electron dephasing and energy exchange in ...electron dephasing and energy exchange in diffusive...

65
Electron Dephasing and Energy Exchange in Diffusive Metal Wires: Boulder Summer School 2005 – Lectures 2 & 3 Norman Birge, Michigan State University Collaborators: F. Pierre, A. Gougam (MSU) S. Guéron, A. Anthore, B. Huard, H. Pothier, D. Esteve, M. Devoret (CEA Saclay) Work supported by NSF DMR With special thanks to Hugues Pothier!

Upload: others

Post on 16-Feb-2021

14 views

Category:

Documents


0 download

TRANSCRIPT

  • Electron Dephasing and Energy Exchange in Diffusive Metal Wires:

    Boulder Summer School 2005 – Lectures 2 & 3Norman Birge, Michigan State University

    Collaborators:

    F. Pierre, A. Gougam (MSU)S. Guéron, A. Anthore, B. Huard, H. Pothier,

    D. Esteve, M. Devoret (CEA Saclay)

    Work supported by NSF DMR

    With special thanks to Hugues Pothier!

  • PrologueResistivity of metals

    De Haas & de Boer, 1934

    PtHigh T, phonons

    Low T, impurities & disorder

    dR/dT>0 always

  • But dR/dT

  • Suspect magnetic impurities

    Fe in Cu:

    J.P. Franck, Manchester, Martin (1961)

    But how do they work?

  • The solution

    ∑ ⋅=i

    i SsJHrr

    The s-d exchange model:

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−∝

    KTTB logδρ

    vJeETk FKB1−

    ≈Kondo temperature:

    0<dTdρ

    ⇒Kondo’s result:

    ν = density of states at EF

    !!

  • Moral of the story: magnetic impurities dominate the low-temperature resistivity of metals, even

    at concentrations as low as 0.01%

    1960’s

  • Jump ahead 20 years … 1980’s

    ...111 ++=− pheldisorder τττ

    τρ 12ne

    m=

    elastic

    preserves quantum phase coherence

    inelastic

    destroys quantum phase coherence

    WRONG!

    disorder

    phonons

    R

    T

    ρ

    Matthiessen’s rule:

    Low T:elasticinelastic ττ

    11> le

  • Electron transport in diffusive regime

    1. Elastic scattering (film boundaries, impurities)

    diffusive states

    2. Inelastic scattering (phonons, other electrons, spins)

    loss of phase coherence

    energy exchange between electrons

    el

    φL

    eFe vl τ=

    eFlvD 31=

    φφ τDL =

    e-

  • Why Is the Phase Coherence Time Important?

    • τφ limits quantum transport phenomena:– normal metals: weak localization, UCF, Aharonov-Bohm– superconductors: proximity & Josephson effects

    • Localization theory assumes Lφ > ξ– no M-I transition if τφ saturates at low temperature

    • example of quantum system coupled to environment

  • Predictions for τφ at low T(Altshuler & Aronov, 1979)

    At low T, τφ limited by e-e interactions

    Screening depends ondimensionality

    τφ depends on dimensionality

    transverse dimensionsL Dφ φτ= >« wires » (1d regime) :

    ( At energy E,

    compare / withtransverse dimensions)

    D Eh

    ( / rule the game )E φτ∼ h

    ( )...2, ,...

    x y zq q q Dq iω

    ⎛ ⎞⎜ ⎟⎜ ⎟+⎝ ⎠

  • τφ(T) in wires

    τφ

    T

    T-2/3

    T-3

    e-e

    e-ph1 K

    (Altshuler, Aronov, Khmelnitskii, 1982)

    φτ−= +2 / 3 13( )A T B T

    πν

    ⎛ ⎞= ⎜ ⎟

    ⎝ ⎠h

    1/ 3214

    B

    F K

    k RLwt R

    A Screened Coulomb interaction at d=1

  • Temperature dependence of τφconfirmation of AAK theory in quasi-1D

    Echternach, Gershenson, Bozler, Bogdanov & Nilsson, PRB 48, 11516 (1993)

    (electron-electron)

    T-3 (electron-phonon)

    T-2/3

  • The Experimental ControversyMohanty, Jariwala and Webb, PRL 78, 3366 (1997)

    T-2/3

    T-3

    Saturation of τφ:

    Artifact of measurement ?If not, is it intrinsic ?

