electromagnetic modeling and simulation using...

23
© 2014 ANSYS, Inc. November 5, 2014 1 Electromagnetic Modeling and Simulation using ANSYS ANSYS, Inc

Upload: truongthu

Post on 16-Feb-2018

260 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 1

Electromagnetic Modeling and Simulation using ANSYS

ANSYS, Inc

Page 2: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 2

• Introduction to FEA

• Low-frequency Electromagnetic Applications

• High-frequency Electromagnetic Applications

Outline

Page 3: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 3

• THERE IS NO CLOSED FORM SOLUTION FOR THEM FOR

COMPLICATED STRUCTURES!

• Field Simulation techniques (1950’s) can be used for

complicated geometries and complicated boundary conditions

where “textbook equations” are not valid

DyelectricitforLawsGauss

t

DJHLawsAmpere

BmagnetismforLawsGauss

t

ΒInductionofLawsFaraday

'

'

0'

'

Equations sMaxwell? of Form alDifferenti

History of Electromagnetic Field Simulation

• Maxwell’s Equations (1873) define and solve

electromagnetic fields exactly and completely except…

Page 4: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 4

Different Methods of Electromagnetic Analysis

Page 5: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 5

3D Finite Element Method

• Solution is numerically obtained from an arbitrary geometry by breaking it down into simple pieces called finite elements

• In Maxwell3D, the fundamental unit of the finite element is a tetrahedron

• The desired field in each element is approximated with a 2nd order quadratic polynomial :

Hx(x,y,z) = a0 + a1x + a2y + a3z + a4xy + a5yz + a6xz + a7x2 + a8y2 + a9z2

• In order to obtain the basis functions, field quantities are calculated for 10 points in a 3D simulation (nodal values at vertices and on the edges).

The Components of a Field that are tangential to the edges of an element are explicitly stored at the vertices.

The Components of a field that is tangential to the face of an element and normal to an edge is explicitly stored at the midpoint of selected edges.

Fields at interior points are interpolated from the nodal values.

Page 6: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 6

3D Solenoid Model

3D Solenoid Mesh 2D Motor Mesh 2D Motor Model

What is a Finite Element mesh?

Page 7: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 7

Measured

FEA Automatic Adaptive Meshing

Page 8: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 8

What are some specific challenges which need to be considered?

• Electric Field effects: – varying dielectric permitivities

– varying dimensions and shape

– 3D field effects

• Magnetic effects: – nonlinear materials

– eddy currents

– skin and proximity effects

– time diffusion of magnetic fields

– transient excitations

– 3D field effects

Some Technical Issues for Electromagnetic Analysis

Page 9: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 9

Magnetics – Analytical vs FEA

Mechanical – Coupled Structural/Harmonics/Thermal/Fatigue

CFD - Cooling/mixing/particle tracking

System – Complete simulation with physically valid models

Overall Design Challenges

Page 10: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 10

Magnetic 3D FEA Analysis

System Analysis Circuits, Blocks, State Machine

PP := 6

ICA:

A

A

A

GAIN

A

A

A

GAIN

A

JPMSYNCIA

IB

IC

Torque JPMSYNCIA

IB

IC

Torque

D2D

Components Generator Design Power Electronics

HF Magnetics RLCG Parasitics

Mechanical Thermal/Stress

CFD Thermal

Model order Reduction

Co-simulation

Field Solution

FE Model Generation

Optimization

Electromagnetic Solutions

Embedded Software

Embedded Design

Push Back Excitations

Page 11: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 11

• Introduction to FEA

• Low-frequency Electromagnetic Applications

• High-frequency Electromagnetic Applications

Outline

Page 12: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 12

LF Electromagnetic Applications

Sensors and Actuators Biomedical

Electric Machine Efficiency

Transformers Parasitic and Thermal

Subsea Power Distribution Example

Battery Modeling

Cables

Logging While Drilling -100.00 -80.00 -60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 80.00 100.00

Relative Transmitter Depth [in]

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.60

2.70

2.80

Am

pli

tud

e R

ati

o

Ansoft Corporation HFSSDesign1XY Plot 4

Curve Info

d_mag

Setup1 : LastAdaptive

dip='0deg' Freq='0.002GHz'

d_mag

Setup1 : LastAdaptive

dip='20deg' Freq='0.002GHz'

d_mag

Setup1 : LastAdaptive

dip='45deg' Freq='0.002GHz'

d_mag

Setup1 : LastAdaptive

dip='60deg' Freq='0.002GHz'

