electron structure of organophosphorus compounds

5
ELECTRON STRUCTURE OF ORGA NOPHOSPHORUS COMPOUNDS I. THEORY AND PARAMETRIZATION OF THE ITERATIVE METHOD OF COMPUTATION, ALLOWING FOR ALL THE VALENCE ELECTRONS V. Ya. Artyukhov and V. I. Danilova UDC 539.192.194 The theory and parametrization of an iterative method of calculating the electron structure of molecules are presented. Use is made of the modified Mulliken equation for calculating the population of the atomic orbits, while group theory is employed for estimating the param- eters. A comparison between the calculated and experimental ionization potentials of cer- tain molecules confirms that the simple computing method here proposed yields reasonably satisfactory results. 1. Introduction In this paper we shall set out a method of calculation which we have recently developed for calcula- ting the electron structures of various organophosphorus compounds. On the basis of the results so ob- tained we shall interpret certain physical and chemical properties of these compounds. Since the majority of organophosphorus compounds have a nonplanar structure, computing methods based on the ~-approxi- marion are inapplicable. We used a semiempirical method with due allowance for all the valence electrons, namely, a modified Hoffman iteration method incorporating the self-consistency condition. A suitable choice of parameters forms the basis of any semiempirical method of calculating the elec- tron structure of molecules. All existing semiempirical methods are constructed in such a way that the choice of parameters is based either on a specific problem or on the properties of a limited number of compounds. An approach of this kind to the solution of quantum-chemical problems has a number of ser- ious disadvantages. We consider the main drawbacks to be the following: a) in solving each problem the choice of parameters nearly always has to be started afresh; b) a comparison between the results obtained by different authors is often impossible; c) the premises employed as a basis for the choice of parameters are often of a specialized or even contradictory character, and this impedes optimization of the computing technique; d) the absence of a proper logical basis for the choice of parameters makes the range of application of any particular computing method very uncertain. We ourselves consider that only the acceptance of a specific system for choosing the parameters will avoid these shortcomings. This system should be based on a small number of the most general prin- ciples. The system for choosing the parameters should constitute a set of rules, comprising equations relating one parameter to another, all the parameters to the characteristics of the molecule, and so forth. An analog to this type of system is provided by the various rules which exist for determining the screening constants in calculating orbital exponents (for example, the frequently-employed Slater rules). V. D. Kuzr/etsov Siberian Physico-Technical Institute Attached to Tomsk State University. Trans- lated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 104-109, February, 1974. Ori- ginal article submitted November 22, 1972. 19 75 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part of this publicaHon may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00. 234

Upload: v-ya-artyukhov

Post on 09-Aug-2016

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Electron structure of organophosphorus compounds

E L E C T R O N S T R U C T U R E O F

O R G A N O P H O S P H O R U S C O M P O U N D S

I . THEORY AND PARAMETRIZATION OF THE ITERATIVE

METHOD OF COMPUTATION, ALLOWING FOR A L L THE

VALENCE ELECTRONS

V. Y a . A r t y u k h o v a n d V. I . D a n i l o v a UDC 539.192.194

The theory and p a r a m e t r i z a t i o n of an i t e ra t ive method of calculat ing the e lec t ron s t r u c t u r e of molecu les a r e p r e sen t ed . Use is made of the modif ied Mulliken equation for calculat ing the populat ion of the a tomic orb i t s , while group theory is employed for es t imat ing the p a r a m - e t e r s . A c o m p a r i s o n between the ca lcula ted and exper imenta l ionizat ion potent ia ls of c e r - ta in molecu les conf i rms that the s i m p le computing method h e r e p roposed yields r easonab ly s a t i s f a c t o r y r e su l t s .

