electrochemical additive manufacturing of metal ...adv. mat. 29 (2017) 1604211 (review) 16 ......

31
Tomaso Zambelli, [email protected] Laboratory of Biosensors and Bioelectronics, www.lbb.ethz.ch electrochemical additive manufacturing of metal microstructures with the FluidFM

Upload: others

Post on 24-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Tomaso Zambelli, [email protected] of Biosensors and Bioelectronics, www.lbb.ethz.ch

electrochemical additive manufacturing of metal microstructures with the FluidFM

1

LBB and surface patterns at the micrometer scale

biomolecular micropatternsto direct cell growth

Vogt et al. Biomaterials 2005 26:2549Martinez et al. Lab Chip 2016 16:1663

microarraysfor sensing applications

Städler et al. Biointerphases 2006 1:142 200 µm 5 µm

outline

2

the FluidFM technology

electrochemical 2D patterning

electrochemical 3D printing

AFM (optical beam detection, OBD)

3

split‐diode photodetector

laser source

cantilever deflected because of the interaction of the tip with the surfacesurface

Meyer et al., Appl Phys Lett 1988 53:1045, OBD

Albrecht et al, J Vac Sci Technol 1990 8:3386, Si cantilevers

Binnig et al., Phys Rev Lett 1986 56:530, AFM

4

FluidFM: a force-controlled nanopipette

AFM cantilevers with a microchannel Simultaneous control of force + liquid flow

microfluidics + AFM FluidFM

Laser to measure deflection

Nano Lett. 9 (2009) 2501

5

Microchanneled AFM cantilevers

k ~ 0.2 - 2 N/m

Dr. Edin SarajlicSmartTip BV (NL) Cytosurge AG (CH)

Deladi et al, Appl Phys Lett 2004 85:5361

Berenschotet al, Small 2012 8:3823

FluidFM & single-cell manipulation

6by O. Guillaume-Gentil

7

FluidFM for surface patterning: previous workinfluence of p, v, Fon nanoparticle deposition

cell-adhesive polymer patternsfor directed cell growth

PhD R Grüter

Nanoscale 5 (2013) 1097Langmuir 30 (2014) 7037

with PhD H. Dermutz

8

local electrodeposition with FluidFM: principle

FluidFM as a local source of reactants for electrodeposition

first trials: Copper electroplating

Local reduction of metal ions

PhD L Hirt

RSC Advances 5 (2015) 84517

9

2D ec-patterning: proof of concept with copper

large apertures (2-8 µm) and visual observation to find deposition parameters

(Ag QRE), 20 mV/s

(bottom view)

8 µm tipless probe, 50 mM CuSO4, p = 500 mbar

RSC Advances 5 (2015) 84517

Cu dissolution

Cu plating

Cu platingH2 ev olution

10

2D metal ec-deposition with force controlFluidFM is an AFM!ec-deposition and AFM topography with the same probe

In situ AFM(3D representation)

0 s

1 s

2 s

5 s

10 sPost-deposition SEM

20 µm

300 nm pyramidal probe, -0.6 V vs. Ag QRE, 50 mM CuSO4, p = 15 mbar, setpoint = 1 nN

0 s

1 s

2 s

5 s

10 s

Dep

ositi

on ti

me

2.7 µm

RSC Advances 5 (2015) 84517

11

ec-deposition: overpotential as ext. parameter

50 mM CuSO4, 15 mbar, 2 s approach time, 10 nN setpoint

RSC Advances 5 (2015) 84517

12

local electrografting with FluidFM:aryldiazonium salts

In situ AFM Ex situ SEM

300 nm pyramidal probeE = -0.7 V vs. Ag QRE3 mg/ml NBD · BF4

Substrate: ITOp = 0 mbarvTip = 4 µm/s (lines)

Thinnest lines ~150 nm

with Renaud CornutThomas BerthelotPascal Viel

RSC Advances 5 (2015) 84517

13

access to 3rd dimension!?!

