eleanor awbery white msc thesis lse 2009

53
AN498: 2008 2009 MSc China in Comparative Perspective Candidate Number 77732 Racing to Learn, or Learning to Race? How ethnography can help China realize its technological advantage over India Word Count: 9,978

Upload: eleanor-awbery-white

Post on 23-Jan-2018

69 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Eleanor Awbery White MSc thesis LSE 2009

AN498:  2008  -­‐  2009      MSc  China  in  Comparative  Perspective    Candidate  Number  77732                    

Racing  to  Learn,  or  Learning  to  Race?    

How  ethnography  can  help  China  realize  its  technological  advantage  over  India  

           

                 Word  Count:  9,978  

Page 2: Eleanor Awbery White MSc thesis LSE 2009

  2  

Acknowledgements  

 Despite  the  theme  of  the  following  pages,  ultimately,  learning  is  unquantifiable.    I  consider  the  following  contributions  to  my  own  learning  inestimable.        My  gratitude  goes  to  Professor  Stephan  Feuchtwang,  from  whom  I  learned  precision,  cogency  and  more  about  China  than  I  imagined  possible;  and  to  Dr.  Gonçalo  Santos,  for  his  always  insightful  comments  and  thought-­‐provocation.        My  appreciation  goes  to  Prof.  Vivek  Wadhwa,  Pratt  School  of  Engineering,  Duke  University,  for  his  kindness  in  helping  me  locate  primary  data  sources.    To  my  classmates,  for  shared  enthusiasm  and  suggestions  for  research  and  contacts.      And  to  David,  from  whom  I  am  always  learning;  without  his  support  I  could  not  have  attended  LSE.      

Page 3: Eleanor Awbery White MSc thesis LSE 2009

  3  

Table  of  contents  

Acknowledgements ........................................................................................................................ 2  Table  of  contents ............................................................................................................................ 3  List  of  Tables  and  Figures................................................................................................................ 5  Abbreviations  and  acronyms .......................................................................................................... 6  Abstract .......................................................................................................................................... 7  Introduction .................................................................................................................................... 9  1   Technology,  development  and  learning ................................................................................. 11  

1.  i   Technology,  economic  growth  and  causality .................................................................. 11  Convergence  Theory............................................................................................................. 12  

1.  ii   Learning,  innovation  and  R&D........................................................................................ 13  The  Industrial  Worker  Hypothesis ........................................................................................ 15  

1.  iii   Changing  conditions  for  learning................................................................................... 15  2   A  comparison  of  high-­‐tech  graduation  in  China  and  India ..................................................... 17  

2.  i   The  high-­‐tech  outsourcing  debate .................................................................................. 18  2.  ii   Data  sources ................................................................................................................... 21  2.  iii   A  statistical  comparison  of  high-­‐tech  graduate  awards  in  China  and  India................... 22  

3   High-­‐tech  development  strategy  in  China  and  India .............................................................. 26  3.  i   A  policy  comparison ........................................................................................................ 26  

The  legal  framework  for  high-­‐tech  education  and  development ......................................... 28  Reform  strategy  comparison................................................................................................ 29  

3.  ii   Connections  between  education  and  industry............................................................... 30  Analysis  of  China  and  India’s  domestic  sector  compatibility................................................ 30  

3.  iii   A  historical  perspective ................................................................................................. 33  3.  iv   Conclusions.................................................................................................................... 34  

4   Learning  about  learning ......................................................................................................... 36  4.  i   Untying  the  learning  bundle............................................................................................ 37  

Routine  and  creative  skills.................................................................................................... 37  English  language .................................................................................................................. 39  Formal  and  informal  learning .............................................................................................. 40  

Page 4: Eleanor Awbery White MSc thesis LSE 2009

  4  

4.  ii   The  way  forward............................................................................................................. 40  Conclusion: ................................................................................................................................... 43  Data  sources  for  graduate  statistics ............................................................................................. 44  Bibliography.................................................................................................................................. 47  

Page 5: Eleanor Awbery White MSc thesis LSE 2009

  5  

List  of  Tables  and  Figures  

Box  1:  Global  Resourcing  definitions ............................................................................................ 20  

Table  1:  Graduate  numbers  in  high-­‐tech  subjects,  2001  to  2007  by  degree  level. ...................... 23  

Graph  1:    Technical  graduates  per  million  population.................................................................. 25  

