electric portfolio modeling with stochastic water - climate interactions: implications for...

161
Ȃ ǣ Ǧ ǤǤǡ ǡ ͳͻͺʹ Ǥ Ǥǡ ǡ ʹͲͳͲ ȋǤ ǤȌ ʹͲͳʹ

Upload: athinaios-ellinas

Post on 22-Nov-2015

11 views

Category:

Documents


1 download

DESCRIPTION

Electric portfolio modeling with stochastic water - climate interactions: Implications for co-management of water and electric utilities by Woldeyesus, Tibebe Argaw, Ph.D.

TRANSCRIPT

  • All rights reserved

    INFORMATION TO ALL USERSThe quality of this reproduction is dependent on the quality of the copy submitted.

    In the unlikely event that the author did not send a complete manuscriptand there are missing pages, these will be noted. Also, if material had to be removed,

    a note will indicate the deletion.

    All rights reserved. This edition of the work is protected againstunauthorized copying under Title 17, United States Code.

    ProQuest LLC.789 East Eisenhower Parkway

    P.O. Box 1346Ann Arbor, MI 48106 - 1346

    UMI 3522945Copyright 2012 by ProQuest LLC.

    UMI Number: 3522945

  • DEDICATION

  • ACKNOWLEDGEMENT

  • 1. Introduction1.1.Population,UrbanizationandSustainability

    1.2.ClimateChangeandWater

  • 1.3.WaterConstraintsonElectricityGeneration

  • 1.4.CoManagementofWaterandElectricServices

  • 1.5.NeedforStochasticElectricPortfolioModel

  • 1.6.ThesisObjectives

  • 2. CaseStudyArea:ColoradoSpringsUtilities(CSU)2.1.HistoryofColoradoSpringsUtilities

    2.2.CSUElectricitySystem

  • 2.3.CSUWaterSystem

    Load(M

    Wh)

    Days

  • 2.4.MunicipalWaterDemandofCSU

  • 0

    5,000

    10,000

    15,000

    20,000

    25,000

    30,000

    35,000

    Annualmunicipalwaterde

    mand(Mgal)

    Years

  • 3. SeasonalityofWaterIntensityFactorsforElectricPowerGeneration:ImplicationforRiskAssessmentattheWater

    EnergyClimateNexus

    3.1. Introductionintensity

  • 3.2. Objectives

  • 3.3. Methodology3.3.1. SeasonalityandStochasticTrendsinWWIF

    ComputationofObservedWWIF:

    QuantitativeWWIFTrendsandProjections:StochasticsimulationThefuturevariabilityandtrends

  • 3.3.2. QuantitativeRiskAssessmenttoPowerGenerationattheWaterEnergyClimateNexus

    WWIF:

    TSF:

    MD:

    EG:

  • RISK:

    TSF:ForthefutureprojectionsofTSF

    OtherMunicipalWaterDemand

  • MonthlyElectricityGeneration(EG):

  • 3.4. ResultsandDiscussions3.4.1. SeasonalityinWWIF

    CharacterizingseasonalityinWWIF

  • TrendAnalysis

    0 10 20 30 40 50 60

    0.55

    0.60

    0.65

    0.70

    0.75

    Months (2006-2010)

    WW

    IF (g

    al/K

    Wh)

    17%

    17%

    0.531

    0.751

    0.64

  • t:representsp:w:rh:

    0 10 20 30 40 50 60

    0.55

    0.60

    0.65

    0.70

    0.75

    Months (2006-2010)

    WW

    IF (g

    al/k

    wh)

  • FutureProjections

    30 40 50 60 70

    0.55

    0.60

    0.65

    0.70

    0.75

    Monthly average temperature (Deg F) (2006-2010)

    WW

    IF (g

    al/k

    wh)

  • 3.4.2. ResultsoftheTSFAnalysisSeasonalityofTSF:

  • TrendsinTSF

  • 0 200 400 600 800 1000

    050

    0010

    000

    1500

    0

    Months (1960-2050)

    Mon

    thly

    stre

    am fl

    ows

    (MG

    M)

