electricity markets with renewables...electricity markets with renewables jalal kazempour (technical...

67
Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) DTU CEE Summer School 2018, 28 June 2018 EES-UETP

Upload: others

Post on 01-Apr-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

Electricity Markets With Renewables

Jalal Kazempour

(Technical University of Denmark)

26 June 2015

DTU CEE Summer School 2018,

28 June 2018

EES-UETP

Page 2: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

This is happening in Denmark!

2

• Manage high uncertainty in demand and supply 

• Increased need for flexibility in the power systems 

Jalal Kazempour 1/16

Large‐scale penetration of renewable energy sources in power system 

In 2017:

• 43.6% of electricity consumption covered by wind (target: 100% in 2050)

• 1,460 hours of excess wind 

Page 3: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Why Flexibility?

3

• Renewables (with stochastic generation) bring uncertainty –inaccurate forecast may result in wrong commitment anddispatch decisions, with increased system cost

Electricity Market

Goal: meeting demand at the minimum system cost(or the maximum social welfare)

Jalal Kazempour 2/16

Page 4: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Why Flexibility?

4

• Renewables (with stochastic generation) bring uncertainty –inaccurate forecast may result in wrong commitment anddispatch decisions, with increased system cost

• How to manage renewable power uncertainty: 

Electricity Market

Goal: meeting demand at the minimum system cost(or the maximum social welfare)

Flexibility integration (fast generators, demand response, etc)

Proper market design

Jalal Kazempour 2/16

Page 5: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Questions

5 Jalal Kazempour 3/16

What is the cost of wind uncertainty and value of flexibility?

Page 6: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Questions

6 Jalal Kazempour 3/16

What is the cost of wind uncertainty and value of flexibility?

Do we need the system operator to do stochastic unit commitment‐‐or can some market players  attain the least‐cost solution on their own?

Page 7: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Two-Stage Settlement, 1 Day Horizon

7 Jalal Kazempour 4/16

Page 8: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Two-Stage Settlement, 1 Day Horizon

8 Jalal Kazempour 4/16

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

supply demand

Real‐time Market(Operator clears 

imbalances using actual load, wind)

Real‐time Market(Operator clears 

imbalances using actual load, wind)

supply demand

Page 9: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Two-Stage Settlement, 1 Day Horizon

9 Jalal Kazempour 4/16

Generators:

Demand Response (DR) Resources:

Virtual Bidders (Financial Arbitragers):

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

supply demand

Real‐time Market(Operator clears 

imbalances using actual load, wind)

Real‐time Market(Operator clears 

imbalances using actual load, wind)

supply demand

Page 10: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Two-Stage Settlement, 1 Day Horizon

10 Jalal Kazempour 4/16

Generators:• Slow generators commitment (u)• Fast generators tentative commitment (u)• Generator energy tentative (p)Demand Response (DR) Resources:

Virtual Bidders (Financial Arbitragers):

Fast generator revised commitment: (Δu)Generator energy revised (Δp)

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

supply demand

Real‐time Market(Operator clears 

imbalances using actual load, wind)

Real‐time Market(Operator clears 

imbalances using actual load, wind)

supply demand

Page 11: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Two-Stage Settlement, 1 Day Horizon

11 Jalal Kazempour 4/16

Generators:• Slow generators commitment (u)• Fast generators tentative commitment (u)• Generator energy tentative (p)Demand Response (DR) Resources:• Slow DR (d)• Fast DR tentative (d)

Virtual Bidders (Financial Arbitragers):

Fast generator revised commitment: (Δu)Generator energy revised (Δp)

Fast DR revised (Δd)

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

supply demand

Real‐time Market(Operator clears 

imbalances using actual load, wind)

Real‐time Market(Operator clears 

imbalances using actual load, wind)

supply demand

Page 12: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Two-Stage Settlement, 1 Day Horizon

12 Jalal Kazempour 4/16

Generators:• Slow generators commitment (u)• Fast generators tentative commitment (u)• Generator energy tentative (p)Demand Response (DR) Resources:• Slow DR (d)• Fast DR tentative (d)

Virtual Bidders (Financial Arbitragers):• Virtual bidder buys/sells (+v)

Fast generator revised commitment: (Δu)Generator energy revised (Δp)

Fast DR revised (Δd)

Bidder sells/buys (‐v)

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

Day‐ahead Market(Operator balances supply and 

demand, using either deterministic or stochastic forecast of load, wind)

supply demand

Real‐time Market(Operator clears 

imbalances using actual load, wind)

Real‐time Market(Operator clears 

imbalances using actual load, wind)

supply demand

Page 13: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Virtual Bidding

13 Jalal Kazempour 5/16

It exists in current US electricity markets, e.g., CAISO, PJM and MISO

The virtual bidder has no physical asset!