Semiconductor Characterization

Wireless Power Transfer

Page 13: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 13

Magnetic field

simulation

Structural

vibration

Acoustic field

calculation

Transfer of magnetic

forces

Transfer of surface

displacements

Time domain Frequency domain Frequency domain

Motor and Generators

Mechanical Stress Deformation Temperature

Page 14: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 14

Transformers

Insulation – Dielectric

Withstand, Maximum E-field,

Creep Stress

Winding Load Losses

and Stray Flux

Lorentz Forces

During Short Circuit

Tank Wall

Losses Bus

Bars

Bus Bar

Forces, EMI

Shielding

Coupled Losses and

Temperature in Ferrite

Core

Fluid Flow - Oil

Filled

Transformer

Converters

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40Distance (m)

-1E+006

0E+000

1E+006

2E+006

3E+006

4E+006

V/m

xformer4Creep Stress Curves (V/m) ANSOFT

Curve Info

Allowable Withstand C...

Sorted_E_Tangent$PermOil='2.2'

E_Tangent$PermOil='2.2'

Cumulative_Stress$PermOil='1'

Cumulative_Stress$PermOil='2.2'

Cumulative_Stress$PermOil='6'

Inductance – Self,

Mutual, Leakage,

Incremental

Page 15: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 15

Actuators and Solenoids Flux Lines Plot

Coupled Magnetic –

System Simulation

Time-diffusion of

Magnetic Fields

Page 16: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 16

Wind Power Generation

Power Lines

HV Terminations Transformers

Switch Gear

Generator Bus bar

drive signal forthe converter(voltage)

Q Current Controller

D Current Controller

drive signal forthe converter(voltage)

Actual ID

Ref ID

converter

regulator

regulator

converter

Ref IQ

actual IQ

regulator

Ref Q

Actual Q

regulator

Q Power Controller

P Power Controller

Actual P

Ref P

0

0

0

0

0

0

A1

B1

C1

N1

A2

B2

C2

N2

ROT1

ROT2

w+W

+

WM1

W

+

WM2

W

+

WM3

W

+

WM4

W

+

WM5

W

+

WM6

w

+

ICA:

FML_INIT1

EQU

FML4

STATE_1140

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=0

STATE_1139

SET: SWA1:=1

SET: SWB1:=0SET: SWC1:=1

STATE_1138

SET: SWA1:=1

SET: SWB1:=0SET: SWC1:=0

STATE_1137

SET: SWA1:=1

SET: SWB1:=1SET: SWC1:=1

STATE_1136

SET: SWA1:=1

SET: SWB1:=0SET: SWC1:=0

STATE_1135

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=0

STATE_1134

SET: SWA1:=1

SET: SWB1:=0SET: SWC1:=1

STATE_1133

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=1

STATE_1132

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=0

STATE_1131

SET: SWA1:=1

SET: SWB1:=0SET: SWC1:=1

STATE_1130

SET: SWA1:=1

SET: SWB1:=1SET: SWC1:=1

STATE_1129

SET: SWA1:=1

SET: SWB1:=0SET: SWC1:=1

STATE_1128

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=1

STATE_1127

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=0

STATE_1126

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=0

STATE_1125

SET: SWA1:=0

SET: SWB1:=1SET: SWC1:=1

STATE_1124

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=1

STATE_1123

SET: SWA1:=1

SET: SWB1:=1SET: SWC1:=1

STATE_1122

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=1

STATE_1120

SET: SWA1:=0

SET: SWB1:=0SET: SWC1:=0

STATE_1119

SET: SWA1:=0

SET: SWB1:=1SET: SWC1:=1

STATE_1118

SET: SWA1:=0SET: SWB1:=1

SET: SWC1:=0

STATE_1117

SET: SWA1:=0SET: SWB1:=0

SET: SWC1:=0

STATE_1116

SET: SWA1:=0SET: SWB1:=1

SET: SWC1:=1

STATE_1115

SET: SWA1:=1SET: SWB1:=1

SET: SWC1:=1

STATE_1114

SET: SWA1:=0SET: SWB1:=1

SET: SWC1:=1

STATE_1113

SET: SWA1:=0SET: SWB1:=1

SET: SWC1:=0

STATE_1112

SET: SWA1:=0SET: SWB1:=0

SET: SWC1:=0

STATE_1111

SET: SWA1:=0SET: SWB1:=0

SET: SWC1:=0

STATE_1110

SET: SWA1:=1SET: SWB1:=1

SET: SWC1:=0

STATE_119

SET: SWA1:=0SET: SWB1:=1

SET: SWC1:=0

STATE_114

SET: SWA1:=1SET: SWB1:=1

SET: SWC1:=1

STATE_113

SET: SWA1:=0SET: SWB1:=1

SET: SWC1:=0

STATE_2_2

SET: SWA1:=0SET: SWB1:=0

SET: SWC1:=0

STATE_1121

SET: SWA1:=1SET: SWB1:=1

SET: SWC1:=0

STATE_1_8STATE_1_7STATE_1_6STATE_1_5STATE_1_4STATE_1_3STATE_1_2

STATE_118

STATE_117

STATE_116

STATE_115

STATE_2_1

STATE_1_1

STATE_Flexible1

2L3_GTOS

g_r1

g_r2

g_s1

g_s2

g_t1

g_t2

TWO_LVL_3P_GTO1

C2

B6U

D1 D3 D5

D2 D4 D6

B6U1

+

V

VM1

A

B

C

G(s)

gs4

G(s)

gs3

G(s)

gs2

G(s)

gs1

I

GAIN

sum3

sum2

GAIN

I

sum5

GAIN

I

G(s)

gs5

G(s)

gs6

I

GAIN

sum8

0.00 100.00 200.00 300.00 400.00 500.00 600.00Time [ms]

-400.00

-200.00

-0.00

200.00

307.39

Y1

Curve Info

rotor_current_dTR

rotor_current_qTR

target_rotor_current_DTR

target_rotor_current_QTR

0.00 100.00 200.00 300.00 400.00 500.00 600.00Time [ms]

-50.00

-25.00

0.00

25.00

43.09

Y1

[k]

Curve Info

PTRintgain='2' pgain='0.9'

QTRintgain='2' pgain='0.9'

PRTRintgain='2' pgain='0.9'

QRTRintgain='2' pgain='0.9'

Electronics and DSP controller

Blade

Rotor

Site selection

Shaft

Wind farm

Tower and FSI

Page 17: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 17

Resistive losses Temperature rise

Induction Heating

Speaker Glue Joint

Temperature rise

Resistive losses Losses in Fluid Solver Temperature rise in Fluid Solver

Page 18: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 18

Wireless Power Transfer

%100

cos

in

out

P

P

VIP

Efficiency Map

21LLkM

Page 19: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 19

Batteries

Temperature Distribution

• Electrochemical Kinetics • Solid-State Li Transport • Electrolytic Li Transport

• Charge Conservation/Transport • (Thermal) Energy Conservation

Li+

e

Li+

Li+ Li+

LixC6 Lix-Metal-oxide

e

Jump

Li

eeee j

F

tcD

t

c

1)(

Page 20: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 20

Temperature Deformation Loss Density Current Density

Cables and Busbars

1.00E-006 1.00E-005 1.00E-004 1.00E-003 1.00E-002 1.00E-001 1.00E+000 1.00E+001 1.00E+002F [MHz]

-75.00

-65.00

-55.00

-45.00

-35.00

-25.00

-15.00

-5.00

3.65

S (

dB

)

Simplorer_SmatrixS11 and S21Curve Info

dB20(S11)Imported

dB20(s21)Imported

Design Inputs Analysis Post-Processing

Voltage Efield System Model

Page 21: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 21

Sensors

Variable

Reluctance

Sensor

ICA:

EMSSLink1.GAP := 3

EQU

Difference := FLUXM2.FLUX - FLUXM1.FLUX

FLXFLUXM1 FLX FLUXM2CONST

CONST2

Difference

COMP1ECE

EMSSLink1

ROT

ROT_Vw

+

Maxwell 3D LinkMaxwell 3D Link

0.00 100.00 200.00 300.00 400.00 500.00 600.00Time [ms]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Flu

x [

vs]

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

Y2

Curve Info Y Axis

FLUXM1.FLUXTR Y1

FLUXM2.FLUXTR Y1

DifferenceTR Y2

COMP1.VALTR Y2

Hall Sensor

Eddy Current

Flaw Sensor

)( 2121 pudpuddriveroc LLNNIV

Output Voltage

System Model

Page 22: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 22

Motor Electronics Battery Shaft

Power Plant Power

Electronics

EM

Component

Mechanical

Component

Oakridge National Laboratory, ORNL/TM-2004/247, Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

http://commons.wikimedia.org/wiki/File:Ni-MH_Battery_02.JPG

Start to Finish Low Frequency Example: Hybrid Electric Vehicle Drive

Page 23: Electromagnetic Modeling and Simulation using ANSYSregister.ansys.com.cn/ansyschina/minisite/201411_em/motordesign... · Electromagnetic Modeling and Simulation using ANSYS ... •

© 2014 ANSYS, Inc. November 5, 2014 23

• Introduction to FEA

• Low-frequency Electromagnetic Applications

• High-frequency Electromagnetic Applications

Outline