    Jan.2004

  • FutureProjectionofTSF:WaterSupply(TSF)versusCompetingDemands

    3.4.3. HypotheticalRiskAnalysisofDrakePlantsElectricityGenerationLoss

  • 0

    2000

    4000

    6000

    8000

    10000

    12000

    Milliong

    allonspe

    rmonth

    (MGM

    )

    Months(2015)

  • MonthlyriskApril(%)

    WaterstoragecarryoverfrompreviousyearinMay(Mgal)

    Annualrisk20

    15(%

    )

    WaterstoragecarryoverfrompreviousyearinMay(Mgal)

  • 4. IncorporatingWaterConstraintsintoElectricityPortfolioModels:ACaseStudyofApplyingMARKAL/TIMEStoa

    MunicipalOwnedUtility

    4.1. Introduction4.1.1. MunicipalOwnedUtilities

  • 4.1.2. ElectricPowerSectorStrategiestoReduceWaterUse4.1.2.1. ShiftofElectricGenerationTechnologies

  • 4.1.2.2. PermanentRetrofitsofThermalPlantsCoolingSystems

  • 4.1.2.3. UseofDegradedWaterforThermalPowerPlantsCooling

  • 4.1.3. NeedforPortfolioModeling

    4.2. PaperobjectivesandScenarios4.2.1. Objectives

    x x

  • x x x x

    4.2.2. RiskManagementScenarios

  • 4.2.2.1. UnplannedRiskManagementScenario(URM)toAddressSeasonalRisk

  • 4.2.2.2. ZeroInfrastructureInvestmentWaterMinimizingScenario(ZInvWM)inPermanentWaterScarcity

    4.2.2.3. ConstrainedInfastructureInvestmentWaterMinimizingScenario(CInvWM)inPermanentWaterScarcity

    4.2.2.4. UnlimitedInvestmentWaterMinimizingScenario(UInvWM)inPermanentWaterScarcity

  • 4.2.2.5. UnlimitedInvestmentWaterandGHGEmissionsMinimizingScenario(UInvWM_GHG)inPermanentWaterScarcity

    4.2.3. ModelOutputs

    x x x x x x x x

  • x

    x

    in

    4.3. Method4.3.1. TIMESElectricityPortfolioModel

  • 4.3.2. BusinessasUsual(BAU)ScenarioDevelopmentusingtheTIMESModel

  • www.dsireusa.org/

    4.3.3. IncorporatingWaterConstraintsintotheTIMESModel

  • CoalDistillateOilWRECWAT

    N.GasWRECWAT

    CoalN.Gas

    MRECWAT

    ElectricityCOSONOxHg

    DrakeCoal

    Nixon1Coal

    FRPNGCC

    Input Process Output

  • 4.3.4. AlternativeWaterMinimizingScenariosDevelopment

  • 4.4. ResultsoftheVariousWaterMinimizingScenarioAnalyses4.4.1. VariousModelsRuns

    4.4.1.1. SeasonalWaterShortageScenario(URM)

  • 4.4.1.2. ZeroInfrastructureInvestmentWaterMinimizingScenario(ZInvWM)

    4.4.1.3. ConstrainedInfrastructureInvestmentWaterMinimizingScenario(CInvWM)

  • 4.4.1.4. UnlimitedInfrastructureInvestmentWaterMinimizingscenario(UInvWM)

    4.4.1.5. UnlimitedInfrastructureInvestmentWaterandGHGMinimizingScenario(UInvWM_GHG)

  • 4.4.2. ComparativeAnalysisoftheVariousModelOutputs4.4.2.1. AdditionalCapitalInvestmentsoftheVariousScenariosagainsttheBAU

  • 4.4.2.2. GridMixoftheVariousScenariosinYear2010and2040

    AnnualAv

    g.additionalinvestment,

    M$)

  • CSUgridmix(PJ)

    Scenarios

  • 4.4.2.3. DiscountedSystemCostoftheVariousScenarios

    CSUgridmix(PJ)

    Scenarios

  • 4.4.2.4. LevelizedCostoftheVariousScenarios

    2,000

    4,000

    6,000

    8,000

    10,000

    12,000

    NPV(M

    )($2

    010$)

  • 4.4.2.5. LevelizedCostofElectricityoftheVariousScenarios

    Levelizedcost(M

    $)

