electrochemical investigations of unexplored anthraquinones and

9
doi: 10.5599/jese.2012.0026 1 J. Electrochem. Sci. Eng. X (20xx) 000-000; doi: 10.5599/jese.2012.0026 Open Access : : ISSN 1847-9286 www.jESE-online.org Original scientific paper Electrochemical investigations of unexplored anthraquinones and their DNA binding AFZAL SHAH , ABDUR RAUF , ASAD ULLAH, AZEEMA MUNIR, RUMANA QURESHI, IFTIKHAR AHMAD, MUHAMMAD TAHIR SOOMRO, ZIA-UR-REHMAN Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan Corresponding Author: E-mail: [email protected]; Tel.: +925190642110; Fax: +925190642143 Received: September 15, 2012; Revised: November 2, 2012; Published: MM DD, YYYY Abstract The redox behaviour of two potential anticancer anthraquinones, 9,10-anthraquinone and 2-chloromethyl-9,10-anthraquinone was investigated in a wide pH range. Cyclic voltammetry based assay was developed for the assessment of the effect of medium, substituents, potential scan rate and number of scans on the voltammetric response of anthraquinones. The electrode reaction mechanism was suggested on the basis of cyclic and differential pulse voltammetric results. The effect of DNA on anthraquinones was also probed at physiological pH which could lead to further investigation of possible citotoxic activity in vitro. The results revealed that anthraquinones interact with DNA more strongly than the clinically used anticancer drug, epirubicin. Keywords Anthraquinones; redox mechanism; voltammetry; binding constant. Introduction Quinones are known to have a variety of biochemical and physiological functions. Literature survey reveals that these compounds are endowed with antibacterial, antifungal, anti- inflammatory, wound healing, analgesic, antipyretic, antimicrobial, antibiotic and antitumor activities [1,2]. Some derivatives of quinones are common constituents of biologically important molecules such as vitamins K [3]. Others, like mitoxantrone and pixantrone, have been reported to have appreciable antineoplastic activity [4]. It has been reported that the biological action of quinones is due to their electron transfer rates and redox potentials [5]. Consequently, the knowledge of the redox properties of quinones derivatives seems conceivable for a better understanding of their biological action.

Upload: others

Post on 27-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Article

in Press

A. Shah et al. J. Electrochem. Sci. Eng. X(Y) (20xx) 000-000

doi: 10.5599/jese.2012.0026 9

[9] G. Dryhurst, K.M. Kadish, F. Scheller, R. Renneberg, Biological Electrochemistry, Academic Press, London, 1982.

[10] A. Salimi, K. Abdi, G.R. Khayatian, Microchim. Acta 144 (2004) 161-169. [11] A. Bartoszek, Acta Biochim. Pol. 49 (2002) 323-331. [12] M.E. Peover, J. Chem. Soc. (1962) 4540-4549. [13] I. Feliciano, J. Matta, E. Melendez, J. Biol. Inorg. Chem. 14 (2009) 1109-1117. [14] R.K. Gilpin, L.A. Pachla, Anal. Chem. 69 (1997) 145-164. [15] N. Muhammad, A. Shah, Z. Rehman, S. Shuja, S. Ali, R. Qureshi, A. Meetsma, M.N. Tahir, J.

Organomet. Chem. 694 (2009) 3431-3437. [16] Z. Rehman, A. Shah, N. Muhammad, S. Ali, R. Qureshi, I.S. Butler, Eur. J. Med. Chem. 44

(2009) 3986-3993. [17] A. Shah, A.M. Khan, R. Qureshi, F.L. Ansari, M.F. Nazar, S.S. Shah, Int. J. Mol. Sci. 9 (2008)

1424-1434. [18] M.J. Han, Z.M. Duan, Q. Hao, S.Z. Zheng, K.Z. Wang, J. Phys. Chem. C., 111 (2007) 16577-

16585. [19] G.D. Liu, X. Yang, Z.P. Chen, G.L. Shen, R.Q. Yu, Anal. Sci. 16 (2000) 1255-1259. [20] A.J. Bard, L.R. Faulkner, Electrochemical Method: Fundamentals and Application J.Wiley

and Sons, New York, 1980. [21] C. Fernandez-Sanchez, T. Tzanov, G.M. Gubitz, A. Cavaco-Paulo, Bioelectrochemistry 58

(2002) 149-156. [22] M. Aslanoglu, Anal. Sci. 22 (2006) 439-445. [23] N. Li, Y. Ma, C. Yang, L. Guo, X. Yan, Biophys. Chem. 116 (2005) 199-205. [24] X. Chu, G.L. Shen, J.H. Jiang, T.F. Kang, B. Xiong, R.Q. Yu, Anal. Chim. Acta 373 (1998) 29-38. [25] T.W. Welch, H.H. Thorp, J. Phys. Chem. 100 (1996) 13829-13836. [26] C.M.A. Brett, A.M. Oliveira Brett, Electrochemistry. Principles, methods and applications,

Oxford University Press, UK, 1993. [27] R.S. Nicholson, I. Shain, Anal. Chem. 36 (1964) 706-723. [28] V.C. Diculescu, T.A. Enache, P.J. Oliveira, A.M. Oliveira Brett, Electroanal. 21 (2009) 1027-

1034. [29] A. Shah, R. Qureshi, A.M. Khan, R.A. Khera., F.L. Ansari, J. Brazil. Chem. Soc. 21 (2010) 447-451. [30] M.T. Carter, M. Rodriguez, A.J. Bard, J. Am. Chem. Soc. 111 (1989) 8901-8911. [31] S. Neidle, Z. Abraham, CRC Cr. Rev. Biochem. 17 (1984) 73-121. [32] S. Charak, D.K. Jangir, G. Tyagi, R. Mehrotra, J. Mol. Struct. 1000 (2011) 150-154.

© 2012 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/)