electron scattering in mainz - easy conferenceselectron scattering in mainz plans for the next...

97
Electron scaering in Mainz Plans for the next decade Niklaus Berger Institut für Kernphysik, Johannes-Gutenberg Universität Mainz EINN, Paphos, Cyprus November 2015

Upload: others

Post on 10-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Electron scattering in Mainz Plans for the next decade

Niklaus Berger

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

EINN, Paphos, Cyprus November 2015

Niklaus Berger – EINN November 2015 – Slide 2

• The Idea: Searching for new physics with the weak mixing angle

• The Machine: Mainz Energy-Recovery Superconducting Accelerator

• Experiment I: Weak mixing angle with P2

Overview

Niklaus Berger – EINN November 2015 – Slide 3

Overview

• Experiment II: Dark photons, proton radius etc. with MAGIX

• More experiments: Dark matter, electron electric dipole moment etc.

• Even more: Continuing program at MAMI

Niklaus Berger – EINN November 2015 – Slide 4

The weak mixing angle

(also: Weinberg-angle)

Niklaus Berger – EINN November 2015 – Slide 5

• One of the fundamental parameters of the standard model

• Electroweak symmetry breaking creates photon and Z0

• Angle shows up both in masses and couplings (charges)

The weak mixing angle

Niklaus Berger – EINN November 2015 – Slide 6

• The last slide is true at tree level

• But there are quantum corrections...

Two options:

• Use the masses for the definition: (at all orders of perturbation theory) “On-shell scheme”

• Or use the couplings: (which change with energy, and so does the angle) “MS-scheme”

• Use second option from here on

Which weak mixing angle?

Niklaus Berger – EINN November 2015 – Slide 7

Weak mixing angle and charges

Proton electric charge +1

Proton weak charge 1 - 4 sin2θW

Niklaus Berger – EINN November 2015 – Slide 8

Scale dependence (running) of sin2θW

Niklaus Berger – EINN November 2015 – Slide 9

Scale dependence (running) of sin2θW

Q [ G e V ] 1000 0 100 0 10 0 1 0 1 0 .1 0 . 0 1 0 . 00 1 0 . 000 1

0 . 24 5

0 . 2 4

0 . 23 5

0 . 2 3

0 . 22 5 sin 2 θW ( Q )

Q W ( APV )

Q W ( e )

Q W ( p )

LEP1

SLD

Nu T eV

eDIS T e v atron A TLAS

CMS hs

Niklaus Berger – EINN November 2015 – Slide 10

Scale dependence (running) of sin2θW

Q [GeV]1000010001001010.10.010.0010.0001

0.245

0.24

0.235

0.23

0.225sin2 θW (Q )

QW (APV )

QW (e)

QW (p)

LEP1

SLD

P2@MESA

Moller

Qweak

SOLID

NuTeV

eDIS TevatronATLAS

CMS

hs

Niklaus Berger – EINN November 2015 – Slide 11

New Physics in the running

Q [GeV]1000010001001010.10.010.0010.0001

0.245

0.24

0.235

0.23

0.225sin2 θW (Q )

QW (APV )

QW (e)

QW (p)

LEP1

SLD

P2@MESA

Moller

Qweak

SOLID

NuTeV

eDIS TevatronATLAS

CMS

hs

Niklaus Berger – EINN November 2015 – Slide 12

Marciano et al.

Dark Z in mixingmdark Z 100 MeVmdark Z 200 MeV

APV Cs

Qweak firstE158

SLAC

LEP

DIS

MollerMESA

Qweak

''Anticipated sensitivities''

3 2 1 0 1 2 3

0.230

0.232

0.234

0.236

0.238

0.240

0.242

Log10 Q GeV

sin2 Θ

WQ

2

Niklaus Berger – EINN November 2015 – Slide 13

Contact interactions up to

49 TeV(comparable to LHC at 300 fb-1)

Contact Interactions

Niklaus Berger – EINN November 2015 – Slide 14

How to measure the weak charge?

Niklaus Berger – EINN November 2015 – Slide 15

Weak mixing angle and charges

Proton electric charge +e

Proton weak charge 1 - 4 sin2θW

Niklaus Berger – EINN November 2015 – Slide 16

Weak mixing angle and charges

Proton electric charge +e

Proton weak charge 1 - 4 sin2θW

Violates parity!

