electromagnetic theory ii...final observations 3/10/16 g. franchetti 72 potential vector was here...

75
Electromagnetic Theory II G. Franchetti, GSI CERN Accelerator – School 2-14 / 10 / 2016 3/10/16 G. Franchetti 1

Upload: others

Post on 16-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Electromagnetic Theory II

    G. Franchetti, GSI

    CERN Accelerator – School

    2-14 / 10 / 2016

    3/10/16 G. Franchetti 1

  • Dielectrics

    3/10/16 G. Franchetti 2

    +

    -

  • Dielectrics and electric field

    3/10/16 G. Franchetti 3

    +-

    E

    electric dipole moment

    s

  • 3/10/16 G. Franchetti 4

  • 3/10/16 G. Franchetti 5

    -

    -

    -

    -

    +

    +

    +

    +

  • Polarization

    3/10/16 G. Franchetti 6

    For homogeneous isotropic dielectrics

    dielectric susceptibility

    polarization number of electric dipole momentper volume

    electric field “in” the dielectric

  • Example

    3/10/16 G. Franchetti 7

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    +

    +

    +

    +

    +

    +

    free ch

    arges

    bo

    un

    de

    d ch

    argesTotal Electric field

  • Field internal to the capacitor

    3/10/16 G. Franchetti 8

    relative permettivity

    Material

    Vacuum 1

    Mica 3-6

    Glass 4.7

    water 80

    Calcium copper titanate

    250000

  • Electric Displacement

    3/10/16 G. Franchetti 9

    Field E0 depends only on free charges

    We give a special name: electric displacement

    first Maxwell equation

    Free charges

  • Bounded current

    3/10/16 G. Franchetti 10

    -

    -

    -

    -

    +

    +

    +

    +

    Suppose that Eis turned on in the time

    The polarization changes with time

  • Bounded current

    3/10/16 G. Franchetti 11

    The polarization changes with time

    -

    -

    -

    -

    +

    +

    +

    +

    Suppose that Eis turned on in the time

  • 3/10/16 G. Franchetti 12

    Density of current due to bounded charges

    It has to be included in the Maxwell equation

    = number of dipole moments Per volume

    It is already in the definition of

    Single electric dipole moment

  • Magnetic field in matter

    3/10/16 G. Franchetti 13

    As there are no magnetic charges

    Magnetic phenomena are due to “currents”

  • Magnetic moment

    3/10/16 G. Franchetti 14

    torque acting on the coil

    Magnetic moment

  • Example

    3/10/16 G. Franchetti 15

    The effect of the magnetic field is to create a torque on the coil

    I

    A

  • Magnetic moments in matters

    3/10/16 G. Franchetti 16

    v

    r

    I

    e-

    Orbits of electrons

  • Intrinsic magnetic moments: ferromagnetism

    3/10/16 G. Franchetti 17

    Spin of electrons

  • Without external magnetic field

    3/10/16 G. Franchetti 18

    Random orientation (due to thermal motion)

  • Without external magnetic field

    3/10/16 G. Franchetti 19

    dipoles moment of atoms orientates according to the external magnetic field

  • Magnetization

    3/10/16 G. Franchetti 20

    B is the macroscopic magnetic field in the matter

    This surface current produces the magnetic field produced by magnetized matter

    sheet current

    = magnetic susceptibility

  • Non uniform magnetization

    3/10/16 G. Franchetti 21

    Mz Mz + DMz Mz + 2 DMz

    Δy

    DI DI DI

    Δz

  • Non uniform magnetization

    3/10/16 G. Franchetti 22

    Mx

    Mx + DMx

    Mx + 2 DMx

    DI

    DI

    DI

    Δy

    Δz

  • Free currents and bounded currents

    3/10/16 G. Franchetti 23

    The bounded currents are given by

    This current should be included in Ampere’s Law

    Define

  • Magnetic susceptibility

    3/10/16 G. Franchetti 24

    this field depends on all free and bounded currents: NOT PRACTICAL

    this field dependsonly on the currentthat I create

    relative permeability

    Material

    Vacuum 0 1 4π × 10−7

    water −8.0×10−6 0.999992 1.2566×10−6

    Iron (pure) 5000 6.3×10−3

    Superconductors -1 0 0

  • Maxwell equation in matter

    3/10/16 G. Franchetti 25

  • Summary of quantities

    3/10/16 G. Franchetti 26

  • Boundary conditions

    3/10/16 G. Franchetti 27

    1

    2

    Gauss

  • Boundary conditions

    3/10/16 G. Franchetti 28

    1

    2

    Stokes

  • Summary boundary conditions

    3/10/16 G. Franchetti 29

    1

    2

  • Waves

    3/10/16 G. Franchetti 30

    At t=0

    sin(x)