The virtual bidder buys (sells) in the day‐ahead market and thensells (buys) the same amount back in the real‐time market.

Page 14: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Virtual Bidding

14 Jalal Kazempour 5/16

Hourtt’

Day‐ahead market

Power quantity

 (MW)

Quantity sold by the virtual bidder in DA at hour t

Quantity bought by the virtual bidder in 

DA at hour t’

Hourt

t’

Real‐time market

Power quantity

 (MW)

The same quantity bought back by the virtual bidder in RT 

at hour t

The same quantity sold back by the 

virtual bidder in RT at hour t’

It exists in current US electricity markets, e.g., CAISO, PJM and MISO

The virtual bidder has no physical asset!

The virtual bidder buys (sells) in the day‐ahead market and thensells (buys) the same amount back in the real‐time market.

Page 15: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Virtual Bidding

15 Jalal Kazempour 5/16

Hourtt’

Day‐ahead market

Power quantity

 (MW)

Quantity sold by the virtual bidder in DA at hour t

Quantity bought by the virtual bidder in 

DA at hour t’

Hourt

t’

Real‐time market

Power quantity

 (MW)

The same quantity bought back by the virtual bidder in RT 

at hour t

The same quantity sold back by the 

virtual bidder in RT at hour t’

It exists in current US electricity markets, e.g., CAISO, PJM and MISO

The virtual bidder has no physical asset!

The virtual bidder buys (sells) in the day‐ahead market and thensells (buys) the same amount back in the real‐time market.

Page 16: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

16 Jalal Kazempour 6/16

Model 1: Stochastic Market Clearing (ideal solution)

Page 17: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

17 Jalal Kazempour 6/16

Model 1: Stochastic Market Clearing (ideal solution)

Day‐ahead settlement 

...

Real‐time operationfor each wind scenario

...

The set of wind scenarios andtheir probabilities are knownin day‐ahead stage, but whichone actually occurs in real‐time stage is unknown.

Page 18: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

18 Jalal Kazempour 6/16

Model 1: Stochastic Market Clearing (ideal solution)

Minimize [cost in day ahead] + [expected cost in real time]

Total expected cost minimization:

Day‐ahead settlement 

...

Real‐time operationfor each wind scenario

...

The set of wind scenarios andtheir probabilities are knownin day‐ahead stage, but whichone actually occurs in real‐time stage is unknown.

The system operator solves asingle stochastic optimizationproblem, considering day‐ahead and real‐time marketssimultaneously.

Page 19: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark19

Minimize (cost in DA) + (expected cost in RT) 

subject to:• Production limits (in DA and RT)• Transmission network limits (in DA and RT)• Load shedding limits (in RT)• Energy balances (in DA and RT)

• G. Pritchard, G. Zakeri, and A. Philpott, “A single‐settlement, energy‐only electric power market orunpredictable and intermittent participants,” Oper. Res., vol. 58, no. 4, pp. 1210‐1219, Jul. ‐Aug. 2010.

• J. M. Morales, A. J. Conejo, K. Liu, and J. Zhong, “Pricing electricity in pools with wind producers,” IEEETrans. Power Syst., vol. 27, no.3, pp. 1366‐1376, Aug. 2012.