  • -0 .0 4 -0 .0 2 0 .0 0 0 .0 2 0 .0 4

    3 .1 K

    1 .1 7 K

    2 1 0 m K

    4 5 m K

    1 0 -3ΔR

    /R

    B (T )

    Ag

    Interference of time-reversed paths ⇒ “weak-localization” correction to R

    B reduces weak-loc. correction

    I

    V

    B

    L ~ 0.25 mm

    Measuring τφ(T)

    Lφ=(Dτφ)1/2e-

  • Measuring τφ(T) : raw data

    -10 0 10

    B (mT)

    10-3

    40 mK

    165 mK

    0.6 K

    1.95 KAg(6N)c

    ΔR/R

    -15 0 15

    5x10-4

    40 mK

    155 mK

    0.8 K

    2.5 KAg(5N)b

    -15 0 15

    10-3

    37 mK

    92 mK

    0.7 K

    1.6 K

    ΔR

    /R

    Au(6N)

    B (mT)-50 0 50

    5x10-4

    1.7 K

    0.62 K

    100 mK

    37 mK

    Cu(6N)d

    Ag(6N) & Au(6N):ΔR grows as T decreases

    Ag(5N) & Cu(6N):ΔR saturates below ~ 100mK

    5N = 99.999 % source purity6N = 99.9999 % “ “

    100 atoms ~ 25 nm

    1 ppm ofimpurities :

  • τφ(T) in Ag, Au & Cu wires

    Saturation of τφ is sample dependent

    • Ag 6N, Au 6N→ agreement with AAK theory

    • Ag 5N, Cu 6N→ saturation of τφ(T)

    Low T behavior vs. Purity:

    T-2/35N = 99.999 % source material purity6N = 99.9999 % “ “ “

    0.1 1

    1

    10

    Ag 6N Au 6N Ag 5N Cu 6N

    τ φ (n

    s)

    T (K)

  • Quantitative comparison with AAK theoryfor clean samples

    F. Pierre et al.,PRB 68, 0854213 (2003)

    0.1 1

    1

    10

    τ φ (n

    s)

    T (K) πν

    ⎛ ⎞= ⎜ ⎟

    ⎝ ⎠h

    1/ 3214

    B

    Fy

    Kth

    k RLwt R

    A

    φτ−= +2 / 3 13( )A T B T

  • 1st method : τφ

    2nd method : measure energy exchange rates

    Investigation of inelastic processes

    Distribution f(E)reflects the exchange rates

    UU

    R

    BV

    τφ(T)

    T

    T-2/3

    T-3

    e-e

    e-ph

    1 K

    Another process dominates in not-so-pure samples?

    ?

  • Background: Shot noise in diffusive metal wiresSteinbach, Martinis and Devoret, PRL 76, 3806 (1996)

    Theory:

    Nagaev 1992,1995

    Kozub & Rudin, 1995

    ∫∫ −= )),(1)(,(4 ExfExfdxdELR

    SI

    What does f(x,E) look like?

  • Distribution function -- textbook case(no shot noise)

    Assumes complete thermalization -- tD >> telectron-phonon

    Never true in mesoscopic metal samples at low T!

    τD=L2/D

  • Distribution function for τD τinteractionτD=L2/D

    free electrons “hot” electrons

  • Aside 1: Current through a tunnel junction

    ( )2

    RLR

    2

    LF n ( eVE )n (E) f (E)2 dE M 1 f ( )eVE→ +

    πΓ = − +

    ν∫h

    eV

    V

    ( )I e → ←= Γ − ΓL R

    ( )

    L

    RL

    RT

    n ( eV

    eV

    E )1I dEeR

    x

    n (E)

    f (E) f (E )

    +

    +

    =

    NN junction:

    T

    n(E) 1 f(E)V

    RI

    = =

    ⇒ =

    ( )L Rf (E) f (E e1 V)←Γ = +−

  • Conductance of an N-X junction at T=0

    V

    N X( )

    R

    R

    X

    T

    TeV

    X

    e

    T

    L

    L

    0

    V

    0

    n (E )

    f (E )

