electrification of mobility_jesús palma

18
1 R&D on materials and electrochemical storage for the transportation sector Electrification of mobility and the electrical network EOI - Madrid Jesus Palma November 20 th , 2009

Upload: eoi-escuela-de-organizacion-industrial

Post on 11-May-2015

898 views

Category:

Technology


1 download

DESCRIPTION

El 20 de noviembre se celebró en EOI la jornada "Electrificación del transporte y red eléctrica / Electrification of mobility and the electrical network":Esta es la ponencia de uno de los reconocidos expertos europeos que analizaron en esta jornada el impacto de la electrificación del transporte en la red eléctrica, tanto en sistemas de distribución centralizada como en los emergentes sistemas distribuidos e inteligentes.www.eoi.es

TRANSCRIPT

Page 1: Electrification of Mobility_Jesús Palma

1

R&D on materials and electrochemical storage for the transportation sector

Electrification of mobility and the electrical network

EOI - MadridJesus Palma

November 20th, 2009

Page 2: Electrification of Mobility_Jesús Palma

2

The Electric Vehicle

SustainabilityOil consumptionCO2 emissions

PollutionGas contaminantsNoise

Number800 million vehicles in 2009

1500 million in 20303000 million in 2050

Driving forces for the Electric Vehicle

A. Ceña, J. Santamarta

Energías Renovables, feb. 2009

Page 3: Electrification of Mobility_Jesús Palma

3

The Electric Vehicle

Stop-start hybridsElectric motor used to start IC engine

Light hybridsElectric motor supplies additional power to IC engine

Pure hybridsControl system selects combination of motor & enginePlug-in hybrids with externally rechargeable battery

Pure electricNo IC engine

The big family of Electric Vehicles

J. Santamarta

Energías Renovables, Oct. 2009, 82-87

Page 4: Electrification of Mobility_Jesús Palma

4

The Electric Vehicle

No appropriate energy storage technologyCurrent storage technologies meet some HEV requirementsNo technology for EV requirements

Why such variety?

1

2

46

10

2

46

100

2

46

1000

Spec

ific

Ener

gy (W

h/kg

)

100 101 102 103 104

Specific Power (W/kg)

Lead-acid

Capacitors

Fuel Cells

IC Engine

HEV goal

3.6 s36 s0.1 h1 h

10 h

100 h

Ni-MH

Li-ion

3.6 s36 s0.1 h1 h

10 h

100 h

Acceleration

Ran

ge

EV goal

3.6 s36 s0.1 h1 h

10 h

100 h

Page 5: Electrification of Mobility_Jesús Palma

5

The Electric Vehicle

Quantitative

Range > 500 kmPower > 50 kW (big torque)Lifetime > 10 yearsCharging time

< 10 minutes

Qualitative

SafetyReliabilityComfort

Drivers’ requirements: a pool

Page 6: Electrification of Mobility_Jesús Palma

6

Energy Storage

IC engine vehicle

Consumption

43.5 kWh/100 km 5 L/100 km Diesel 12.7 kWh/kg

8.7 kWh/L

Range

1000 km for 50 L tank

Electric vehicle Spec. Energy Weight

Consumption avg.

20 kWh/100 kmLi-ion 160 Wh/kg

125 kg/100 km

Ni-Me hydride

90 Wh/kg

222 kg/100 kmLead-acid 35 Wh/kg

570 kg/100 km

Supercapacitor

10 Wh/kg

2000 kg/100 km

Comparison

Page 7: Electrification of Mobility_Jesús Palma

7

Energy Storage

IC engine vehicle

Lifetime

> 10 yearsRefueling

5 min.

Electric vehicle Cycle life Recharging

Li-ion 2000 cycles

min. -

hoursNi-Me hydride

1500 hours

Lead-acid 500 hoursSupercapacitor

500000 sec.