1 . I n t r o d u c t i o n

In this p a p e r we shal l se t out a method of calcula t ion which we have r ecen t ly developed for ca lcula- t ing the e lec t ron s t r u c t u r e s of var ious organophosphorus compounds. On the bas i s of the r e su l t s so ob- ta ined we shal l i n t e r p r e t ce r t a in phys ica l and chemica l p r o p e r t i e s of these compounds. Since the ma jo r i t y of o rganophosphorus compounds have a nonplanar s t r uc tu r e , computing methods based on the ~ -approx i - mar ion a r e inappl icable . We used a s e m i e m p i r i c a l method with due al lowance for all the va lence e lec t rons , namely , a modif ied Hoffman i t e ra t ion method incorpora t ing the s e l f - cons i s t ency condition.

A sui table choice of p a r a m e t e r s f o r m s the bas i s of any s e m i e m p i r i c a l method of calculat ing the e lec- t ron s t r u c t u r e of molecu les . All exis t ing s e m i e m p i r i c a l methods a r e cons t ruc ted in such a way that the choice of p a r a m e t e r s is based e i ther on a spec i f ic p rob lem or on the p r o p e r t i e s of a l imi ted number of compounds . An approach of this kind to the solut ion of quan tum-chemica l p r o b l e m s has a number of s e r - ious d i sadvantages . We cons ider the ma in drawbacks to be the following:

a) in solving each p r o b l e m the choice of p a r a m e t e r s nea r l y a lways has to be s t a r t ed a f resh ;

b) a c o m p a r i s o n between the r e su l t s obtained by dif ferent authors is often imposs ib le ;

c) the p r e m i s e s employed as a ba s i s fo r the choice of p a r a m e t e r s a r e often of a spec ia l i zed or even con t rad ic to ry c h a r a c t e r , and this impedes opt imizat ion of the computing technique;

d) the absence of a p r o p e r logical bas i s for the choice of p a r a m e t e r s makes the range of appl icat ion of any p a r t i c u l a r computing method v e r y uncer ta in .

We ou r se lves cons ide r that only the accep tance of a spec i f ic s y s t e m for choosing the p a r a m e t e r s will avoid these sho r t comings . This s y s t e m should be based on a sma l l numbe r of the m o s t genera l p r i n - c ip les . The s y s t e m for choosing the p a r a m e t e r s should const i tu te a se t of ru le s , compr i s ing equations re la t ing one p a r a m e t e r to another , all the p a r a m e t e r s to the c h a r a c t e r i s t i c s of the molecule , and so for th . An analog to this type of s y s t e m is provided by the va r ious ru les which exis t for de te rmin ing the sc reen ing constants in calcula t ing orb i ta l exponents (for example , the f r equen t ly -employed Slater ru les ) .

V. D. Kuzr/etsov Siber ian Phys i co -Techn ica l Ins t i tu te Attached to T o m s k State Univers i ty . T r a n s - lated f r o m Izves t iya Vysshikh Uchebnykh Zavedenii , Fizika, No. 2, pp. 104-109, Feb rua ry , 1974. Or i - ginal a r t i c l e submi t ted November 22, 1972.

�9 19 75 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part o f this publicaHon may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission o f the publisher. A copy o f this article is available from the publisher for $15.00.

234

Page 2: Electron structure of organophosphorus compounds

T h e H o f f m a n m e t h o d h e r e c h o s e n i s conven ien t fo r c o n s t r u c t i n g a p a r a m e t e r - s e l e c t i n g s y s t e m , in tha t i t r e q u i r e s t he s p e c i f i c a t i o n of only two s e t s of p a r a m e t e r s : the o r b i t a l exponen t s and the i o n i z a t i o n p o t e n t i a l s of t he a t o m i c o r b i t s .

2 . T h e o r y o f t h e C o m p u t i n g M e t h o d , a n d S y s t e m

f o r C h o o s i n g t h e P a r a m e t e r s

We d e r i v e the equa t ion fo r the Hof fman i t e r a t i o n m e t h o d f r o m the R o o t h a a n equa t ions [1] fo r m o l e - c u l e s wi th a s y s t e m of c l o s e d s h e l l s :

~t" = det : '?i (ri, :i) [. (l)

m

?i (ril = N ~ ci~X, ( r i ) , (2) z . ~ �9

F~.ci, --- ~i ~ S:,~ci., ~ = I. 2 ..... m, (3) , = 1 " ~ - . i

F~.. -- H~, § G: ..... (4)