Box  2:  Research  and  development  definitions. ............................................................................ 31  

 

   

Page 6: Eleanor Awbery White MSc thesis LSE 2009

  6  

Abbreviations  and  acronyms  

CAS  –  Chinese  Academy  of  Sciences  

CS  –  Computer  Science  

EI  –  Engineering  Index  

FDI  –  Foreign  Direct  Investment  

GSLI  –  Global  Services  Location  Index  

ICMR  –  International  Centre  for  Management  Research  

ICT  –  Information  and  Communication  Technologies  

IEEE  –  Institute  of  Electronics  and  Electrical  Engineers    

IMF  –  International  Monetary  Fund  

IPR  –  International  Property  Rights  

ISTP  –  Index  to  Scientific  and  Technical  Proceedings  

ITES  –  Information  Technology  Enabled  Services  

LDC  –  Less  Developed  Country    

LPP  –  Legitimate  Peripheral  Participation  

MNC  –  Multi-­‐National  Corporation  

NASSCOM  –  National  Association  of  Software  and  Services  Companies  

NIC  –  Newly  Industrialised  Country  

OECD  –  Organisation  for  Economic  Cooperation  and  Development  

PPP  –  Purchasing  Power  Parity  

R&D  –  Research  and  Development  

S&T  –  Science  and  Technology  

SCI  –  Science  Citation  Index  

SIPIVT  –    Suzhou  Industrial  Park  Institute  of  Vocational  Technology    

STIP  –  Science  and  Technology  Industrial  Park  

ZGC  –  Zhonggwancun  (in  Beijing:  China’s  most  prominent  technological  region)  

 

 

Page 7: Eleanor Awbery White MSc thesis LSE 2009

  7  

Abstract  

The  motivation  for  this  thesis  is  the  desire  to  develop  ways  to  better  understand—and  so  

improve—learning  for  innovation,  to  maximize  the  technological  potential  of  an  economy.      

 

China  and  India’s  technological  capability  are  often  assessed  against  a  background  of  

Convergence  Theory  and  economic  models  that  regard  knowledge  and  skill  acquisition  as  

aggregates  of  generic,  technical  abilities.    But  high-­‐tech  industrial  development  has  increasingly  

diverse  potential.    Nations  are  likely  to  specialise  in  niche  industries,  and  technological  

development  beyond  industrialisation  is  not  predictably  uniform.    In  this  changing  global  

technological  market,  skills  for  innovation  are  increasingly  important  relative  to  routine  

technological  competence.    R&D  innovation  is  no  longer  the  prerogative  of  only  the  few,  most  

developed  countries,  and  is  increasingly  necessary  to  gain  share  in  the  global  high-­‐tech  market.        

 

Similarities  are  often  emphasized  in  comparisons  between  China  and  India  with  the  West,  for  

example  in  graduate  award  numbers,  growth  in  market  share  of  global  outsourcing  and  low  

wages.    However,  a  similarity  in  outputs  hides  considerable  differences  in  institutional  legacy,  

policy  and  approach.    In  this  context,  graduate  award  numbers  cannot  be  regarded  as  direct  

indicators  of  technological  potential.    An  international  outsourcing  debate  recognizes  the  

importance  of  ‘quality’  of  training,  but  fails  to  differentiate  between  formal  and  informal  

learning  and  a  variety  of  skills  that  contribute  to  capacity  for  innovation.      

 

I  reconsider  graduate  numbers  as  significant  indicators  of  China  and  India’s  technological  

development,  but  in  relation  to  their  respective  policies  for  education  and  R&D,  and  the  

different  institutions  of  their  political  economies.    Despite  quantitative  similarities,  China’s  

graduate  statistics  are  found  to  represent  a  stage  in  development  towards  an  increasingly  

innovative  skill  base,  whereas  India’s  reflect  response  to  market  demand  for  routine  skills.    

Following  several  decades  of  state-­‐led  development  of  public-­‐private  collaboration,  China  is  

‘racing  to  learn.’    By  contrast  India  is  ‘learning  to  race’:  following  China  in  only  recently  changing  

its  principal  strategy  towards  commercialisation  of  research.    This  suggests  India  is  ‘catching-­‐up’  

Page 8: Eleanor Awbery White MSc thesis LSE 2009

  8  

with  China  in  strategy,  though  the  reverse  is  often  assumed  based  on  outsourcing  figures  and  

established  markets.  

