010

[11] K BWiberg and YWang ldquoA comparison of some properties ofC=O and C=S bondsrdquo Arkivoc vol 2011 no 5 pp 45ndash56 2011

[12] P B Liescheski and D W H Rankin ldquoMolecular structure offuran determined by combined analyses of data obtained byelectron diffraction rotational spectroscopy and liquid crystalNMR spectroscopyrdquo Journal of Molecular Structure vol 196 noC pp 1ndash19 1989

[13] R Siegfried and M Dieter ldquoEthylene Oxiderdquo Journal of Molec-ular Structure vol 13 pp 547ndash572 2012

[14] H J Geise W J Adams and L S Bartell ldquoElectron diffractionstudy of gaseous tetrahydrofuranrdquo Tetrahedron vol 25 no 15pp 3045ndash3052 1969

[15] I FlemingMolecular Orbitals and Organic Chemical ReactionsJohn Wiley amp Sons Ltd Chichester UK 2009

[16] S Xavier S Ramalingam and S Periandy ldquoExperimental [FT-IR and FT-Raman] analysis and theoretical [IR Raman NMRand UVndashVisible] investigation on propylbenzenerdquo Journal ofTheoretical and Computational Science vol 109 pp 1ndash12 2014

[17] D Zeynep A K Cigdem and B Orhan ldquoTheoreticalanalysis (NBO NPA Mulliken Population Method) andmolecular orbital studies (hardness chemical potential elec-trophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2- methylphenylimino)methyl)-3methoxyphenolrdquo Journal ofMolecular structure vol 1091 pp 183ndash195 2015

[18] N M OrsquoBoyle A L Tenderholt and K M Langner ldquoSoftwarenews and updates cclib a library for package-independentcomputational chemistry algorithmsrdquo Journal of ComputationalChemistry vol 29 no 5 pp 839ndash845 2008

[19] J B Foresman and A Frisch Exploring Chemistry with Elec-tronic Structure methods Gaussian Inc Pittsburgh Pa USA1996

[20] H Reis M Papadopoulos P Calaminici K Jug and AKoster ldquoCalculation of macroscopic linear and nonlinear opti-cal susceptibilities for the naphthalene anthracene and meta-nitroaniline crystalsrdquo Chemical Physics vol 261 no 3 pp 359ndash371 2000

[21] M Govindarajan and M Karabacak ldquoFT-IR FT-Ramanand UV spectral investigation Computed frequency esti-mation analysis and electronic structure calculations on 4-hydroxypteridinerdquo Journal of Molecular Structure vol 1038 pp114ndash125 2013

[22] O Tamer ldquoA unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate Synthesis crystal structure FT-IR andUVndashVis spectra and DFT calculationsrdquo Journal of MolecularStructure vol 1144 pp 370ndash378 2017

[23] D Freude ldquoChapter Radiationrdquo Journal of Spectroscopy pp 1ndash21 2006

[24] G W Ejuh S Nouemo and J M B Ndjaka ldquoTchangnwaNya Modeling of the electronic optoelectronics photonic andthermodynamics properties of 14 bis(3 carboxyl 3 oxo prop 1enyl) benzene moleculerdquo Iranian Chemical Society 2016

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 22: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

22 Advances in Condensed Matter Physics

[25] A Spott A Jaron-Becker and A Becker ldquoAb initio andperturbative calculations of the electric susceptibility of atomichydrogenrdquo Physical Review A Atomic Molecular and OpticalPhysics vol 90 pp 1ndash6 2014

[26] R Carrasco J Padron and J Galvez ldquoDefinition of a novelatomic index for QSAR the refractopological staterdquo Journal ofPharmaceutical Science vol 7 pp 19ndash26 2004

[27] J A Padron R Carasco and R F Pellon ldquoMolecular descriptorbased on a molar refractivity partition using Randic-typegraph-theoretical invariantrdquo Journal of Pharmaceutical Sciencesvol 5 pp 258ndash265 2002

[28] I Cakmak ldquoGIAO calculations of chemical shifts in enantio-metrically pure 1-trifluoromethyl tetrahydroisoquinoline alka-loidsrdquo Journal ofMolecular Structure THEOCHEM vol 716 no1-3 pp 143ndash148 2005

[29] E Temel C Alasalvar H Eserci and E Agar ldquoExperimental(X-ray IR and UVndashvis) and DFT studies on cocrystallizationof two tautomers of a novel Schiff base compoundrdquo Journal ofMolecular Structure vol 1128 pp 5ndash12 2017

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom

Page 23: Electronic Structure, Spectroscopic (IR, Raman, UV-Vis

Hindawiwwwhindawicom Volume 2018

Active and Passive Electronic Components

Hindawiwwwhindawicom Volume 2018

Shock and Vibration

Hindawiwwwhindawicom Volume 2018

High Energy PhysicsAdvances in

Hindawi Publishing Corporation httpwwwhindawicom Volume 2013Hindawiwwwhindawicom

The Scientific World Journal

Volume 2018

Acoustics and VibrationAdvances in

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

AstronomyAdvances in

Antennas andPropagation

International Journal of

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom Volume 2018

International Journal of

Geophysics

Advances inOpticalTechnologies

Hindawiwwwhindawicom

Volume 2018

Applied Bionics and BiomechanicsHindawiwwwhindawicom Volume 2018

Advances inOptoElectronics

Hindawiwwwhindawicom

Volume 2018

Hindawiwwwhindawicom Volume 2018

Mathematical PhysicsAdvances in

Hindawiwwwhindawicom Volume 2018

ChemistryAdvances in

Hindawiwwwhindawicom Volume 2018

Journal of

Chemistry

Hindawiwwwhindawicom Volume 2018

Advances inPhysical Chemistry

International Journal of

RotatingMachinery

Hindawiwwwhindawicom Volume 2018

Hindawiwwwhindawicom

Journal ofEngineeringVolume 2018

Submit your manuscripts atwwwhindawicom