H~- tx::(l~ - ~ v~ ~ O_ x. . ( i ldv , . (5) ,Y ..I- - I r l A ]

o, = ~ P,, (~.,l,t) V .%b.. 1

(~i~t) = ~{" x; (i) x (i) • x: (9) x,(2)a-<d~,~ (7) J J / ' 1 2

&.,- (x;(1)x,( l )dv, . (8) O C C

P:~. -= 2 E c~:, ci . (9) i - - ' l

The o r d i n a r y I t o f fman me thod u s e s the fo l lowing p a r a m e t r i z a t i o n [2]:

Hef t = Y;,, (10)

/_/e!f = ! K (Heff ,-~ - He. if ) .%._ (11) ' 2 "

i . e . , the m a t r i x d i a g o n a l e l e m e n t s of the e f f e c t i v e e n e r g y o p e r a t o r H ef t a r e s e t equal to the i o n i z a t i o n p o - t e n t i a l s of the c o r r e s p o n d i n g a t o m i c o r b i t s X~, t a k e n with the o p p o s i t e s ign . The e l e m e n t s I l ~ ff then b e - c o m e i n d e p e n d e n t of the o r b i t a l c o e f f i c i e n t s c i ~ and t h e r e i s no need to i n c o r p o r a t e a s e l f - c o n s i s t e n c y p r o c e d u r e . On the o t h e r hand , th i s k ind of p a r a m e t r i z a t i o n m a k e s no a l l o w a n c e fo r the changes t ak ing p I a c e in the i o n i z a t i o n p o t e n t i a l of t he a t o m i c o r b i t when the a t o m i s i n c o r p o r a t e d into a m o l e c u l e , which g r e a t l y r e d u c e s the r e l i a b i l i t y of the c o m p u t i n g r e s u l t s . R e c e n t y e a r s h a v e s e e n the a p p e a r a n c e of a n u m - b e r of i t e r a t i v e Hof fman m e t h o d s [3, 4] whieh have a l l o w e d fo r t h e m a n n e r in which the i o n i z a t i o n p o t e n - r i a l s of the a t o m i c o r b i t s depend on the p o p u l a t i o n of t he o r b i t s and the c h a r g e on the a t o m , and a l s o fo r the i n f l uence of the p o t e n t i a l s of n e i g h b o r i n g a t o m s . We m a y show tha t the equa t ion fo r Fp4u is d i v i s i b l e in to a s e r i e s of t e r m s r e f l e c t i n g the i nd iv idu a l f a c t o r s :

. . . . , - - v ~ . . . .

A ,

I z ~ = < x : , " 7~-v~ . . . .

L r i . ~

LT, x:, ,. p , , <,~,,~ st> (,.~.~n,,,.o , . t ~ l J

i , z

2 ' ' : ," , , . . _ J

(12)

H e r e the o r b i t Xtz l i e s in t he a t o m A and so do the o r b i t s XX and Xa; t he r e s t be long to o t h e r a t o m s B . It i s w e l l known tha t t h e i o n i z a t i o n p o t e n t i a l fo r a s p e c i f i e d o r b i t in a f r e e a t o m d e p e n d s on a n u m b e r of f a c t o r s , e s p e c i a l l y the p o p u l a t i o n of t he o r b i t in q u e s t i o n and the t o t a l c h a r g e on t h e a t o m . It i s n a t u r a l to a s s u m e s i m i l a r r e l a t i o n s h i p s fo r an a t o m in a m o l e c u l e . In Eq. (12) t he f i r s t two t e r m s r e p r e s e n t the s i n g l e - c e n t e r e d i n t e r a c t i o n s in a t o m A. F o r t h e s e we p r o p o s e the fo l lowing p a r a m e t r i z a t i o n :

235

Page 3: Electron structure of organophosphorus compounds

where

<x:, T v , ......