    1I dEeR

    1 dE

    n (E)

    f

    eV

    eV

    eVn (E )

    n

    (E)

    (E)

    eR1 dE

    eR

    +

    +

    +

    =

    =

    × −

    =

    TX

    d nI 1d RV

    (e )V=

    Spectroscopy of nX

    eVdV

    dI

  • How to measure f(E):tunnel spectroscopy using an N-S junction

    V

    N S

    -0.4 -0.2 0.0 0.2 0.4

    0

    20

    40

    dI/d

    V (µ

    S)

    V (mV)

    eVΔ

    Ag-Al 2 2E

    E − Δ

  • N out of equilibrium:spectroscopy of f(E)

    V

    N* S

    eVΔ

    -0.4 -0.2 0.0 0.2 0.4

    0

    20

    40

    dI/d

    V (µ

    S)

    V (mV)

    ( )T

    SNS f (E1I d eE

    eV)n (E) (E)

    Rf= −−∫

    ST

    Nd n (E) eVI 1 d E )E

    RVf

    d(′ −−= ∫

  • Experimental setup

    UU

    VS

    tunnel junction

    L=5 to 40 µm2

    DLDiffusion time: 1 to 60 nsD

    τ = =

    ( )dI VdV

    numericaldeconvolution ( )f E

  • -0.6 -0.4 -0.210

    20

    V (

    dI/d

    V (µ

    S)

    -0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

    20

    40

    60

    80

    100

    V (mV)

    dI/d

    V (µ

    S)

    -0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

    20

    40

    60

    80

    100

    V (mV)

    dI/d

    V (µ

    S)

    -0.6 -0.4 -0.210

    20

    V (

    dI/d

    V (µ

    S)

    -0.2 0.00

    1

    E (meV)

    f(E)

    -0.2 0.00

    1

    E (meV)

    f(E)

    Summarize how to measure f(E):

    UU

    VS

    U=0.2 mV

    U=0 mV

    f(E) dI/dV

  • -0.3 -0.2 -0.1 0.0 0.10

    1

    L=1.5 μmτD=0.36 nsf(E)

    -0.3 -0.2 -0.1 0.0 0.1

    L=5 μmτD=4.5 ns

    Effect of the diffusion time τD on f(E)

    E (meV) E (meV)

    U=0.2 mV

    longer interaction time ⇒ more rounding

    H. Pothier et al., PRL 79, 3490 (1997)

  • 0

    1

    τD=1.8 ns

    Ag 6N (99.9999%)

    f(E)

    0

    1

    f(E)

    τD=2.8 ns

    Cu 5N(99.999%)

    -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.20

    1

    f(E)

    E (meV)

    τD=1.8 ns

    Au 4N(99.99%)

    Compare strength of interactions

    effect of material ? effect of purity ?

  • Compare Dependence on U

    0

    1

    U=0.1 mV

    U=0.4 mV

    f(E)

    0

    1

    f(E)

    -1.5 -1.0 -0.5 0.0 0.50

    1

    f(E)

    E/eU

    0

    1L=20 µmτD=19 nsX=L/2

    Ag 6N

    f(E)

    0

    1

    f(E)

    L=5 µmτD=2.8 nsX=L/2

    Cu 5N

    -0.6 -0.4 -0.2 0.0 0.20

    1

    f(E)

    E (meV)

    L=1.5 µmτD=0.18 nsX=L/4

    Au 4N

    U=0.1, 0.2, 0.3 & 0.4 mV

    Observe scaling law in Au 4N & Cu 5N but not in Ag 6N

  • Calculation of f(x,E)

    { }( ) { }( )in o2 ut2f(E) f(E)

    t xI x,E, f I x,E, fD∂ ∂+ = −

    ∂ ∂

    Boltzmann equation in the diffusive regime (Nagaev, Phys. Lett. A, 1992):

    xx-dx

    x+dx

    ε

    E-ε

    E

    x 0 x Lf (E) f (E) Fermi function= == =

    diffusion in real space

    transfers of population in the energy space

    Boundary conditions :

  • Calculation of f(x,E)