    Period

  • 4.4.2.6. SystemwidewatersavingsoftheVariousScenarios

    Avg.LCOE(/kw

    h)

  • 4.4.2.7. SystemWideGHGemissionsReductionbytheVariousScenarios

    Watersavings(Mgal)

    Period(2010 2050)

  • 0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    GHGe

    missions(mt)

    Periods

  • GHGe

    missionsreduction(m

    t)

  • 4.4.2.8. SystemWideWWIFoftheVariousScenarios

    4.4.2.9. MarginalCostofWaterSavingbytheVariousScenarios

    WWIFs(gal/kw

    h)

  • 4.4.2.10. MarginalCostofGHGEmissionsReduction

    Avg.costofwatersavings($/Mgalyr)

    Electricsectoralternativewaterminimizingscenarios

  • 4.5. DiscussionsandConclusions

    CostofGH

    Greduction($)

  • 5ComparingUnitCostandOverallWaterSavingsinCoManagedWaterandElectricUtilities:WaterWithdrawalReductionatPowerPlantsand

    WaterConservationatMunicipalWaterDemandSectors

    5.1. Introduction

  • LCOE($/MWh)

  • 5.2. Objective

  • 5.3. AlternativeWaterSavingStrategiesinMunicipalOwnedUtilities

    5.3.1. WaterSavingInterventionStrategiesinElectricitySector

  • 5.3.2. WaterSavingInterventionStrategiesinWater/WastewaterSector

    5.3.2.1. WaterDemandManagementStrategy

    5.3.2.2. WaterSavingsStrategyusingDegradedWaterSources

  • 5.3.2.3. NewWaterResourceDevelopmentStrategy

    5.4. ResultsofWaterSavingInterventionsfromElectricandWaterSectors

    5.4.1. ResultsofWaterSavingInterventionStrategiesfromElectric

    Sector

  • 0

    50,000

    100,000

    150,000

    200,000

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400

    1,600

    1,800

    URM ZInvWM CInvWW UInvWM UInvWM_GHG Avg.costofwatersavings($/Mgalyr)

    Avg.watersavings(Mgal/year)

  • 5.4.2. ResultsofWaterSavingInterventionStrategiesfromWater/WastewaterSector

  • Annualizedcostofwatersavings(andwateraugmentation)($/Mgalyear)

  • 5.4.3. ResultsofWaterSavingInterventionStrategiesfromUseofReclaimed/Recycled/WellWaterfortheCSUElectricSector

    Avg.co

    stofwatersavings($/Mgalyr)

    Avg.watersavings(Mgal/year)

  • 5.4.4. WaterReductionEffectivenessoftheIndividualWaterSavingStrategies

    Avg.watersavings(Mgalyr)

    Avg.costofwatersavings($K/M

    galyr)

  • 5.5. SummaryandConclusions

  • 6. ContributionsandConclusions6.1.Conclusions

  • 6.2. ThesisNewContributionsx

    x

    x

    x

    x

    x

    x

  • x

    x

    x

    x

    6.3. RecommendationsforFutureWork

  • AppendixA.CSUInputData

  • B.MunicipalWaterWithdrawalShareofDrakePlants

  • C.WWIFsandTSFStatisticalAnalyses

    Jan Mar May Jul Sep Nov Annual

    0.55

    0.65

    0.75

    Means Boxplots

    Jan Mar May Jul Sep Nov Annual

    0.00

    0.04

    0.08

    Standard Deviation

    Jan Mar May Jul Sep Nov Annual

    0.55

    0.65

    0.75

    Maximum box plots

    Jan Mar May Jul Sep Nov Annual

    0.50

    0.60

    0.70

    Minimum box plots

  • Histogram of x11

    x11

    Den

    sity

    -0.10 -0.05 0.00 0.05

    04

    812

    -2 -1 0 1 2

    -0.0

    50.