 

Given  the  analysis,  we  would  expect  to  see  China  increasingly  competitive  in  the  market  for  

global  high-­‐tech  resources.    There  are  some  signs  of  this,  but  not  as  many  as  we  might  expect.    

China  has  strong  institutional  structures,  the  prerequisite  for  successful  R&D,  but  has  paid  less  

attention  to  nurturing  individual  technical  creativity.    If  China’s  strengths  in  institutional,  formal  

learning  were  matched  by  equivalent  success  in  individual,  informal  learning,  it  could  realize  its  

formidable  technological  potential.    Ethnography  is  the  best  way  to  understand  individual  

successes  and  failures  in  access  to  the  global  high-­‐tech  labour  market.  This  thesis  suggests  that  

such  ethnography  is  the  missing  link  needed  for  China  to  fulfil  its  competitive  advantage,  by  

understanding  the  informal  learning  needs  of  its  high-­‐tech  workforce.    Through  understanding  

local  examples  of  creative  high-­‐tech  learning,  ethnographic  studies  can  help  nurture  systemic  

spread  of  technical  application  and  innovation.  

 

Page 9: Eleanor Awbery White MSc thesis LSE 2009

  9  

Introduction  

This  thesis  compares  the  technological  human  potentials  of  China  and  India.    The  question  of  

whether  China  will  surpass  India  in  its  growth  of  technological  talent  is  interesting  because  the  

two  countries  are  more  often  considered  together  in  comparison  with  the  West,  particularly  

America.    The  typical  comparison  takes  one  of  two  approaches,  both  making  aggregate  

assumptions  about  learning  characteristics  in  China  and  India.    The  first  assumes  similarities  –  

through  graduate  numbers  and  growth  in  high-­‐tech  resourcing.    The  second  assumes  

differences,  typically  highlighting  each  country’s  specialisation  –  China  in  high-­‐tech  

manufacturing  and  India  in  service  outsourcing.    In  either  case,  similarities  or  differences  

respectively  serve  to  justify  comparison  of  China  and  India  as  an  Asian  threat  to  Western  

technological  superiority.  

 

Citing  graduate  statistics  is  common  practice  in  this  context.    The  most  recent  detailed  statistical  

comparison  was  Gereffi  and  Wadhwa’s  analysis  of  graduate  awards  in  the  US,  China  and  India  

up  to  2004.    Although  China  and  India  far  outstrip  the  US  in  numbers,  they  concluded  that  the  

US  produces  a  much  higher  percentage  of  talented  high-­‐tech  graduates  and  that  ‘quality,’  not  

quantity,  is  the  key  variable.    Consequently  later  discourse  on  comparative  human  capital  in  

global  resourcing  has  focused  largely  on  ‘quality.’    Despite  variations  in  cultural  definitions  of  

quality,  some  sources  assume  the  definition  as  understood  (e.g.Machrotech,  2009;  OECD,  2007)  

and  at  most,  it  is  short  and  general,  such  as  “the  outcome  of  performance  indicators”  (Varghese,  

2006,  p3),  or  “improved  suitability  [for  job  applications]”  (Farrell  et  al,  2008,  p37).    Such  

assumptions  ignore  changing  conditions  of  informal  learning  in  the  context  of  a  country’s  unique  

development  path.        

 

This  thesis  shifts  the  focus  from  an  East-­‐West  comparison  to  consider  China  and  India’s  

comparative  learning  advantages  in  the  context  of  a  globalised  economy.    It  seeks  to  regain  the  

balance  between  quantitative  and  qualitative  comparison  through  an  analysis  of  graduate  

statistics  in  light  of  the  educational  Research  and  Development  (R&D)  policies  of  each  state.    In  

chapter  2,  I  conduct  an  analysis  of  recent  graduate  statistics,  focusing  on  change  over  time,  from  

2001  to  2007.    The  analysis  demonstrates  similarities  in  output,  both  in  absolute  terms,  and  in  

Page 10: Eleanor Awbery White MSc thesis LSE 2009

  10  

growth  rate.    In  chapter  3,  the  figures  are  then  considered  in  the  context  of  each  country’s  high-­‐

tech  development  policy.1    Although  economic  outcomes  are  quantitatively  similar  to  date,  they  

result  from  different  approaches.    This  suggests  the  quantitative  measures  may  reflect  different  

underlying  individual,  organisational  and  national  learning  curves.    