    -1

    -0.5

    0

    0.5

    1

    -10 -5 0 5 10

    xwave number

  • Waves

    3/10/16 G. Franchetti 31

    x

    sin(x-3)

    -1

    -0.5

    0

    0.5

    1

    -10 -5 0 5 10

    At time t

    the wave travels of

    wavevelocity

  • Waves

    3/10/16 G. Franchetti 32

    At fixed x

    y oscillates with period

    sin(x)

    -1

    -0.5

    0

    0.5

    1

    -10 -5 0 5 10

    t

  • Wave equation

    3/10/16 G. Franchetti 33

    The vector gives the direction of propagation of the wave

    the velocity of propagation is

  • Electromagnetic waves

    3/10/16 G. Franchetti 34

    Maxwell equations in vacuum

    speed of light !!

  • Planar waves

    3/10/16 G. Franchetti 35

    From 1st equation

    The electric field is orthogonal to the direction of wave propagation

    Starting ansatz

  • 3/10/16 G. Franchetti 36

    From 3rd equation

    This satisfy the 2nd equation, in fact

    Integrating over time

  • 3/10/16 G. Franchetti 37

    The 4th equation is satisfied too

  • Planar wave solution

    3/10/16 G. Franchetti 38

  • Sinusoidal example

    3/10/16 G. Franchetti 39

    with

    -1

    -0.5

    0

    0.5

    1

    -2 0 2 4 6 8 10

  • Poynting vector

    3/10/16 G. Franchetti 40

    -1

    -0.5

    0

    0.5

    1

    -2 0 2 4 6 8 10What is the flux of energy going through the surface A ?

    A

  • 3/10/16 G. Franchetti 41

    -1

    -0.5

    0

    0.5

    1

    -2 0 2 4 6 8 10

    A

    Electric field density energy

    Magnetic field density energy

    Energy through A in time Dt

  • Energy flux: Poynting vector

    3/10/16 G. Franchetti 42

    Energy flux

    But for EM wave

    Poynting vector

  • 3/10/16 G. Franchetti 43

  • Interaction with conductors

    3/10/16 G. Franchetti 44

    -1

    -0.5

    0

    0.5

    1

    0 2.5 5 7.5 10 12.5 15

    x

    y

    z

  • EM wave in a conducting media

    3/10/16 G. Franchetti 45

    Similar relation is found for H

    Ohm’s Law

  • 3/10/16 G. Franchetti 46

    Starting ansatz

  • Wave propagation

    3/10/16 G. Franchetti 47

    It depends on

    If then

    wave is un-damped

    Bad conductor

    if then

    Good conductor

  • Skin depth

    3/10/16 G. Franchetti 48

    -1

    -0.5

    0

    0.5

    1

    0 2.5 5 7.5 10 12.5 15

    x

    y

    z

    (drawing for not ideal conductor)

  • 3/10/16 G. Franchetti 49

    consider copper which has an electricalconductivity , and

    f δ

    60 Hz 8530 μm

    1 MHz 66.1 μm

    10 MHz 20.9 μm

    100 MHz 6.6 μm

    1 GHz 2.09 μm

  • Transmission, Reflection

    3/10/16 G. Franchetti 50

    E0i

    H0i

    E0rH0r

    MaterialVacuum

    E0t

    H0t

  • 3/10/16 G. Franchetti 51

    At the interface between the two region the boundary condition are

  • 3/10/16 G. Franchetti 52

    Perfect conductor

    Perfect dielectric

    Perfect dielectric Perfect conductor

  • Snell’s Law

    3/10/16 G. Franchetti 53

    1

    2

  • EM in dispersive matter

    3/10/16 G. Franchetti 54

    +-

    s

    Response to “external” electromagnetic field needs “time”

    Electric field Magnetic field

  • 3/10/16 G. Franchetti 55

    Wave velocity depends on The relation for k and

    becomes more complicated becausev depends on omega

    Waves at different frequencies travels with different velocity they “spread”

    Usually a pulse of electromagnetic wave is composed by several waves of differentfrequency -