= --J,,,(1)-~- (,V, .... 1)A,-4- Q,4&,, (13)

Q,~ = X A' : , - zA, (14) t ~ A

J~(1) is the ionizat ion potent ia l of t h e a tomic orbi t X~ with an orbi ta l populat ion of l e ; A# and B bt a r e p a r a m e t e r s which have to be chosen. In Eq. (13) the second t e r m allows for the influence of the popula- t ion of the a tomic orbi t Xt~ on J g . The thi rd t e r m al lows for the change taking p lace in J g with any change in the net cha rge on the a tom A.

The las t two t e r m s in (12) co r r e spond to in te rac t ions with o ther a toms . We a s s u m e d these to be p ropor t iona l to the pa r t p layed by the a tomic orbi t X/~ in fo rming the bonds in the molecu le

< B ~ z ' ~ x , ' - _ ~ P ~ , : .... ( ' , ~ : ' - i : ~ " ) . . . . . _ y ( ' ~ l ' ~ , ' , ) : : a ~ p , , (15)

where

p,~ = ~_~ P~,, S ..... (16) �9 , . :J.

The phys ica l s e n s e of this approx imat ion l ies in the fact that , when the a tomic orbi t X/~ takes pa r t in the bonding, the ionizat ion potent ia l J ~ should a l t e r , s ince the e lec t ron will then take p a r t in i n t e r ac - t ions with o ther a tomic c e n t e r s . The coeff icient 5 A depends on the na ture of the a tom.

Thus we have the following exp re s s ion for F~tt

F..:~ = -- J:~ (1) _ (X:, -- 1) A,~ + QAB.~ _ ~AP:,. (17)

The e x p r e s s i o n for F~v r e m a i n s as be fore , i . e . , Eq. (11). The coeff icient K in (12) is given [5] by

the equat ion

,k'= 2 -. I S , . 1. (18)

The orb i ta l exponents for the a tomic orb i t s X~ w e r e de t e rmined f r o m the Burns [6] ru le s .

Calculat ion of the e l ec t ron s t r u c t u r e was continued until s e l f - cons i s t ency was achieved. At each s tep of the i t e r a t ive p r o c e s s the values of the orb i ta l exponents and m a t r i x e lements Fgv were calculated f r o m the computing data de r ived in the p rev ious i te ra t ion . In o r d e r to improve the convergence , it is e s sen t i a l not to allow sha rp osci l la t ions in the values of F~v; hence the input values for each s u c c e s s i v e s tep in the i t e ra t ion were de t e rmined f r o m the fo rmula

( input),, = (input,),_, --), [( l n p u t ) n - t - - ( output),-t[. (19)

For the orb i ta l exponents the p a r a m e t e r ~ was taken as equal to 0.5; p r a c t i c e in executing the ca l - culat ions showed that this ensured convergence to an a c c u r a c y of no lower than 0.005 a f t e r 5-8 i t e ra t ions . The convergence of Fg~z was cons iderab ly l e s s favorab le and depended on the initial values to a g r e a t e r extent . Fo r Ftz ~ the p a r a m e t e r X was de t e rmined f r o m the equation

k = 1 (20) 3,5 + 0,85 i (input),,_~ -- ( output },J-~ I '

when I ( tnput)n- t - - (output)n-ll <- 2 eV and X = 0.1 fo r g r e a t e r devia t ions .

In calcula t ions ba sed on s e m i e m p i r i e a l methods in which the p a r a m e t e r s depend on the cha rges , it is v e r y i m p o r t a n t t o m a k e a c o r r e c t de te rmina t ion of the cha rges in the orb i t s and a toms . This p r o b l e m has now been cons idered by a n u m b e r of au thors [7, 8], who have shown that the shor tcomings of the Mul- l iken equation [9] for the cha rge in the a tomic orbi t Xtt

OCC m

= X , , , , _:_ 1,

where N = 1 or 2 is the populat ion of the i - th mo lecu l a r orbit , a r e l a rge ly a s soc ia t ed with the fact that in (21) a = 0.5. This co r r e sponds to a s y m m e t r i c a l spl i t t ing of the over lap populat ion between the two a toms ,