    { }( ) { }( )2 t2

    in ouI x,E, ff(E)x

    I , , fD x E−∂ =∂

    ε

    E-ε

    E E’

    E’+ε

    { }( ) [ ] [ ]outI x,E, f dE'd f(E) 1 f(E ) f(E')K( 1 f(E') )= − − −ε ε ε + ε∫

    e-e interactions :

    fn3D

    3 / 2κ

    ε(Altshuler, Aronov, Khmelnitskii, 1982)

    Boltzmann equation in the diffusive regime (Nagaev, Phys. Lett. A, 1992):

  • Theory of screened Coulomb interaction in the diffusive regime

    (Altshuler & Aronov, 1979)

    ingredients:polarisabilityoverlap ↑

    Prediction for 1D wire : 3 / 2( )Kκ

    εε =

    ( )κ π ν −= h 13/2 e2 SFD

    ε

    2 4 2dq

    D q ω⎛ ⎞∝⎜ ⎟+⎝ ⎠

  • Experiment vs. Theory

    -1 0

    κ=0.425 ns-1meV-1/2

    κthy=0.1 ns-1meV-1/2

    0.2

    Ag 6N0.5 mV0.4 mV0.3 mV0.2 mV0.1 mV

    f(E)

    E/eU

    -1 0

    κ=0.6 ns-1

    Cu 5N

    0.1 mV

    0.2 mV

    0.3 mV

    0.4 mV

    0.5 mV

    E/eU

    f(E)

    κ=3.2 ns-1meV-1/2

    κthy=0.1 ns-1meV-1/2

    Cu 5N

    0.1 mV

    0.2 mV

    0.3 mV

    0.5 mV0.4 mV

    K(ε)=κ ε-3/2

    K(ε)=κ ε-2

    Ag 6N: experiment agrees with theory

    Cu 5N, Au 4N, Ag 5N: • energy exchange stronger than predicted• K(ε)=κ ε-2 fits data

  • f(E)τφ(T)

    Ag5NCu6N,5N,4N Au4N

    fast relaxation rates

    Comparison of the results of the two methods

    Ag6N

    saturation

    3 / 2K( )κ

    ε=ε

    3 / 2

    1K( ) ∝εε

    2 / 3T−∝

  • f(E)

    Comparison of the results of the two methods

    τφ(T)

    Ag5NCu6N,5N,4N Au4N

    saturationfast relaxation rates

    Ag6NCoulomb

    interactions

    Othermechanism

    ROLE OF RESIDUAL IMPURITIES ?

    3 / 2K( )κ

    ε=ε

    3 / 2

    1K( ) ∝εε

    2 / 3T−∝

  • The two puzzlesτφ(T) measurements

    0.1 1

    1

    10

    Ag 6N Au 6N Ag 5N Cu 6N

    τ φ (n

    s)

    T (K)-0.3 0.0

    0

    1

    0.3mV 0.2mV 0.1mV

    τD=2.8 ns

    Cu5

    f(E)

    E(meV)

    Ag5N - Cu5N,4N - Au4N

    f(E) measurements

    Anomalous interactions in the less pure samples

  • The Kondo effect again

    e

    e

    J .Sσur ur

    Spin-flip scattering

    increased resistivityreduction of τφ

    Collective effect:Formation of a

    singlet spin state

    T

    R

    KT

    Log(T)−β

    sfγ

    T

    spin-flip

    (total scattering rate)

    phononsKondo

    J1/νFKB eETk

    −≈

  • Nagaoka-Suhl expression of the spin-flip scattering rate near TK

    1sf−τ

    T

    spin-flip

    1 10 100

    1

    10

    τ sf(T

    )/(hv

    F/2c im

    p)

    T/TK

    Weak temperaturedependance near TK !!

    Link to τφ(T) saturation?

  • From τsf to τφ

    Another important timescale: τKLifetime of the spin state

    of a magn. imp.

