electroanalytical methods

34
Electroanalyti Electroanalyti cal methods cal methods Chapter Chapter 2

Upload: lucius-oneal

Post on 03-Jan-2016

208 views

Category:

Documents


5 download

DESCRIPTION

Chapter 2. Electroanalytical methods. Electroanalytical methods. Electrogravimetry. Coulometry. Potentiometry. Voltammetry. Potentiometry. Fundamentals of potentiometry. Reference electrodes. Indicator and ion selective electrodes. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Electroanalytical methods

Electroanalytical Electroanalytical methodsmethods

ChapterChapter 2

Page 2: Electroanalytical methods

2

Electroanalytical methods

ElectrogravimetryElectrogravimetry Coulometry Coulometry PotentiometryPotentiometry VoltammetryVoltammetry

Page 3: Electroanalytical methods

3

PotentiometryPotentiometry

Fundamentals of potentiometry

Reference electrodes

Indicator and ion selective electrodes

Instrumentation and measurement of cell electromotive force (e.m.f)

Page 4: Electroanalytical methods

4

Fundamentals of potentiometry

When a metal is immersed in a solution containing its own ions, the potential difference is established between the metal and the solution

Ox + ne Red

Ra

a

nF

RT 0ln

Page 5: Electroanalytical methods

5

Fundamentals of potentiometry

M n+ + ne = M

= + (RT/nF) ln Mn+

Nernst equation

Page 6: Electroanalytical methods

6

Fundamentals of potentiometry

Indicator electrode

+Reference electrode

+Solution

Cell

Page 7: Electroanalytical methods

7

Fundamentals of potentiometry

M M n+ reference electrode

E = (+) - (-) + L

E = (+) - (-)

= r - - (RT/nF) ln Mn+

Liquid junction potential

Page 8: Electroanalytical methods

8

Reference electrodesReference electrodes

Hydrogen electrode

Calomel electrode

Silver – silver chloride electrode

Page 9: Electroanalytical methods

9

Calomel electrode

Page 10: Electroanalytical methods

10

Calomel electrode

Hg│Hg2Cl2 , KCl(xM)‖

Hg2Cl2(s)+ 2e 2Hg(l)+ 2Cl-

Electrode potential

= Hg2Cl2 / Hg + (RT/nF) ln (1/ Cl-2)

= Hg2Cl2 / Hg - 0.059 lg Cl-

Page 11: Electroanalytical methods

11

Silver – silver chloride electrode

Ag│AgCl , KCl(xM)‖

AgCl(s)+ e Ag(s)+Cl-

Electrode potential

= AgCl / Ag + (RT/nF) ln (1/ Cl-)

= AgCl / Ag - 0.059 lg Cl-

Page 12: Electroanalytical methods

12

Indicator and ion selective electrodes

Indicator electrode

---The potential depends on the activity of a particular ionic species which it is desired to quantify

Page 13: Electroanalytical methods

13

Indicator and ion selective electrodes

Electrode of the first kind

Electrode of the second kind

The glass electrode

Crystalline membrane electrode

Biochemical electrode

Inert electrodeMetal Metal electrodelectrodee

MembraneMembrane electrodeelectrode

********************************************

Page 14: Electroanalytical methods

14

Electrode of the first kind

Indicator and ion selective electrodes

---The ion to be determined is directly involved in the electrode reaction

= M n+

/ M+ (RT/nF) ln M

n+

Metal M immersed in a solution of M n+

ion

Page 15: Electroanalytical methods

15

Electrode of the second kind

Indicator and ion selective electrodes

Silver – silver chloride electrode

--- coating a silver wire with silver choloride

AgCl(s)+ e Ag(s)+Cl-

= AgCl / Ag + (RT/nF) ln (1/ Cl-)

= AgCl / Ag - 0.059 lg Cl-

Page 16: Electroanalytical methods

16

Fe 3+ + e Fe 2+

= Fe 3+ / Fe2+ + (RT/nF) ln (Fe3+ / Fe

2+)

Inert electrode

---An inert electrode (Pt) is place in a system containing both an oxidizing agent and its reduction product

Page 17: Electroanalytical methods

17

The glass electrode

Page 18: Electroanalytical methods

18

The glass electrode

Composition

SiO2 72% + Na2O 22% + CaO 6%

SiO2 63% + Li2O 28% + Cs2O 2%

+ BaO 4% + La2O3 3%

Page 19: Electroanalytical methods

19

The glass electrode

Theory

--- Ion exchange process

glass = K + (RT/nF) ln H+

= K’ – 0.059 pH

Page 20: Electroanalytical methods

20

The glass electrode

properties

Can be used in the presence of strong oxidants and reductants

Can be used in viscous media

Can be used in the presence of proteins

Page 21: Electroanalytical methods

21

The glass electrode

properties

High resistance

Acid error and alkaline error

Page 22: Electroanalytical methods

22

Crystalline membrane electrode

composition

Lanthanum fluoride eletrode

Crystal of lanthanum fluoride+0.1 mol/L NaF – 0.1 mol/L NaCl+

Silver – silver chloride electrode

Page 23: Electroanalytical methods

23

Crystalline membrane electrode

Theory

Lattice defect

membrane = K - (RT/nF) ln F-

= K – 0.059 lg F-

Page 24: Electroanalytical methods

24

Crystalline membrane electrode

properties

Detection limit ~ 10-7 mol/L

Interference ~ OH-

pH range ~ 5 - 6

Page 25: Electroanalytical methods

25

Gas – sensing electrode

NH3 – NH4Cl

CO2 – NaHCO3

NO2 –NaNO2

Page 26: Electroanalytical methods

26

Biochemical electrode

Urea electrode

CO(NH2)2 + H2O + 2H+ 2NH4+ +

CO2

urease

Page 27: Electroanalytical methods

27

Instrumentation

Determination of pH

Page 28: Electroanalytical methods

28

Determination of pH

Glass electrode│ Solution X

││ SCE

E = SCE - glass

= SCE – ( AgCl / Ag + K + (RT/nF) ln H+)

E = K’ + (2.303 RT /F) pH

Page 29: Electroanalytical methods

29

E x= K’ x + (2.303 RT /F) pH x

Determination of pH

E s= K’ s + (2.303 RT /F) pH s

K’ x = K’ s

pH x = pH s + (E x - E s) F/2.303RT

--- Operational definition

Page 30: Electroanalytical methods

30

Determination of pH

Solution

0.05 M potassium hydrogenphthalate

0.025 M KH2PO4

0.025 M Na2HPO4

0.01 M Borax

pH 4.004 6.864 9.182

pH standard solution (25 Cº)

Page 31: Electroanalytical methods

31

Determination of fluoride

membrane = K ± (0.059/n) lg

Calibration curve

Standard addition

Page 32: Electroanalytical methods

32

Determination of fluoride

Calibration curve

Standard solutions

Total ionic strength adjustment buffer(TISAB)NaClNaAc - HAc

Sodium citrate

Ionic strength

pH

Interference

Page 33: Electroanalytical methods

33

Standard addition

Determination of fluoride

E1 = kc + k log y1 C1

E2 = kc + k log y1 (V1C1 + V2Cs)/(V1 + V2)

E2 - E1 = k log (V1C1 + V2Cs)/ C1(V1 + V2)

C1 = Cs/(10 E/k(1+V1/V2) – V1/V2)

Page 34: Electroanalytical methods