In situ AFM(3D representation)

0 s

1 s

2 s

5 s

10 s

2.7 µm

14

metal 3D printing yes, but limited resolution

current standard for additive manufacturing of metal: laser / e-beam melting

resolution limited (50-100 µm) by powder size and heat spreading

alternative techniques needed for the micrometer scale

Wikimedia

15

additive manufacturing of metals at the micrometer scale: current developments

Adv. Mat. 29 (2017) 1604211 (review)

16

Meniscus-confined electroplating

Seol et al. Small 2015 11:3896

meniscus challenging automation difficult

EC-deposition reaction confined in the liquid meniscusbetween a glass micropipette and the substrate

pipette diameter: 15 µm

17

ec 3D printing with FluidFM: protocol (1)

copper on gold

~40 nN

Adv. Mater. 28 (2016) 2311

PhD L Hirt

18

ec 3D printing with FluidFM: protocol (2)

«touching event»

copper on gold

~40 nN

Adv. Mater. 28 (2016) 2311

19

ec 3D printing with FluidFM: protocol (3)

move up 0.5 µm (or away)

copper(!) on gold

~40 nN

not squeezing out, but voxel-by-voxel

Adv. Mater. 28 (2016) 2311

20

control systemwith a bachelor student(!) S. Ihle

Adv. Mater. 28 (2016) 2311

21

automation

10 µmdeflection monitored

user-defined shapeto be printed

30 µm

(2x speed)

Cu on ITO

«voxel by voxel» printing

Adv. Mater. 28 (2016) 2311

22

copper micro-objects

overhangs / sideway deposition

layer-by-layer deposition

10 µm

10 μm

20 μm

10 μm5 μm

10 µm

5 µm

control over feature sizevia overpressure

4 7 10 13 16 mbar1

0 M

1 M

16 mbar1 mbar 20 min

15 min 80 min

20 min 30 min

Adv. Mater. 28 (2016) 2311

23

fully dense, pure metal microstructures

with Alain Reiser, Prof . Spolenak (ETH D-MATL)

EDX of Cu pillars on AuCross section of a pillar500 nm

Adv. Mater. 28 (2016) 2311

W ORLD OF A PPLICA TIONS

3D PRINTING-METAL P RINT ING-

24

Edgar HeppWabe KoelmansMiklos Mohos

zoom on two voxels

Signals during printing

= printed normally

= redundant point indesign

Visual feedback on desigSEM image of structure

Printing process monitoring and feedback on design

zoom on 2 voxels

W ORLD OF A PPLICA TIONS

3D PRINTING-METAL P RINT ING-

26

5 µm5 µm

pillar wall solid body

2D 3D1D

= voxel

10 µm

Edgar HeppWabe KoelmansMiklos Mohos

CO PPE R MICRO-OBJECTS

W ORLD OF A PPLICA TIONS

3D PRINTING-METAL P RINT ING-

27

5 µm

walls with ov erhang 90 degree ov erhang

• overhanging structures printed without support structures• 90 degree overhangs possible

2 µm

Edgar HeppWabe KoelmansMiklos Mohos

CO PPE R MICRO-OBJECTS

W ORLD OF A PPLICA TIONS

3D PRINTING-METAL P RINT ING-

28

wall with a window

2 µm

micro coil

10 µm 10 µm

cylinder

Edgar HeppWabe KoelmansMiklos Mohos

CO PPE R MICRO-OBJECTS

29

conclusionsFluidFM for surface patterning localized electroplating &

electrografting mask-free patterning in-situ AFM imaging

FluidFM for 3D microfabrication «voxel by voxel» printing force feedback for automation

Outlook optimization other metals

30

acknowledgements

Luca Hirt

Stephan IhleZhijian PanJohannes Braun

Raphael GrüterLiv ie Dorwling-Carter

Renaud CornutThomas BerthelotJérôme Polesel-MarisPascal Viel

Pablo Dörig, Pascal Behr, Mike Gabi

Edgar HeppWabe KoelmansMiklos Mohos

Alain ReiserRalph Spolenak Patrick Frederix

f unding

Martin LanzStephen Wheeler

János Vörös (head)

ScopeM, ETH ZürichZMB, Univ ersity of Zürich