    If τK < τsf Other electrons matter

    Randomising effecte fph se e

    1 1 1 1φ −

    = + +τ τ τ τ

    If τK > τsf The spin states of the mag. imp. seen by time-reversedelectrons are correlated

    e fph se e

    1 1 1 2φ −

    = + +τ τ τ τ

    ( V.I. Fal’ko, JETP Lett. 53, 340 (1991) )

  • Comparison of τsf and τK

    kBT EF BFk Tν concentration of electronsthat can spin-flip

    cimp concentration of magnetic impurities

    B impFIf k T c :>ν τK < τsf

    impT 40 mK c (ppm)×>Numerically,

    for Au, Ag, Cu, …

    e fph se e

    1 1 1 1φ −

    = + +τ τ τ τ

  • Effect of magnetic impurities on τφ

    0.1 1

    1

    10 Ag (6N)

    Ag (5N) bare

    1.0ppm Mn

    0.3ppm Mn

    e-e & e-ph scattering

    spin-flipscattering

    TK

    τ φ (n

    s)

    T (K) τφ(TK) =0.6 ns

    cimp (ppm)

    Spin-flip rate peaks at TK:

    1 10 100

    1

    10

    τ sf(T

    )/(hν

    F/2c im

    p)

    T/TK

    ee p se h f

    11 11φ −

    +τ τ

  • Fit parameters:Ag(5N) bare: 0.13 ppm+ 0.3 ppm : 0.40 ppm+ 1 ppm : 0.96 ppm

    F. Pierre et al.,PRB 68, 0854213 (2003)

    Effect of magnetic impurities on τφ

    0.1 1

    1

    10 Ag (6N)

    Ag (5N) bare

    1.0ppm Mn

    0.3ppm Mn

    e-e & e-ph scattering

    spin-flipscattering

    TK

    τ φ (n

    s)

    T (K)

    Above TK : partial compensation of e-e and s-f

    apparent saturation

  • Why can’t we just detect magnetic impurities with R(T) (the original Kondo effect)?

    1 ppm of Mn is invisible in R(T)(hidden by e-e interactions)

    1 2 3 4

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    δR/R

    (‰)

    T-1/2 (K-1/2)

    Ag with 1 ppm Mn at B=30mT Fit: 2.4E-4T-1/2

  • Source material purity vs. sample purity: Cu samples

    Magnetic impurities are invisible in R(T)

    0.1 1 10

    0.1

    1

    10

    Ag 6N Cu 5N #1 Cu 5N #2 Cu 6N #1 Cu 6N #2 Cu 6N #3

    τ φ (n

    s)

    T (K)

    1 2 3 4 5

    1

    2

    3

    4

    δR/R

    (‰)

    1/T-1/2 (K)

    • In all Cu samples τφ(T) saturates at low T• τφ(T) is strongly reduced but shows no dip

  • Measure τφ(B) from Aharonov-Bohm oscillations

    I

    V

    BT=100 mK

    Cu ring0.0 0.5 1.0 1.5

    0

    1

    2

    δG (

    e2/h

    )

    B (T)

    0.00 0.05-0.2

    0.0

    0.2

    1.40 1.45-0.2

    0.0

    0.2

  • A.B. Oscillations vs. Magnetic Field

    0 200 400 6000.0

    0.5

    1.0 B=0±0.1T B=1.2±0.1T

    h/e

    Pow

    er s

    pect

    rum

    AB

    (a.u

    .)

    1/ΔB (1/T)

    AB oscillations increase with B ⇒ presence of magnetic “impurities” !

    Fourier Transform(T=100 mK)

    40 mK noise floor

    -20 -10 0 10 20

    0.05

    0.1

    0.5

    T=40 mK T=100 mK

    ΔGh/

    e * (k

    BT/E

    Th)1/

    2 [e

    2 /h]

    2μBB/kBT

  • What about energy exchange ?

  • Energy exchange mediated by magnetic impuritiesKaminski and Glazman, PRL 86, 2400 (2001)

    f(E)

    EE-ε E’+ε

    E’

    E’+εE’E E-ε

    Virtual state

    * *Reinforced by Kondo effect

  • Energy exchange mediated by magnetic impuritiesvanishes when gμBB >> eU

    f(E)

    EE-ε E’+ε

    E’

    E’+εE’E E-ε

    Virtual state

    gµB

  • initial state:

    final state:

    Aside 2: Inelastic tunneling

    eV

    P(E)=probability to give energy E to environment

    Ε

  • P(E) depends on environmental impedance

    V

    Zext(ω)