Jalal Kazempour 6/21

Model 1: Stochastic Market Clearing (ideal solution) as an Optimization Form

Alternative Market Clearing Models

DA: day‐ahead stage                   RT: real‐time stage

Page 20: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark20

Maximize expected profitsubject to:Production limits (in DA and RT)

Each conventional generator:Maximize expected profitsubject to:Production limits (in DA and RT)

Each stochastic generator:

Maximize expected profitsubject to:Network limits (in DA and RT)

Grid operator:Minimize expected costsubject to:Load shedding limits (in RT)

Each load (inelastic):

Energy balances (in DA and RT)

Market clearing:

• B. F. Hobbs, “Linear complementarity models of Nash‐Cournot competition in bilateral andPOOLCO power markets,” IEEE Trans. Power Syst., vol. 16, no. 2, pp. 194‐202, May 2001.

Jalal Kazempour 7/21

Alternative Market Clearing ModelsModel 1: Stochastic Market Clearing (ideal solution) as an Equilibrium Form

Page 21: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark21

• Equivalent optimization and equilibrium models: identical set of KKT conditions

• Each player maximizes/minimizes its expected objective: Symmetric equilibrium problem

• Square system  single solution

• DA price = expected RT price

Jalal Kazempour 8/21

Model 1: Stochastic Market Clearing (ideal solution)

Page 22: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

22 Jalal Kazempour 6/16

Model 1: Stochastic Market Clearing (ideal solution)

Minimize [cost in day ahead] + [expected cost in real time]

Total expected cost minimization:

Day‐ahead settlement 

...

Real‐time operationfor each wind scenario

...

Challenges:

Page 23: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

23 Jalal Kazempour 6/16

Model 1: Stochastic Market Clearing (ideal solution)

Minimize [cost in day ahead] + [expected cost in real time]

Total expected cost minimization:

Day‐ahead settlement 

...

Real‐time operationfor each wind scenario

...

Challenges:

o Stochastic market clearing isincompatible with the currentpractice of real‐worldelectricity markets!

o Its implementation wouldplace a large burden on thesystem operator to developthis information and to obtainstakeholder consent for theprocedures involved!

Page 24: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

24 Jalal Kazempour 7/16

Model 2: Sequential Deterministic Market Clearing

Page 25: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

25 Jalal Kazempour 7/16

First, the system operatorclears the day‐ahead marketusing a deterministic forecast,then clears the real‐timemarket.

Model 2: Sequential Deterministic Market Clearing

Day‐ahead settlement (based on a deterministic 

wind forecast)

...

Actual wind power is realized

...

Day‐ahead outcomes are 

fixed

Real‐time operationfor any potential wind realization

Page 26: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

26 Jalal Kazempour 7/16

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]

First, the system operatorclears the day‐ahead marketusing a deterministic forecast,then clears the real‐timemarket.

Each stage’s optimization is adeterministic problem

Model 2: Sequential Deterministic Market Clearing

Day‐ahead settlement (based on a deterministic 

wind forecast)

...

Actual wind power is realized

...

Day‐ahead outcomes are 

fixed

Real‐time operationfor any potential wind realization

Real‐time market for each scenario:

Page 27: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

27 Jalal Kazempour 8/16

Model 3: Sequential Deterministic Market Clearing with Virtual Bidders as Stochastic Decision‐Makers

Page 28: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

28 Jalal Kazempour 8/16

Model 3: Sequential Deterministic Market Clearing with Virtual Bidders as Stochastic Decision‐Makers

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Page 29: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

29 Jalal Kazempour 8/16

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Model 3: Sequential Deterministic Market Clearing with Virtual Bidders as Stochastic Decision‐Makers

Page 30: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

30 Jalal Kazempour 8/16

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Model 3: Sequential Deterministic Market Clearing with Virtual Bidders as Stochastic Decision‐Makers

Assumption: Virtual bidders are perfect, in the sense that they have “perfect” informationabout day‐ahead and distribution of real‐time prices!• These prices are dual variables of clearing problems, while parameters in virtual bidders’ problems!

Page 31: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

31 Jalal Kazempour 8/16

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Model 3: Sequential Deterministic Market Clearing with Virtual Bidders as Stochastic Decision‐Makers

These trading quantities [MW] are primal variables in virtual bidders’ optimizationproblems, while parameters in market‐clearing problems!