Niklaus Berger – EINN November 2015 – Slide 17

Parity violating electron scattering

Proton Target

Electron beam

Detector

Niklaus Berger – EINN November 2015 – Slide 18

Parity violating electron scattering

Proton Target

Electron beam

Detector

Niklaus Berger – EINN November 2015 – Slide 19

Parity violating electron scattering

Proton Target

Electron beam

Detector

Niklaus Berger – EINN November 2015 – Slide 20

Parity violating electron scattering

Proton Target

Electron beam

Detector

Momentum transfer sets scale

Weak charge - what we want

Proton structure - small nuisance if Q2 small

Niklaus Berger – EINN November 2015 – Slide 21

• sin2θW ≈ 0.25: Weak charge is tiny

• At low Q2: Asymmetry is tiny (40 parts per billion): need very large statistics

• We are subtracting two huge numbers from each other (not really - switching helicity with a few KHz)

Why is this difficult?

Niklaus Berger – EINN November 2015 – Slide 22

• Large uncertainty due to hadronic uncertainty

• Uncertainty rises with beam energy

γ-Z box graphs

0.5 1 1.5 2 2.5 3E (GeV)

0.002

0.004

0.006

0.008

0.01

0.012

Re

z(E,

t=0)

Re z - Avg. (Model I,II)Re z ± ( z)

QWEAK (E = 1.165 GeV)

P2

[Gorchstein, Horowitz, Ramsey-Musolf 2011]

Niklaus Berger – EINN November 2015 – Slide 23

-810 -710 -610 -510 -410 -310-1010

-910

-810

-710

-610

-510

-410

PVeS Experiment Summary

100%

10%

1%

G0

G0

E122

Mainz-Be

MIT-12C

SAMPLE H-I

A4A4

A4

H-IIH-He

E158

H-III

PVDIS-6

PREX-IPREX-II

Qweak

SOLID

Moller

MESA-P2

MESA-12C

PioneeringStrange Form Factor (1998-2009)S.M. Study (2003-2005)JLab 2010-2012Future

PVA

)PV

(A

Niklaus Berger – EINN November 2015 – Slide 24

• Want to measure sin2θW to 0.13%

• Need QW at 1.5%

• Essentially means 1.5% on APV

• APV is 40 parts per billion

• δ(APV) is 0.6 parts per billion

• N a few 1018

• Measure 10’000 hours (absolute maximum anyone thinks shifts are organisable)

• Need close to 1011 electrons/s - 100 GHz

How much statistics do we need?

Niklaus Berger – EINN November 2015 – Slide 25

Yes!

• 150 μA of electron beam current

• 60 cm long liquid hydrogen target

• Luminosity 2.4 1039 s-1cm-2

• Integrate 8.6 ab-1

Can we get that rate?

Proton Target

Electron beam

Detector

Niklaus Berger – EINN November 2015 – Slide 26

MAMI in Mainz

Mainz Microtron Up to 100 μA Up to 1.5 GeV

80 % polarisation (80 μA)

Niklaus Berger – EINN November 2015 – Slide 27

MAMI in Mainz

Mainz Microtron Up to 100 μA Up to 1.5 GeV

80 % polarisation (80 μA)

A1: Real electron scattering

Four high-precision spectrometers

Niklaus Berger – EINN November 2015 – Slide 28

MAMI in Mainz

Mainz Microtron Up to 100 μA Up to 1.5 GeV

80 % polarisation (80 μA)

A2: Tagged photon beam

Crystal ball plus TAPS

Niklaus Berger – EINN November 2015 – Slide 29

MAMI in Mainz

Mainz Microtron Up to 100 μA Up to 1.5 GeV

80 % polarisation (80 μA)

A4: Parity violation

Now decommissioned

Niklaus Berger – EINN November 2015 – Slide 30

MAMI in Mainz

Mainz Microtron Up to 100 μA Up to 1.5 GeV

80 % polarisation (80 μA)

A4: Parity violation

Now decommissioned

Space for something new

Niklaus Berger – EINN November 2015 – Slide 31

10’000 hours is 417 days 24/7 of measurements

Hard to get that amount of time at a shared accelerator facility...