   

The  comparison  suggests  that  China’s  statistics  represent  a  stage  in  the  deliberate  development  

of  an  increasingly  innovative  skill  base,  whereas  India’s  statistics  reflect  response  to  market  

demand  for  routine  skills,  and  are  less  coordinated  towards  the  systemic,  cultural  spread  of  

innovation  necessary  for  sustained  technological  prowess.    China’s  thus-­‐far  unrealized  

technological  advantage  reflects  in  its  smaller  share  of  the  global  R&D  market.    The  final  chapter  

shows  how  ethnography  can  give  insight  into  informal  learning  processes  that  could  help  China  

fulfil  its  technological  potential.      

 

                                                                                                                         1  I  use  ‘high-­‐tech  development  policy’  to  cover  Education,  Science  and  Technology  and  Research  and  Development  strategies,  considered  in  detail  in  chapter  3.      

Page 11: Eleanor Awbery White MSc thesis LSE 2009

  11  

1 Technology,  development  and  learning  

The  underlying  principle  of  this  thesis  is  the  desire  to  develop  ways  to  measure,  evaluate  and  

improve  learning  for  innovation  so  as  to  maximise  the  technological  potential  of  an  economy.    

Technology  and  learning  are  intrinsically  connected:  the  development  of  complex  technology  to  

work  the  environment  for  material  productivity  is  definitively  human  (Seyfarth  and  Cheney,  

2002).    Since  our  inception,  humanity  has  evolved  and  transmitted  increasingly  sophisticated  

skills  to  improve  efficient  production  and  living  standards.    As  the  learning  required  for  those  

skills  increased  in  complexity,  specialisation  occurred.    Post-­‐industrialisation,  the  development  

of  processes  relying  on  complex  machinery  gave  rise  to  further  division  of  labour  and  the  

development  of  ever  more  specific  skill  sets  (Mokyr,  1995).    

 

Economic  modelling  is  concerned  with  the  aggregate  result  of  learning  processes;  learning  is  

regarded  as  uniform  and  standardized  as  ‘knowledge  acquisition’  and  its  aggregate  product  as  

‘human  capital.’    Economic  models  are  therefore  concerned  with  the  combined  product  of  

learning  –  the  level  of  ‘technological  competence’  of  the  economy  (Mokyr,  1995).    Human  

capital  increases  in  value  as  the  labour  force  absorbs  the  spread  of  new  technology  (EIU,  2004).    

“Learning  by  doing”  theory,  for  example,  models  this  process  of  absorption  as  the  top-­‐down  

spread  of  technical  skills  that  remain  the  same,  regardless  of  time  or  place  (Arrow,  1962;  Solow,  

1997).      

1.  i Technology,  economic  growth  and  causality  

Technology’s  role  as  exogenous  or  endogenous  to  economic  growth  is  historically  debated.    The  

Malthusian  tenet,  that  population  growth  would  inevitably  overtake  technical  progress,  held  

sway  until  laissez-­‐faire  progressivism  swung  the  pendulum  in  the  opposite  direction,  fixing  

technological  progress  as  inevitable,  “accelerating  and  capable  of  teleological  import”  (Ball,  

1957).    Neoclassical  economics  treats  technological  change  as  an  externality  (Grubler,  1998):  in  

its  equilibrium  growth  models,  the  long-­‐term  (natural)  growth  rate  equals  the  sum  of  the  growth  

rate  of  the  working  population  and  technical  progress  (Stout,  1980).    Exogenous  Growth  Theory  

Page 12: Eleanor Awbery White MSc thesis LSE 2009

  12  

therefore  does  not  explain  how  change  in  technologies  occurs;  technical  change  itself  is  seen  as  

the  explanation  along  with  simple  accumulation.  

 

Alternatively,  Joseph  Schumpeter’s  model  made  R&D  the  chief  driver  of  growth,  through  its  

incentive  for  innovation.    ‘Creative  destruction’  describes  processes  of  endogenous  destruction  

and  replacement  by  factors  that  increase  productivity.      Following  his  theoretical  heritage  and  

the  Information  and  Communications  Technology  (ICT)  boom  in  the  1980s,  Endogenous  Growth  

Theory  sought  to  explain  the  gains  of  the  New  Knowledge  Economy.    Technological  innovation  

and  investment  in  human  capital  were  modelled  as  internal  variables  driving  growth  (Mokyr,  

1995).    Endogenous  growth  theory  recognized  that  technical  progress  is  not  an  “independent,  

given,  force…it  is  the  rate  at  which  a  bank  of  technical  knowledge  is  applied”  (Stout,  1980,  

p159),  and  is  therefore  responsive  to  policy  incentives  for  innovation.      