Comparison

Page 8: Electrification of Mobility_Jesús Palma

8

Energy Storage

Energy stored in 34 kg of diesel is equivalent to1250 kg Li-ion 2220 kg Ni-metal hydride

12337 kg Pb-acid43180 kg SuperCaps

A depressing result

05000

100001500020000

2500030000350004000045000

Wei

ght (

kg)

Diesel Li-ion Ni-MeH Pb-acid SC

Page 9: Electrification of Mobility_Jesús Palma

9

Energy Storage

Metal – air batteriesZinc-air

1090 Wh/kg

360 Wh/kg 55 kg (100 km)

Aluminum-air

4500 Wh/kg

1500 Wh/kg 13 kg (100 km)Lithium-air

5200 Wh/kg

1700 Wh/kg 12 kg (100 km)

Energy storage comparison34 kg diesel ≡

550 kg Zn-air ≡

133 kg Al-air ≡

118 kg Li-air

A possible solution…

0

100

200

300

400

500

600

Wei

ght (

kg)

Diesel Li-air Al-air Zn-air

Page 10: Electrification of Mobility_Jesús Palma

10

Energy Storage

Metal – airElectrical rechargeability

not demonstrated

Cycle life unknownLow power densitySafety problems in contact with air & moisture (Li)

… with drawbacks

So

Page 11: Electrification of Mobility_Jesús Palma

11

Materials R&D

Li-ion BatteryFast charging (<10 minutes)Extend cycle life (>5000 cycles)Increase energy density (>200 Wh/kg)

SupercapacitorImprove energy density (>50 Wh/kg)

Metal-air batteriesMake electrical rechargeability

feasible (reversibility)

Improve power density (>0.5 kWh/kg)Fast chargingExtend cycle life

Improvements through Materials Research

Page 12: Electrification of Mobility_Jesús Palma

13

Li-ion battery

Increasing Energy Density> 200 Wh/kg

Fast recharging< 10 min

Extendinf cycle life> 5000 cycles

Improving safetyRisk of explosion in short circuit / overvoltage

Li-ion battery

J. Tollefson. Nature

456 (2008) 436-440

Page 13: Electrification of Mobility_Jesús Palma

14

Li-ion battery

LiFePO4 nanoparticlesMIT tests charge / discharge in secondsA123 commercial electrodes charged in < 15 min.

Fast recharging

B. Kang

& G. Ceder. Nature

458 (2009) 190-193

http://www.a123systems.com/a123/technology/power

Page 14: Electrification of Mobility_Jesús Palma

15

Li-ion battery

Extending cycle lifeNanosized

materials → lower dimensional stress → better cycling

Improving safetyBarrier materials that form protective film at T>130 ºC

Boron fluorides as electron drains for overvoltage

cycles (> 500)

Li-ion battery

P. Poizot

et al. Nature

407 (2000) 496-499

K. Amine

and

Z. Chen, ANL, ref. NYT August 24, 2009

STOBA by ITRI, Taiwan

Page 15: Electrification of Mobility_Jesús Palma

16

Electrochemical capacitors

Increasing energy densityControlled Pore size distribution: Carbide-Derived Carbons

Hybrid concepts: EDL / Pseudocapacitance

Improving safetyAqueous electrolytes (hybrids)

Electrochemical capacitors

J. Chmiola

et al. Science

313 (2006) 1760-1763 / Skeleton

Technologies (Estonia)

ESMA (Russia) / JCR Micro / HESCAP Project

HESCAP Project (CEIT, IMDEA Energy…)

Page 16: Electrification of Mobility_Jesús Palma

17

Metal-air batteries

Electrical rechargeElectrolyte stable in highly reducing conditionsAir electrode stable in highly oxidant environmentDevelop catalysts for the oxygen reaction

Power densityIntroduce helpers to air electrode dischargeAvoid oxygen and water migration to metal electrodeDevelop catalysts for the oxygen reaction Avoid passivation

of metal electrode

Metal-air batteries

Page 17: Electrification of Mobility_Jesús Palma

18

Conclusions

Big challengesRemarkable improvement of battery performancemaintaining high safety standardsand controlled costs

But great opportunitiesEnvironmental benefitsHuge marketHigh social demand

The long and winding road… (The Beatles)

Page 18: Electrification of Mobility_Jesús Palma

19

Thank you