Niklaus Berger – EINN November 2015 – Slide 32

If you cannot rent it, build it:

The MESA accelerator

Mainz Energy-recovery Superconducting Accelerator

Niklaus Berger – EINN November 2015 – Slide 33

• Beam current 150 μA

• Polarisation > 85%

• High precision polarimetry

• High runtime (more than 4000 h/year)

• Extremely stable

• Fit into existing halls at MAMI

Requirements

cryomodules

external Experiment

“P2”

internal experiment

Niklaus Berger – EINN November 2015 – Slide 34

Research building recently funded:

• Lab and office building

• Experimental hall for MESA

More space: Centre of Fundamental Physics

Niklaus Berger – EINN November 2015 – Slide 35

MESA

P2

MAGIX

SRF Cryo Modules

Mainz Energy Recoving Superconducting AcceleratorMESA

New experimental hall (Forschungsbau )

E xisting experimental

halls

MESA

ERL arc

extracted

beam

Niklaus Berger – EINN November 2015 – Slide 36

Teichert et al. NIM A 557 (2006) 239

Superconducting Cryomodules: Ordered

BEAM PIPE VALVE

BEAM PIPE

ALIGNMENTPARTS

COOL DOWN

LHe FEED PIPE

He GAS RETURN

He GAS COLLECTOR

STAINLESS STEELVACUUM VESSEL

SUPPORT SYSTEMLN2-PORT LN2-RESERVOIR

LN2 LEVELMETER

TUNING SYSTEM

SUSPENSION CABLE(SUPPORT SYSTEM)

TITANIUM TANKBATH CRYOSTAT

80K SHIELDING

MAIN COUPLER COLD PART

CENTER POINT FOLDERSHIELDINGS & TANDEMSUPPORT SYSTEM

NIOBIUM CAVITY

TUNING SYSTEMLHe LEVELMETER

ALIGNMENTPARTS

TANK TANDEM

MAG SHIELDING

LOOP

Niklaus Berger – EINN November 2015 – Slide 37

The main worry are beam fluctuations correlated with the helicity: Achieved at MAMI sin2θW uncertainty requirement

• Energy fluctuations: 0.04 eV < 0.1 ppb ok!

• Position fluctuations 3 nm 5 ppb 0.13 nm

• Angle fluctuations 0.5 nrad 3 ppb 0.06 nrad

• Intensity fluctuations 14 ppb 4 ppb 0.36 ppb Now testing upgraded stabilization at MAMI

Stability Requirements

Niklaus Berger – EINN November 2015 – Slide 38

MESA

P2

MAGIX

SRF Cryo Modules

Mainz Energy Recoving Superconducting AcceleratorMESA

New experimental hall (Forschungsbau )

E xisting experimental

halls

MESA

ERL arc

extracted

beam

Niklaus Berger – EINN November 2015 – Slide 39

Mott Polarimertry:

• Measure left/right asymmetry to obtain spin polarisation

• Analysing power of foils needs to be extrapolated

Double Mott Polarimeter:

• Obtain analysing power from measurement

• Precise measurement of spin polarisation

• Invasive measurement at source

Polarimetry: Double Mott Polarimeter

[Gellerich and Kessler, Phys.Rev.A. 43, 204 (1991)]

Niklaus Berger – EINN November 2015 – Slide 40

Møller scattering from polarized (7 T field)atomic hydrogen in a trap

• Online capability

• High accuracy (< 0.5%)

• About 2 h to reach 0.5% statistical accuracy

• Cryostat under construction in Mainz

Polarimetry: Hydro-Møller Polarimeter

Z

2046

R183

e- Beam

Cryostat

Mixing Chamber

7T Solenoid

Atomic HydrogenTarget

Niklaus Berger – EINN November 2015 – Slide 41

P2:

How to detect 100 GHz of (the right) electrons...

Niklaus Berger – EINN November 2015 – Slide 42

Niklaus Berger – EINN November 2015 – Slide 43

H Target

Solenoid Spectrometer

Shielding

Integrating Cherenkov Detectors

Niklaus Berger – EINN November 2015 – Slide 44

Choice of scattering angle

Niklaus Berger – EINN November 2015 – Slide 45

Solenoid spectrometer

Niklaus Berger – EINN November 2015 – Slide 46

Detector

Solenoid spectrometer

Shield

Niklaus Berger – EINN November 2015 – Slide 47

Counting detectors

Proton Target

Electron beam

Detector

Niklaus Berger – EINN November 2015 – Slide 48

Integrating detectors

Proton Target

Electron beam

Detector

Niklaus Berger – EINN November 2015 – Slide 49

Quartz-Bars & Photomultipliers

Detect Cherenkov-light created by electrons Integrate photomultiplier current

Niklaus Berger – EINN November 2015 – Slide 50

Quartz-Bars & Photomultipliers

Detect Cherenkov-light created by electrons Integrate photomultiplier current

Measuring Q2:

Tracking a lot of low momentum particles

Niklaus Berger – EINN November 2015 – Slide 52

Tracker requirement

• Low momentum electrons: Thin detectors

• Very high rates: Fast and granular detectors

Solenoid

Beam axis

Tracking detector

Target

Integrating Detectors

Niklaus Berger – EINN November 2015 – Slide 53

Fast, thin, cheap pixel sensors

High Voltage Monolithic Active Pixel Sensors

Niklaus Berger – EINN November 2015 – Slide 54

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

• Implement logic directly in N-well in the pixel - smart diode array

• Can be thinned down to < 50 μm

• Logic on chip: Output are zero-suppressed hit addresses and timestamps (I.Perić, P. Fischer et al., NIM A 582 (2007) 876 )

Fast and thin sensors: HV-MAPS

P-substrate

N-well

Particle

E �eld

Niklaus Berger – EINN November 2015 – Slide 55

HV-MAPS chips: AMS 180 nm HV-CMOS

• Developed for Mu3e

• 5 generations of prototypes

• Current generation: MUPIX7 40 x 32 pixels 80 x 103 μm pixel size 9.4 mm2 active area

• MUPIX7 has all features of final sensor

• Left to do: Scale to 2 x 2 cm2

The MUPIX chip prototypes

Niklaus Berger – EINN November 2015 – Slide 56

Hit efficiency above 99% without tuning

Efficiency

Niklaus Berger – EINN November 2015 – Slide 57

Time resolution

trigger_ts_s_diff

Entries 4164975

Mean 0.7997

RMS 2.826

/ ndf 2χ 8049 / 3

Constant 6.48e+02±8.98e+05

Mean 0.00110±0.03117

Sigma 0.001±1.548

10− 5− 0 5 10 15 200

100

200

300

400

500

600

700

800

900

310×trigger_ts_s_diff

Entries 4164975

Mean 0.7997

RMS 2.826

/ ndf 2χ 8049 / 3

Constant 6.48e+02±8.98e+05

Mean 0.00110±0.03117

Sigma 0.001±1.548

Trigger TimeStamp Difference Distribution for Single Events

Timestamp-Trigger time [10ns]

Timestamp resolution better than 15 ns

Niklaus Berger – EINN November 2015 – Slide 58

Y

• X

P2

Niklaus Berger – EINN November 2015 – Slide 59

Where are the neutrons in the nucleus?

Neutron Skins: Concettina Sfienti on Tuesday

Niklaus Berger – EINN November 2015 – Slide 60

Where are the neutrons in the nucleus?

• Gives access to the equation of state of neutron matter

• Tells us how big/small neutron stars are

Neutron Skins

Niklaus Berger – EINN November 2015 – Slide 61

• Not charged: Photons not a good probe

• Use parity violating electron scattering: Proton weak charge is almost zero - see mostly neutrons

How to see the neutrons?

Niklaus Berger – EINN November 2015 – Slide 62

MESA

P2

MAGIX

SRF Cryo Modules

Mainz Energy Recoving Superconducting AcceleratorMESA

New experimental hall (Forschungsbau )

E xisting experimental

halls

MESA

ERL arc

extracted

beam

Niklaus Berger – EINN November 2015 – Slide 63

Can we go to higher beam currents?

• In principle yes...

• But power is expensive

• Why dump electrons?

Energy recovery

Niklaus Berger – EINN November 2015 – Slide 64

• Put energy back into field!

• Can go up to 1 (10) mA beam current

• But not with a thick target

Energy recovery

Niklaus Berger – EINN November 2015 – Slide 65

High current, high resolution:

MAGIX

Mesa Gas Internal Target Experiment

Niklaus Berger – EINN November 2015 – Slide 66

MAGIX Spectrometer

Niklaus Berger – EINN November 2015 – Slide 67

Energy recovery: We want the beam back

• Energy loss less than 10-3

• As little scattering as possible No target window

High resolution spectrometer

• No beam interactions in target window

• As little scattering as possible Thin walls, thin detectors

Extremely intense beam: Do not need very high acceptance

Requirements

Niklaus Berger – EINN November 2015 – Slide 68

• Inject gas directly into the beam pipe

• Differential pumping to keep beam vacuum

Internal gas target

Niklaus Berger – EINN November 2015 – Slide 69

Twin-arm dipole spectrometer

TARDIS

Niklaus Berger – EINN November 2015 – Slide 70

• Image momentum to position

• 10-4 momentum resolution for 50 μm position resolution

TARDIS

Target

Target

Detector

Detector

• Image angle to position

Niklaus Berger – EINN November 2015 – Slide 71

Gas Electron Multipliers (GEMs)

Focal plane detectors

Niklaus Berger – EINN November 2015 – Slide 72

The proton, dark photons and more:

Physics at MAGIX

Niklaus Berger – EINN November 2015 – Slide 73

How big is a proton? (electromagnetic charge radius)

• Measure in scattering experiments (Mainz!)