  • Phase velocity and group velocity

    3/10/16 G. Franchetti 56

    A general wave can be decomposed in sum of harmonics

    If is independent from the wave does not get “dispersed”

    If is peaked around k0 then can be expanded around

  • 3/10/16 G. Franchetti 57

    Fast wave Slow wave modulating thefast wave

    Speed

  • Example

    -1

    -0.5

    0

    0.5

    1

    -20 -10 0 10 20

    3/10/16 G. Franchetti 58

    15 harmonics: each with different wave number, and wavelength

    Wave packet

    is the “group velocity”. The speed of the wave packet

    -0.6

    -0.4

    -0.2

    -0

    0.2

    0.4

    0.6

    -20 -10 0 10 20

    vg

    Phase velocity

  • Waveguides

    3/10/16 G. Franchetti 59

    Walls: Perfect conductor

    Inside the guide: Perfect dielectric

    Boundary condition at the walls x

    y

    z

    Ex(0,x,z) = 0Ex(x,a,z) = 0

    Ey(0,y,z)=0 Ey(b,y,z)=0

    a

    b

  • In the perfect dielectric

    3/10/16 G. Franchetti 60

    Maxwell equations Workingansatz

    Dispersion relation

  • In the perfect dielectric

    3/10/16 G. Franchetti 61

    Only E0z, and H0z are in the partial derivatives: special solutions

    Transverse electric wave TE E0z = 0 Transverse magnetic wave TM H0z = 0

  • TE waves

    3/10/16 G. Franchetti 62

    Equations

    If you know H0z, then you know everything

    These eqs. +

    Automatically

    Is satisfied

  • Boundary conditions: modes

    3/10/16 G. Franchetti 63

    Ex(0,x,z) = 0Ex(x,a,z) = 0

    Ey(0,y,z)=0 Ey(b,y,z)=0

    Search for the solution

    Boundary conditions

  • Cut-off frequency

    3/10/16 G. Franchetti 64

    Only if k > 0 the wave can propagate without attenuation

    Speed of wave

    Cut-off frequency

    Given the fix frequency of a wave, only a certain number of modes can exists in the waveguide

    Dispersionrelation

  • 3/10/16 G. Franchetti 65

    If a > b consider the TE10 mode

    0

    2

    4

    6

    8

    10

    0 2 4 6 8 10

    Forbidden region

    cut-off

  • 3/10/16 G. Franchetti 66

    If a > b consider the TE10 mode

    0

    2

    4

    6

    8

    10

    0 2 4 6 8 10

    cut-off

  • visually TE

    3/10/16 G. Franchetti 67

    E0y

    H0x

    kH0z

    kx

    E0y

    ky

    E0x

    H0z

    Standing wave

    Standing wave

  • 3/10/16 G. Franchetti 68

  • Cavity

    3/10/16 G. Franchetti 69

    Walls: Perfect conductor

    Inside the guide: Perfect dielectric

    Boundary condition at the walls x

    y

    z

    In every wall the tangent electric field Is zero

    a

    b

    c

  • Cavity (rectangular)

    3/10/16 G. Franchetti 70

    Standing wave

    Standing wave

    Boundary condition

    Normal modes are only standing waves

  • Electromagnetic standing waves

    3/10/16 G. Franchetti 71

    Dispersion relation

  • Final Observations

    3/10/16 G. Franchetti 72

    Potential vector was here presented for static field

    However one can also re-write the Maxwell equation in terms of the potential vector, and find electromagnetic wave of ”A”

    Potential vector

    Internal degree of freedom: Gauges

    Electric potential

    ( A is defined not In unique way)

    ( V is not unique)

  • 3/10/16 G. Franchetti 73

    Reference frame ?

    I

    v

    FI

    v

    F

    v

    The particledoes not move..Is there a force F ?

  • 3/10/16 G. Franchetti 74

    Reference frame ?

    v

    Maxwell equationstells me the speed is c

    E0i

    H0i

    Maxwell equationstells me the speed is c ( but I move, mm)

  • 3/10/16 G. Franchetti 75

    References:

    (1) E. Purcell, Electricity and Magnetism (Harvard University)(2) R.P. Feynman, Feynman lectures on Physics, Vol2. (3) J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..) (2) L. Landau, E. Lifschitz, Klassische Feldtheorie, Vol2. (Harri Deutsch, 1997) (4) J. Slater, N. Frank, Electromagnetism, (McGraw-Hill, 1947, and Dover Books, 1970) (5) Previous CAS lectures