    05

    Normal Q-Q Plot

    Theoretical QuantilesS

    ampl

    e Q

    uant

    iles

    0 5 10 15

    -0.2

    0.2

    0.6

    1.0

    Lag

    AC

    F

    Series x11

    0.55 0.65 0.75

    0.60

    0.70

    observation Vs GLM-fit

    y-observation

    GLM

    -fit

  • Histogram of x11

    x11

    Den

    sity

    -0.10 -0.05 0.00 0.05

    05

    1015

    -2 -1 0 1 2

    -0.0

    8-0

    .04

    0.00

    0.04

    Normal Q-Q Plot

    Theoretical QuantilesS

    ampl

    e Q

    uant

    iles

    0 5 10 15

    -0.2

    0.2

    0.6

    1.0

    Lag

    AC

    F

    Series x11

    0.55 0.60 0.65 0.70 0.75

    0.60

    0.65

    0.70

    ant WI using LOCFIT model Vs observe

    y

    LOC

    FIT

    Vs

    obse

    rvat

    ions

  • Jan Mar May Jul Sep Nov Annual

    0.25

    0.35

    0.45

    0.55

    Means Boxplots

    Jan Mar May Jul Sep Nov Annual

    0.00

    0.05

    0.10

    0.15

    Standard Deviation

    Jan Mar May Jul Sep Nov Annual

    0.3

    0.4

    0.5

    0.6

    0.7

    Maximum box plots

    Jan Mar May Jul Sep Nov Annual

    0.1

    0.2

    0.3

    0.4

    0.5

    Minimum box plots

  • Jan Mar May Jul Sep Nov Annual

    0.55

    0.65

    0.75

    Means Boxplots

    Jan Mar May Jul Sep Nov Annual

    0.00

    0.04

    0.08

    0.12

    Standard Deviation

    Jan Mar May Jul Sep Nov Annual

    0.55

    0.65

    0.75

    Maximum box plots

    Jan Mar May Jul Sep Nov Annual

    0.40

    0.50

    0.60

    0.70

    Minimum box plots

  • 0 100 200 300 400 500

    050

    0010

    000

    1500

    0

    Months (1960-2003)

    Mon

    thly

    stre

    am fl

    ow (M

    GM

    )

    Histogram of x11

    x11

    Den

    sity

    -2 0 2 4

    0.0

    0.2

    0.4

    -3 -1 0 1 2 3

    -3-1

    13

    Normal Q-Q Plot

    Theoretical Quantiles

    Sam

    ple

    Qua

    ntile

    s

  • Jan Mar May Jul Sep Nov Annual

    040

    0080

    0012

    000

    Means Boxplots

    Jan Mar May Jul Sep Nov Annual

    020

    4060

    8010

    0

    Standard Deviation

    Jan Mar May Jul Sep Nov Annual

    040

    0080

    0012

    000

    Maximum box plots

    Jan Mar May Jul Sep Nov Annual

    020

    0060

    0010

    000

    Minimum box plots

  • 020

    0040

    0060

    0080

    0010

    000

    1200

    0

    Monthly average streamflow 1960-2003 (MGM)

    Month

    Mea

    n flo

    w M

    GM

    1 2 3 4 5 6 7 8 9 10 11 12

  • Jan Mar May Jul Sep Nov Annual

    1500

    2500

    3500

    Means Boxplots

    Jan Mar May Jul Sep Nov Annual

    020

    040

    060

    080

    0

    Standard Deviation

    Jan Mar May Jul Sep Nov Annual

    2000

    4000

    Maximum box plots

    Jan Mar May Jul Sep Nov Annual

    500

    1500

    2500

    3500

    Minimum box plots

  • 45000

    50000

    55000

    60000

    65000

    70000

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonthlywatersurplus(MGM

    )

    Months(2015)

  • 0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    1 2 3 4 5 6 7 8 9 10 11 12

    gal/kw

    h

    Months

    2006

    2007

    2008

    2009

    2010

  • 0 5 10 15 20 25

    0.60

    0.65

    0.70

    Surface air temperature (C)

    Dra

    ke p

    lant

    s W

    WIF

    (gal

    /kw

    h)

  • D.AnnualWaterAdditionsfromtheReservoirSystem

    Reservoirw

    ater(M

    gal)

    Period(2010 2050)