• Measure in spectroscopy (Lamb-shift)

• Lamb shift is tiny - except in muonic hydrogen

• Big surprise! 4 - 7 σ discrepancy - why?

Proton Radius Puzzle

0.85 0.9Proton Charge Radius (fm)

µH (A. Antognini et al.)

µH (R. Pohl et al.)

CODATA

JLab (X. Zhan et al.)

MAMI (J. Bernauer et al.)

Niklaus Berger – EINN November 2015 – Slide 76

• Scattering experiments happen at finite momentum transfer Q2

• They will see some of the proton substructure

• Charge radius is defined at Q2 = 0

• Need to extrapolate: Potentially large error

• Want to measure at as small Q2 as possible

Scattering, Q2 and substructure

— Belushkin (Disp. Analysis 2007)

MESA projected error

Jones (JLab 2000)

Gayou (JLab 2001)

Dietrich (MAMI 2001)

Pospischil (MAMI 2001)

Punjabi (JLab 2005)

Jones (JLab 2006)

MacLachlan (JLab 2006)

Crawford (Bates 2007)

Zhan (JLab 2011)

– Bernauer (MAMI 2010)

Q2 / (GeV2/c2)

µpG

p E/G

p M

1010.10.01

1.1

1

0.9

0.8

0.7

0.6

Niklaus Berger – EINN November 2015 – Slide 77

• A1 measurements a pillar of scattering radius measurements

• Limited by extrapolation to Q2 = 0

• How to get lower Q2?

Before MESA: A1 at MAMI - Miha Mihovilovic

Niklaus Berger – EINN November 2015 – Slide 78

Strategy:

• Access very low Q2 region via initial state radiation events

• Measure momentum spectrum of scattered electrons

• Needs very good understanding of radiative corrections and final state radiation

Initial state radiation at A1

Niklaus Berger – EINN November 2015 – Slide 79

Strategy:

• Access very low Q2 region via initial state radiation events

• Measure momentum spectrum of scattered electrons

• Needs very good understanding of radiative corrections and final state radiation

Plan:

• Gas jet target (less wall back-ground)

• Go to lower energies

• Extract proton radius

Initial state radiation at A1

10 4

10 3

10 2

10 1

50 100 150 200 250 300 350 400 450 500

10 4 10 3 10 2

Energy of scattered Electron E [MeV ]

Q 2 at Detector [GeV 2/ c2]

Q2

atVe

rtex

[GeV

2/c

2]

100

101

102

103

104

105

106

107

108

109

Even

ts

Ee = 495 MeV

Ee = 330 MeV

Ee = 195 MeV

Niklaus Berger – EINN November 2015 – Slide 80

• 100 MeV beam

• Down to 14° scattering angle

Low Q2 with MAGIX

— Belushkin (Disp. Analysis 2007)

MESA projected error

Jones (JLab 2000)

Gayou (JLab 2001)

Dietrich (MAMI 2001)

Pospischil (MAMI 2001)

Punjabi (JLab 2005)

Jones (JLab 2006)

MacLachlan (JLab 2006)

Crawford (Bates 2007)

Zhan (JLab 2011)

– Bernauer (MAMI 2010)

Q2 / (GeV2/c2)

µpG

p E/G

p M

1010.10.01

1.1

1

0.9

0.8

0.7

0.6

Niklaus Berger – EINN November 2015 – Slide 81

Dark photons

Niklaus Berger – EINN November 2015 – Slide 82

There is dark matter out there...