Page 32: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

32 Jalal Kazempour 8/16

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Model 3: Sequential Deterministic Market Clearing with Virtual Bidders as Stochastic Decision‐Makers

Deterministic optimization problems

Stochastic optimization problem

Remark: Market‐clearing problems are deterministic, while markets allow the participation of stochastic decision‐makers who make their own dispatch decisions outside the market!

Page 33: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

33 Jalal Kazempour 8/16

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

This is an equilibrium problem (not optimization!)

Model 3: Sequential Deterministic Market Clearing with Virtual Bidders as Stochastic Decision‐Makers

Page 34: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

34 Jalal Kazempour 8/16

Extended version of Model 2(sequential market clearing)

Virtual bidders are the only marketplayers who “perfectly” know thedistribution of real‐time pricesacross scenarios!

Unlike the system operator whosequentially solves deterministicproblems, each virtual bidder solvesa two‐stage stochastic problem.

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

This is an equilibrium problem (not optimization!)

Model 3: Sequential Deterministic Market Clearing with Virtual Bidders as Stochastic Decision‐Makers

Page 35: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

35 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Page 36: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

36 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Page 37: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

37 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Maximize [expected profit]Each self‐scheduling slow generator:

Page 38: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

38 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Maximize [expected profit]Each self‐scheduling slow generator:

Similar to virtual bidders (arbitragerswithout asset), generators (usually slow‐start ones) can also behave as“stochastic decision‐makers” (arbitragerswith asset), as long as their totalproduction (PDA+PRT) lies between theirPmin and Pmax.

Self‐scheduling generators exist in someUS markets, e.g., CAISO.

Page 39: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

39 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Maximize [expected profit]Each self‐scheduling slow generator:

Assumption: Self‐scheduling generators are perfect, in the sense that they have “perfect”information about day‐ahead and distribution of real‐time prices!• These prices are dual variables of clearing problems, while parameters in self‐schedulers’ problems!

Page 40: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

40 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Maximize [expected profit]Each self‐scheduling slow generator:

These dispatch quantities [MW] are primal variables in self‐schedulers’ optimizationproblems, while parameters in market‐clearing problems!

Page 41: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

41 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Maximize [expected profit]Each self‐scheduling slow generator:

Deterministic optimization problems

Stochastic optimization problems

Remark: Market‐clearing problems are deterministic, while markets allow the participation of stochastic decision‐makers who make their own dispatch decisions outside the market!

Page 42: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

42 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

Maximize [expected profit]Each self‐scheduling slow generator:

Stochastic decision‐makers (virtualbidders and self‐schedulinggenerators) are dispatched outsidethe market (based on their owndecisions).

However, the self‐schedulinggenerators are paid based onmarket‐clearing prices!

Page 43: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

43 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

This is an equilibrium problem    (not optimization!)

Maximize [expected profit]Each self‐scheduling slow generator:

Page 44: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Alternative Market Clearing Models

44 Jalal Kazempour 9/16

Model 4: Sequential Deterministic Market Clearing with Virtual Bidders and Self‐Scheduling Slow Generators

Minimize [cost in day ahead]Day‐ahead market:

Minimize [cost in real time]Real‐time market for each scenario:

Maximize [expected profit]Each virtual bidder:

This is an equilibrium problem    (not optimization!)

Maximize [expected profit]Each self‐scheduling slow generator:

Extended version of Model 3(sequential market clearingwith virtual bidders)

Virtual bidders and self‐scheduling slow generators arethe only market players who“perfectly” know thedistribution of real‐time pricesacross scenarios!

Page 45: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Solution Technique

45 Jalal Kazempour 10/16

Unit commitment constraints are formulated as TRUC (TightRelaxed Unit Commitment) problem (S. Kasina, S. Wogrin,B.F. Hobbs, Johns Hopkins University Working Paper, Nov.2014.)

Equilibrium models are solved by considering the Karush‐Kuhn‐Tucker (KKT) conditions of all optimization problemssimultaneously.