    C,RT

    V

    RT

    Z (ω)=

    [ ] ( )

    J(t

    e

    0t

    iEt /

    t

    0

    V

    )

    i

    K

    dI

    J(t

    P(E)

    P(E

    )

    )

    1 dEd R

    1 e dt2

    Re Z( )d2 e 1R

    V

    +

    +∞ − ω

    =

    ωω= −

    ω

    h

    h

    At T=0, one obtains :

  • Resistive environmentV

    R

    C,RT

    For K2RRdI c tV

    Vs .

    d

    ⎛ ⎞∝ +⎜ ⎟⎜ ⎟

    ⎝ ⎠

    -1 0 10.0

    0.5

    1.0

    C=0.92fFT=40 mK R/RK=.08 (R=2.06kΩ)

    RTd

    I/dV

    V(mV)

    0.01 0.1 1

    0.5

    1.0

    V(mV)kT eRC

    h

    RCeV h

  • UU

    R

    BV

    Measure f(E) at B ≠ 0 using Dynamical Coulomb Blockade

    -0.6 -0.3 0.0 0.3

    18

    21

    dI/d

    V (

    µS)

    -0 .6 -0.3 0.0 0.3

    15

    18

    21

    24

    dI/d

    V (

    µS)

    V (m V)

    dI/d

    V (

    µS)

    -0 .6 -0.3 0.0 0.3 0.6

    15

    18

    21

    24

    V (m V)

    V (m V)

    -0.6 -0.3 0.0 0.3 0.6

    18

    21

    V (m V)

    dI/d

    V (

    µS)

    U=0 mV

    U=0.2 mVB=1.4 T

    dI/dV → f(E) → electron-electron interactions

    R=1 kΩ

  • A controlled experiment

    Ag (99.9999%)

    0.9 ppm Mn2+implantation

    Comparativeexperiments

    bare

    implanted

    Effect of 1 ppm Mn on interactions ?

    Left as is

    25 nm

    106 Ag1Mn

  • -0.2 0.0 0.2

    0.9

    1.0

    -0.2 0.0 0.2

    0.8

    0.9

    V (mV)

    Rtd

    I/dV

    Experimental data at weak B

    U = 0.1 mVB = 0.3 T

    weak interaction

    strong interaction

    implanted

    Rtd

    I/dV

    bare

    U

    ( )

    -0.5 0.0 0.5

    0.9

    1.0

    V (mV)

    Rtd

    I/dV

    ( )

    -0.5 0.0 0.5

    0.9

    1.0

    V (mV)

    Rtd

    I/dV

  • -0.2 0.0 0.2

    0.9

    1.0

    -0.2 0.0 0.2

    0.8

    0.9

    V (mV)

    Rtd

    I/dV

    Rtd

    I/dV

    U = 0.1 mVB = 0.3 TB = 2.1 T

    Very weakinteraction

    Experimental data at weak and at strong B

    implanted

    bare

  • 0.1 1 10

    0.1

    1

    10

    τφ (ns)

    T (K)

    bare

    implanted

    Cbare =0.1 ppmCimplanted=0.9 ppm

    Fits:

    Coherence time measurementson the same 2 samples

  • Full U,B dependenceB

    are

    C=0

    .1 p

    pmIm

    plan

    ted

    C=0

    .9 p

    pmU=0.1 mV

    2.1 T1.8 T1.5 T1.2 T0.9 T0.6 T0.3 T

    U=0.2 mV U=0.3 mV

    -0.4 0.0 0.4

    -0.2 0.0 0.2

    0.8

    0.9

    1.0

    1.1

    1.2

    V (mV)V (mV)V (mV)

    RTd

    I/dV

    RTd

    I/dV

    -0.2 0.0 0.2

    0.9

    1.0

    -0.4 0.0 0.4

    -0.5 0.0 0.5

    -0.5 0.0 0.5

  • Comparison with theoryB

    are

    C=0

    .1 p

    pmIm

    plan

    ted

    C=0

    .9 p

    pm

    2.1 T1.8 T1.5 T1.2 T0.9 T0.6 T0.3 T

    U=0.1 mV U=0.2 mV U=0.3 mV

    -0.4 0.0 0.4

    -0.2 0.0 0.2

    0.8

    0.9

    1.0

    1.1

    1.2

    V (mV)V (mV)V (mV)