• There could be additional U(1) gauge symmetries with an exchange particle (dark photon, mass mγ’)

• It could mix with the photon via heavy fermions (mixing parameter ε)

• It would then show up as a narrow bump in the e+e- spectrum

• It could explain the muon g-2 anomaly

Dark photons

Niklaus Berger – EINN November 2015 – Slide 83

• Measurement via missing mass method

• Requires detection of low energy proton; challenging

Invisible dark photons

Niklaus Berger – EINN November 2015 – Slide 84

• Ebeam 180-855 MeV

• 100 μA beam current

• Stack of tantalum targets

• 22 kinematic settings

• Coincidence between spectrometers for e+e-

• Best limits in the g-2 region at the time of publication

Dark photons at A1

Merkel et al. [A1] Phys.Rev.Lett. 112 (2014) 22, 221802

Niklaus Berger – EINN November 2015 – Slide 85

Dark photons at MESA/MAGIX

]2 [GeV/c'γm-210 -110 1 10

ε

-410

-310

-210

e(g-2)

KLOE 2013

KLO

E 20

14

WASA

HADESPHENIX

σ 2±µ

(g-2)

favored

E774

E141A

PEX

A1

NA48/2

BABAR2009

BABAR2014

BESIIIMESA

Niklaus Berger – EINN November 2015 – Slide 86

Dark Matter with the Beam Dump

BDX

Niklaus Berger – EINN November 2015 – Slide 87

Search for dark matter

P2

MAGIX

SRF Cryo Modules

Mainz Energy Recoving Superconducting AcceleratorMESA

New experimental hall (Forschungsbau )

E xisting experimental

halls

MESA

ERL arc

extracted

beam

MESA: More than 1022 electrons hit beam dump per year

• Some of them could produce dark matter particles

• “Dark matter beam”

• Detect with DM detector (xenon?) behind beam dump

Niklaus Berger – EINN November 2015 – Slide 88

Beam dump dark matter

Niklaus Berger – EINN November 2015 – Slide 89

• FLUKA calculations of neutron flux behind dump look promising

• MESA operates below the pion threshold, no neutrinos produced

• Boost gives access to low mass dark matter

Beam dump dark matter

Niklaus Berger – EINN November 2015 – Slide 90

And one more:

Electric dipole moment of electrons

Niklaus Berger – EINN November 2015 – Slide 91

• An EDM of a fundamental particle violates CP and T

• Essentially 0 in the SM (tiny contribution from CKM)

• Potentially large in BSM models

• Some more CP violation needed

Electric Dipole Moments - Yannis Semertzidis

Niklaus Berger – EINN November 2015 – Slide 92

• Spin precesses in magnetic field due to magnetic dipole moment μ

• Spin precesses in electric field due to electric dipole moment d

• μ is large, d is almost zero

Dipole moments and precession

Niklaus Berger – EINN November 2015 – Slide 93

Charged particle EDMs

For neutral particles:

• Put in a “box”

• Apply large E-field

• Watch precession

• E.g.: Neutron EDM

For charged particles:

• E field leads to acceleration

• Put electron into a neutral, polar molecule (ACME, Imperial/Sussex)

• Put electron/proton/deuteron etc. in a storage ring

Niklaus Berger – EINN November 2015 – Slide 94

• Electric and magnetic fields perpendicular to momentum

• How to get rid of magnetic part?

Precession in a storage ring

Magnetic dipole Electric dipole

Niklaus Berger – EINN November 2015 – Slide 95

• No magnetic field! (about 10 MV/m electric field)

Precession in a storage ring

Magnetic dipole Electric dipole

Niklaus Berger – EINN November 2015 – Slide 96

• No magnetic field!

• Magic momentum!

• 0.7 GeV/c for protons

• 14.5 MeV for electrons

Precession in a storage ring

Magnetic dipole Electric dipole

Niklaus Berger – EINN November 2015 – Slide 97

• Magic momentum

• Spin rotates with momentum vector

• EDM leads to out of plane precession

• Counter-rotating bunches help to cancel systematics

Build an electric-only storage ring

Niklaus Berger – EINN November 2015 – Slide 98

• Need very low magnetic field

• Good control of electric field

• Very hard to compete with molecules for limits ...

• ... but only option for a precise measurement ...

• ... and a pathfinder for the proton EDM ( Jülich, Korea...)

Systematics

ACME collaboration, Science 343, 269 (2104)

Niklaus Berger – EINN November 2015 – Slide 99

Exciting physics program for electron scattering in Mainz in the next decade:

• New accelerator MESA, staring 2018/19

• Weak mixing angle measurement with P2

• Also gives access to neutron skins

• Proton radius, dark photon and much more with MAGIX

• Second generation of experiments: Beam dump dark matter and electron EDM ring (?)

Summary