Page 46: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Single-Node Case

46 Jalal Kazempour 11/16

Two slow conventional generators: G1 and G2

One fast conventional generators: G3

A single wind power producer: WP

A single inelastic load

A virtual bidder: VB

Page 47: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Single-Node Case

47 Jalal Kazempour 12/16

Technical characteristics of conventional generators:

Gen. Type Pmin[MW]

Pmax[MW]

Ramp[MW/h]

Marginal Cost[$/MWh]

Start‐up cost [$]

G1 Slow 1000 1000 1000 50 15,000G2 Slow 0 1000 1000 60 10,000G3 Fast 0 500 500 120 1000

Page 48: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Single-Node Case

48 Jalal Kazempour 12/16

Technical characteristics of conventional generators:

Gen. Type Pmin[MW]

Pmax[MW]

Ramp[MW/h]

Marginal Cost[$/MWh]

Start‐up cost [$]

G1 Slow 1000 1000 1000 50 15,000G2 Slow 0 1000 1000 60 10,000G3 Fast 0 500 500 120 1000

Wind power forecast: In day‐ahead stage: 250 MW

In real‐time stage, scenario 1: 0 MW (probability: 0.5)

In real‐time stage, scenario 2: 500 MW (probability: 0.5)

Load: 1000 MW

Page 49: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Results

49 Jalal Kazempour 13/16

Market equilibrium model Total expected system cost [$]

Model 1  (stochastic market clearing) 47,500

Page 50: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Results

50 Jalal Kazempour 13/16

Market equilibrium model Total expected system cost [$]

Model 1  (stochastic market clearing) 47,500

Generator G3 (fast unit, but expensive) is not committed(always off).

Generator G2 (slow unit) is committed appropriately in day‐ahead market, and manages all power imbalances in realtime.

Page 51: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Results

51 Jalal Kazempour 13/16

Market equilibrium model Total expected system cost [$]

Model 1  (stochastic market clearing) 47,500Model 2 (sequential market clearing) 56,500

Page 52: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Results

52 Jalal Kazempour 13/16

Market equilibrium model Total expected system cost [$]

Model 1  (stochastic market clearing) 47,500Model 2 (sequential market clearing) 56,500

Cost of uncertainty: $9,000 [$56,500 – $47,500]

Flexible resources can reduce the cost of uncertainty.

In Model 2, fast generator G3 is committed in real time,because slow generator G2 is not committed in day ahead(wrong dispatch).

Page 53: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Results

53 Jalal Kazempour 13/16

Market equilibrium model Total expected system cost [$]

Model 1  (stochastic market clearing) 47,500Model 2 (sequential market clearing) 56,500Model 3 (sequential market clearing) with virtual bidding 55,000

Page 54: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Results

54 Jalal Kazempour 13/16

Market equilibrium model Total expected system cost [$]

Model 1  (stochastic market clearing) 47,500Model 2 (sequential market clearing) 56,500Model 3 (sequential market clearing) with virtual bidding 55,000

Virtual bidding reduces the cost of uncertainty, but thesystem cost is still different than the ideal solution (Model 1).

The virtual bidder buys 250 MW in day ahead, and sells itback in real time. The fast generator G3 is always off, but theday ahead dispatch of slow generator G2 is still wrong!

Page 55: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Results

55 Jalal Kazempour 13/16

Market equilibrium model Total expected system cost [$]

Model 1  (stochastic market clearing) 47,500Model 2 (sequential market clearing) 56,500Model 3 (sequential market clearing) with virtual bidding 55,000

Model 4 (sequential market clearing) with virtual bidding, while slow generator G2 self‐schedules

47,500

Page 56: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Illustrative Example: Results

56 Jalal Kazempour 13/16

Market equilibrium model Total expected system cost [$]

Model 1  (stochastic market clearing) 47,500Model 2 (sequential market clearing) 56,500Model 3 (sequential market clearing) with virtual bidding 55,000

Model 4 (sequential market clearing) with virtual bidding, while slow generator G2 self‐schedules

47,500

In this specific case, virtual bidding together with self‐scheduling by a slow generator, can enable a deterministicday‐ahead market to choose the most efficient unitcommitment.