236

Page 4: Electron structure of organophosphorus compounds

even if these a toms a r e d i f ferent . In our opinion, the "charge" on the a tom should be taken to m e a n that p a r t of the e lec t ron charge of the molecu le which en ters into the " sphe re of action" of the p a r t i c u l a r a tom. A c r i t e r i on for de te rmin ing such a " sphe re of action" is the orbi ta l e lec t ronegat iv i ty , which c h a r a c t e r i z e s the abi l i ty of the a tom to accept e lec t rons into the a tomic orbi t Xy [10]. On this bas i s we should spl i t the two-orb i t a l t e r m s in (21) in p ropor t ion to the e lec t ronegat iv i t ies of these orb i t s . However , this is p r e - vented by the absence of suff icient ly re l i ab le data as to the e lec t ronega t iv i t i es of the orbi ts c h a r a c t e r i s t i c - a l ly vacant in the f r e e a tom, ' and a lso in negat ive ions. We t h e r e f o r e p ropose spl i t t ing the t e r m s in p r o - por t ion to the ionizat ion potent ia ls of the orb i t s

. . . . . (22) F:,:, + F,.,

The cha rge on the a tom A was de te rmined by Eq. (14).

The ionizat ion potent ia l of an e lec t ron f r o m the i - th m o l e c u l a r orbi t sa t i s f i e s the Coopmans t h e o r e m

Ji = -- ~i. (23)

The energy of an e lec t ron t r ans i t ion f r o m the i - th level to the j - th level is given by the equation

A E i j = ~1 - - :-t �9 (24)

3. C h o i c e o f P a r a m e t e r s . C a l c u l a t i o n s o f

S m a l l M o l e c u l e s

Thus in the method of calcula t ing the e lec t ron s t r u c t u r e s of molecu les h e r e p roposed we have to choose four p a r a m e t e r s for each a tomic orb i t : J y (1), A~, B y and 5 A.

It would at f i r s t appea r that for J y (1), A y and B y the values obtained by Cusachs et al . in [11, 12, 13] would be sui table . However , in [11-13] the values of J y (1), Ay and B y were obtained by calcula t ions re la t ing to f r ee a toms ; fo r a toms in molecu les they may well be d i f ferent . Secondly, in calculat ing the population of the a tomic orb i t s the total population of the a tomic orbi ts is made up of the net population of the a tomic orb i t s and a c e r t a i n p ropor t ion of over lap populat ions, as indicated by Eq. (21). In the case of a f r ee a tom the total populat ion coincides with the net population of the a tomic orbit . The s a m e may be sa id of the cha rge on the a tom.

In o rde r to d e t e r m i n e the p a r a m e t e r s we t h e r e f o r e used a g roup- theo ry p rocedure . The se lec t ion of p a r a m e t e r s was c a r r i e d out for smal l molecu les . These molecu les have a speci f ic s y m m e t r y , and usual ly a cons ide rab le amount of exper imenta l data . Davtyan [14] proposed a g roup- theo ry method en- abling the s y s t e m of m o l e c u l a r orbi ts of a molecule to be s y m m e t r i z e d . For the s y m m e t r i z e d s y s t e m of mo lecu la r orb i t s the m a t r i x of the H a r t r e e - - F o c k ope ra to r was reduced to quasidiagonal fo rm by the m a t r i x - e l e m e n t se lec t ion ru le . The individual blocks of this m a t r i x a r e usual ly of no g r e a t e r than the third o rde r , and on solving these equations with the aid of Eq. (11) we may obtain the re la t ionship between the cor responding orb i ta l energ ies ~i and spec i f i c diagonal m a t r i x e lements Fyy . F u r t h e r m o r e , by using the exper imen ta l values of the orbi ta l energ ies we obtain the des i r ed values of Fyy . A knowledge of the

TABLE 1. Values of the P a r a m e t e r s (eV)