  • AspenMunicipal Electri csystem 1903 6,671 2,845 70 2 5.5 MEAN Yes No

    Burl ingtonMunicipa l Light&Power

    1920 4,264 1,742 31 4 7.5 Xcel Energy

    Yes Yes

    CenterMunicipal Gas Light&Power 1941 2,382 775 19 2 1.5

    Xcel Energy

    Yes Yes a,b

    ColoradoSprings Uti l i ties

    1927 473,2463 192,476 5,182 15 611 Sel f Yes Yes b

    Delta Municipal Light&Power

    1937 8,325 2,840 57 7 5 MEAN Yes a

    Estes ParkLight&Power

    1945 6,315 10,008 130 0 0 PRPA Yes

    FlemingElectricLightDepartment

    1917 437 201 3 0 0 MEAN Yes Yes

    FortCol l ins Uti l i ties 1935 136,427 64,694 1,485 0 0 PRPA Yes Yes d,eFortMogranElectricLight

    1906 10,834 5,658 235 0 0 MEAN Yes Yes b

    FountainMunicipal LightSystem 1919 23,049 15,359 210 0 0 MEAN Yes

    FrederickMunicipal LightSystem 1950 8,211 3,510 46 0 0

    UnitedPower

    GlenwoodSprings Electri cSystem 1953 9,026 5,848 136 0 0 MEAN Yes Yes c,d

    Granada Uti l i ties 1953 594 231 3 0 0 SECPAGunnison Light&WaterDepartment

    1907 5,600 3,700 72 0 0 MEAN Yes Yes

    HaxtunMunicipal Light&Power 1909 992 569 9 1 4 MEAN

    Hol lyLight&Power 1949 894 584 6 2 1.1 ARPA Yes YesHolyoke Municipa l Light&Power 1909 2,272 946 23 3 0.875 MEAN Yes Yes

    JulesburgMunicipal Light&Power 1911 1,336 604 11 3 2.1 MEAN Yes Yes

    La Junta Municipa l Uti l i ties

    1939 7,133 3,760 76 7 17.3 ARPA Yes Yes a

    Las Animas Mun.Light&Power 1941 2,432 1,635 31 5 5.6 ARPA Yes Yes a

    LamarLight&Power 1919 8,312 5,726 95 3 31.5 ARPA Yes Yes a ,cLongmontPower&Communication

    1911 86,047 39,043 830 2 0.5 PRPA Yes Yes a,d,e

    LovelandWater&Power

    1925 65,824 30,911 696 6 0.7 PRPA Yes Yes a,e

    Lyons MunicipalLight&Power 1974 1,957 1,056 13 0 0 MEAN Yes Yes

    OakCreekMunicipal Uti l i ties

    1907 979 539 6 1 1.3 MEAN

    SpringfieldMunicipa l Uti l i ties

    1947 1,420 962 12 4 2.8 ARPA

    TrinidadMunicipal Power&Light 1948 9,542 4,639 57 6 12 ARPA Yes Yes b

    WrayLight&Power 1903 2,234 1,244 21 0 0 YWElectri cYuma MunicipalLight&Power

    1928 3,391 1,531 30 4 0.74 MEAN Yes Yes a

    TOTAL 890,146 403,636 9,598 77 711

  • GridmixWWIFs(gal/kw

    h)

  • 0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    14.0

    16.0

    18.0

    2010 2020 2030 2040 2050Annu

    alizedca

    pitalin

    vestmen

    t(M$)

    BAU/URM/ZInvWMCInvWM

    UInvWM/UInvWM_GHG

  • E.AnnualWaterWithdrawal,WaterSavingsandGridMixesofCSUunderVariousScenarios

    Waterwith

    draw

    al(M

    gal)

    Periods(2010 2050)

  • Waterwithdrawals(Mgal/year)

  • 2010 2020 2030 2040 2050

    Watersavings(Billiongallons)

    Periods

    UInvWM_GHG

    Deg_UInvWM_GHG

    SoutherndeliverySystem(SDS)Municipalwatersavings

  • URM Electric 410 1966 Wholepopulation 6.6%ZInvWM Electric 72,952 2262 Wholepopulation 7.5%CInvWM Electric 65,622 2259 Wholepopulation 7.5%UInvWM Electric (27,312) 2325 Wholepopulation 7.8%UInvWM_GHG Electric (25,923) 2331 Wholepopulation 7.8%

  • References