Page 57: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

IEEE 24-Node Reliability Test System with 24 Hours

57 Jalal Kazempour 13/16

Day‐ahead (DA) schedule of a sample slow‐start generator (G6) in different models:

Stochastic dispatch (ideal)Sequential (G6 self‐schedules) Sequential (with virtual trading) 

Page 58: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

IEEE 24-Node Reliability Test System with 24 Hours

58 Jalal Kazempour 13/16

Day‐ahead (DA) schedule of a sample slow‐start generator (G6) in different models:

Stochastic dispatch (ideal)Sequential (G6 self‐schedules) Sequential (with virtual trading) 

Ideal DA dispatch of G6 in hours 10 to 12 under stochastic

dispatch (light start‐up cost) 

Page 59: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

IEEE 24-Node Reliability Test System with 24 Hours

59 Jalal Kazempour 13/16

Day‐ahead (DA) schedule of a sample slow‐start generator (G6) in different models:

Stochastic dispatch (ideal)Sequential (G6 self‐schedules) Sequential (with virtual trading) 

Inefficient DA dispatch of G6 in hours 10 to 12 under sequential 

deterministic dispatch (significant start‐up cost) 

Page 60: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

IEEE 24-Node Reliability Test System with 24 Hours

60 Jalal Kazempour 13/16

Day‐ahead (DA) schedule of a sample slow‐start generator (G6) in different models:

Stochastic dispatch (ideal)Sequential (G6 self‐schedules) Sequential (with virtual trading) 

DA dispatch of G6 in hours 10 to 12 under sequential 

deterministic dispatch when 

G6 self‐schedules!

Page 61: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

IEEE 24-Node Reliability Test System with 24 Hours

61 Jalal Kazempour 13/16

Day‐ahead (DA) schedule of a sample slow‐start generator (G6) in different models:

Stochastic dispatch (ideal)Sequential (G6 self‐schedules) Sequential (with virtual trading) 

DA dispatch of G6 in hours 10 to 12 under sequential 

deterministic dispatch when 

G6 self‐schedules!

Not as efficient as stochastic dispatch, but more efficient than the sequential deterministic dispatch when G6 is dispatched within the 

market!

Page 62: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Conclusion

62 Jalal Kazempour 14/16

We present different stochastic and deterministictwo‐stage (day‐ahead and real‐time) marketdesigns, including virtual bidding and self‐scheduling generators.

A comparison of different market designs enablesus to derive the cost of uncertainty and the valueof flexible resources.

Page 63: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Main Message

63 Jalal Kazempour 15/16

We suggest that the system operators should notrush to embrace the stochastic market clearing!

It is possible that a subset of market parties actingon high quality stochastic information can helpthe market achieve the same efficiencies asstochastic clearing by the system operator!

Page 64: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Ongoing Work

64 Jalal Kazempour 15/16

Goal: Increasing the coordination of electricityand natural gas markets in a two‐settlementsetup, yielding a reduced total system cost!

Tool: Virtual bidders (in both electricity and gassides) and self‐schedulers (especially gas‐firedelectricity producers)

Anna Schwele(PhD student, DTU)

Christos Ordoudis(PhD student, DTU)

Page 65: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

A Few Questions for Future Works

65 Jalal Kazempour 15/16

How does “imperfect” knowledge of virtual biddersand self‐schedulers about market prices change theirdecisions and thereby market outcomes?

How do “strategic gaming” and/or “risk aversion”affect virtual bidders’ and self‐schedulers’ decisions?

Under which circumstances is it beneficial for agenerator to do self‐schedule (instead of bidding tothe market)?

Page 66: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

A two-series paper

66 Jalal Kazempour 16/16

J. Kazempour and B. F. Hobbs, “Value of flexible resources,virtual bidding, and self‐scheduling in two‐settlementelectricity markets with wind generation: Part I: principlesand competitive model," IEEE Transactions on PowerSystems, vol. 33, no. 1, pp. 749‐759, Jan. 2018.

J. Kazempour and B. F. Hobbs, “Value of flexible resources,virtual bidding, and self‐scheduling in two‐settlementelectricity markets with wind generation: Part II: ISOmodels and application," IEEE Transactions on PowerSystems, vol. 33, no. 1, pp. 760‐770, Jan. 2018.

Page 67: Electricity Markets With Renewables...Electricity Markets With Renewables Jalal Kazempour (Technical University of Denmark) 26 June 2015 DTU CEE Summer School 2018, 28 June 2018 EES-UETP

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Thanks for your attention!

Email: [email protected]

67