Atom

F

0

N

C

II

Atomic i ' J~(l) A orbit

2p 19,6 3,0 13.8 - ' -

2-i 3,0 2p 17,5 2,3 ,1,3

2p 15,5 , 1,0 10,0 1,50

2s 21,2 I 1,7 7,4 1 2p 11,4 1,5 9,2 ,33

237

Page 5: Electron structure of organophosphorus compounds

TABLE 2. Calculated and Exper imenta l Ionization Po-- tent ia ls of the Molecules (eV)

" t Molecule Jcalc (this Jcalc [15] Jexpt [161

paper)

CH, C.~H~ C2H~ [ICN H20 CO CO2 H.~CO

13.20 11,12 11,10 12,74 11,08 13,01 12,8 9,70

13,70 12,24 12,44 13,94 12,88 14,43 15,11 13.36

12,99 10,52 11,40 13,86 12,59 14,01 13,79 10,88

quanti t ies F/~/~ enables us to e s t ima te the values of J/~ (1), A/z, B/~ and 6A. We need then only choose molecu les such that s o m e of the co r r ec t i ons in F~# should be equal to ze ro . For example , in d ia tomic homonuc lea r molecu les the net cha rge of the two a toms equals ze ro and the dependence of Fg~ on B# van i shes . In molecu les of the type XH 2 the mo lecu l a r orbi t of s y m m e t r y b i is one of the np orbi ts of the a tom X, and P c o r r = 0.

Calculat ions re la t ing to s o m e twenty molecules containing hydrogen and e lements of the second per iod enabled us to choose p a r a m e t e r s for the s and p orbi ts of these a toms . The values of the se lec ted p a r a m e t e r s a r e given in Tab le 1. Apar t f rom the p a r a m e t e r s B/~, the values se lec ted by the method h e r e desc r ibed a r e s i m i l a r to the analogous values obtain in [11, 12, 13].

Tab le 2 gives the expe r imen ta l and calcula ted values of the ionization potent ia ls of s e v e r a l m o l e - cu les . The th i rd column contains s o m e r e su l t s taken f r o m [15], in which the calculat ions were c a r r i e d out by a m o r e compl ica ted method.

L I T E R A T U R E C I T E D

1. C . C . J . Roothaan, Rev. Mod. Phys . , 23, 1 (1951). 2. R. Hoffman, J . Chem. Phys . , 39, 1397 (1963). 3. D . G . Ca r ro l l , A. T. A r m s t r o n g , and S. P. McGlinn, J. Chem. Phys . , 44, 1865 (1966). 4. K . C . Wheelock, H. B. Jonassen , and L. C. Cusachs , In ter . J . Quantum Chem. Symp., No. 4, 209

(1971). 5. L . C . Cusaehs , J . Chem. Phys . , 43, 5157 (1965). 6. G. Burns , J . Chem. Phys . , 41, 1521 (1964). 7. I . H . Hi l l i e r and J . F. Whyatt, Inter . J . Quantum Chem., 3, 67 (1969). 8. P. Po l i t z e r and R. R. H a r r i s , J . A m e r . Chem. Soc., 92, 6451 (1970). 9. R . S . Mulliken, J . C h e m . Phys . , 23 , 1833 (1955).

10. J . Hinze and H. H. Jaffe , J . A m e r . Chem. Soc., 84, 540 (1962). 11. L . C . Cusachs and J . W. Reynolds , J . Chem. P h y s . , 43, s160 (1965). 12. L . C . Cusachs , J . W. Reynolds , and D. Ba rna rd , J . Chem. Phys. , 44, 835 (1966). 13. L . C . Cusachs and J . R. Linn, J . Chem. Phys . , 46, 2929 (1967). 14. O . K . Davtyan, Quantum C h e m i s t r y [in Russian] , Izd. Vysshaya Shkola, Moscow (1962). 15. T. Yonezawa, K. Yomaquchi , and H. Kato, Bull. Chem. Soc. Japan, 40, 536 (1967). 16. V . I . Vedeneev, L. V. Gurvich, V. N. Kondra t ' ev , V. A. Medvedev, and L. E. Frankevich ,

Rupture Energy of Chemical Bonds, Ionization Potent ia ls and Elec t ron Affinit ies [in Russian] , Izd. AN SSSR, Moscow (1962).

238