    RTd

    I/dV

    RTd

    I/dV

    -0.2 0.0 0.2

    0.9

    1.0

    -0.4 0.0 0.4

    -0.5 0.0 0.5

    -0.5 0.0 0.5

    Goeppert, Galperin, Altshuler and Grabert, PRB 64, 033301 (2001)

    1S2

    ⎛ ⎞=⎜ ⎟⎝ ⎠

  • Conclusions – Lectures 2 & 3Two methods to investigate interactions in wires

    0.1 1

    1

    10

    Ag 6N Au 6N Ag 5N Cu 6N

    τ φ (n

    s)

    T (K)

    τφ(T)

    -0.4 -0.2 0.00

    1

    exp. U=0.1, 0.2, 0.3 mV theory

    (κ3/2= 0.11 ns-1meV-1/2)

    f(E)

    E(meV)

    f(E)

    -0.2 0.0 0.2

    0.8

    0.9

    1.0

    1.1

    1.2

    RTd

    I/dV

    V (mV)

    Moral of the story: even at concentrations as low as 1 ppm,magnetic impurities have a large influence on low-temperature electronic transport in metals.

  • Four consequences of electron-electron interactionsin quasi-1D diffusive wires (Altshuler & Aronov)

    • loss of phase coherence: τφ ~ T-2/3 (AA+Khmelnitskii)• energy exchange between quasiparticles:

    • correction to resistance: δR(T) ~ T-1/2• correction to tunneling DOS, or dynamic Coulomb blockade:

    dI/dV ~ V2R/RQ R

    ∝ ε-3/2

  • References• Dephasing

    – Gougam, Pierre, Pothier, Esteve, Birge, J. Low Temp. Phys. 118, 447 (2000).– Pierre & Birge, Phys. Rev. Lett. 89, 206804 (2002).– Pierre, Gougam, Anthore, Pothier, Esteve, Birge, Phys. Rev. B 68, 085413

    (2003).

    • Energy Exchange– Pothier, Gueron, Birge, Esteve, Devoret, Phys. Rev. Lett. 79, 3490 (1997).– Pothier, Gueron, Birge, Esteve, Devoret, Z. Physik. B 104, 178 (1997). – Pierre, Pothier, Esteve, Devoret, J. Low Temp. Phys. 118, 437 (2000).– Anthore, Pierre, Pothier, Esteve, Devoret, cond-mat/0109297 (2001).– Anthore, Pierre, Pothier, Esteve, Phys. Rev. Lett. 90, 076806 (2003).

    • Both– Pierre, Pothier, Esteve, Devoret, Gougam, Birge, cond-mat/0012038 (2000).– Pierre, Ann. Phys. Fr. 26, N°4 (2001).– Huard, Anthore, Birge, Pothier, Esteve, to be published in PRL (2005).

  • Evidence for extremely dilute magnetic impuritieseven in purest samples

    Sample Imp. TK(K) c (ppm)Ag(6N)a Mn 0.04 0.009

    “ b “ “ 0.011“ c “ “ 0.0024“ d “ “ 0.012

    Au(6N) Cr 0.01 0.02

    100 atoms ~ 25 nm

    1 ppm :

    In the wire, 0.01 ppm = 3 impurities/µm

    1

    10

    0.1 1

    1

    10

    Ag(6N)c Ag(6N)b Ag(6N)a

    Ag(6N)d Au(6N)

    τ φ (n

    s)

    T (K)

  • Compare τφ data with AAK and GZS theories

    0.1 1 10 100 1000 10000 1000000.01

    0.1

    1

    10MSU/Saclay: Ag6N; Au6NMaryland: Au (Mohanty et al.)Bell Labs: AuPd (Natelson et al.)

    6

    5

    43

    21

    EC,D B

    A

    F

    a bc

    d

    τ φm

    ax/τ e

    eAAK

    (Tm

    in)

    τφ

    max/τ0GZS

    Electron Dephasing and Energy Exchange in Diffusive Metal Wires:PrologueBut dR/dT