 

Regarding  the  application  of  technical  knowledge  as  a  primary  cause  of  growth  has  important  

implications  for  learning.    Applicability  is  subject  to  cultural  and  institutional  difference;  learning  

is  not  the  automatic  result  of  technical  change,  but  directs  it,  at  the  heart  of  technical  progress  

and  economic  development.    For  this  reason,  Endogenous  Growth  Theory  sits  uncomfortably  

with  economic  models  for  ‘knowledge  acquisition’  and  ‘learning  by  doing.’    I  believe  the  

economic  conceptualisation  of  learning  is  not  yet  adequately  revised.        

Convergence  Theory  

Assumptions  that  aggregate  levels  of  technological  know-­‐how  are  key  differences  between  

highly  and  less  developed  countries  underlie  current  mainstream  approaches  to  development  

policy  (EIU,  2004).    

 

Convergence  Theory  (or  ‘catch-­‐up’)  emerged  as  an  explanation  of  the  rapid  industrialisation  of  

Asian  economies  following  the  Second  World  War  and  forms  the  theoretical  base  for  policy  in  

many  less  developed  countries  (LDCs)  today  (Kopp,  2008).    It  says  poorer  economies  can  grow  at  

faster  rates  than  richer  economies,  causing  convergence  of  per  capita  income  and  productivity.    

Capital  investment  boosts  productivity  and  incomes  to  increase  the  growth  rate  beyond  that  of  

leading  economies,  as  the  gap  between  existing  and  new  technology  levels  is  greater  in  the  LDC.    

Page 13: Eleanor Awbery White MSc thesis LSE 2009

  13  

Convergence  is  seen  to  occur  through  imitation  and  replication  of  existing  technology,  but  this  

process  no  longer  implies  technological  teleology,  as  was  assumed  when  the  theory  became  

influential  during  the  1950s  and  60s.2      

 

Successful  convergence  requires  what  Abramovitz  (1986)  terms  ‘social  capabilities’  (1986).    

However,  he  recognizes  difficulty  in  measuring  a  nation’s  technical  competence:  “The  trouble  

with  absorbing  social  capability  into  the  catch-­‐up  hypothesis  is  that  no  one  knows  just  what  it  

means  or  how  to  measure  it”  (ibid,  p388).    He  makes  a  distinction  between  competence  at  the  

institutional  level  –  industrial,  commercial,  financial  and  educational  –  and  that  of  human  

capital,  the  aggregate  level  of  individual  skills.    Additionally,  levels  of  competence  are  

distinguished  from  an  economy’s  openness  to  technological  improvement.    

 

The  ‘catch-­‐up’  hypothesis  therefore  regards  knowledge  flow  from  leader  countries  to  followers  

as  a  priori.    This  ‘supply-­‐side’  approach  derives  from  the  theory  that  market  forces  across  

borders  naturally  give  rise  to  convergence  in  terms  of  trade  (Rodrik,  1998).    It  leads  logically  to  

attempts  to  assess  facilities  for  the  diffusion  of  knowledge  and  the  potential  for  structural  

change  –  leaving  the  government  assigned  to  a  minimal,  ‘gatekeeper’  role.    This  thesis  suggests  

a  comparative  approach  can  be  developed  on  the  demand  side,  to  understand  informal  learning  

processes  and  cultural  receptivity  to  technological  change.    Understanding  some  learning  as  

non-­‐uniform  and  culturally  defined,  within  an  economic  convergence  model,  creates  a  space  for  

government  involvement  in  the  creation  of  locally  appropriate  paths  of  aptitude  development  

for  high-­‐tech  workplaces.      

1.  ii Learning,  innovation  and  R&D  

Links  between  systematized  R&D  in  industry  and  economic  growth  grew  in  importance  at  the  

beginning  of  the  20th  century,  with  the  establishment  of  chemical  and  electrical  industries  and  

the  foundation  of  the  first  industrial  laboratories  (Pavitt,  1973).    R&D  expenditure  during  the  

Cold  War  clarified  that  political  and  economic  needs  can  direct  technological  innovation  (Taylor,  

2004).    Historically,  developed  economies’  governments  have  relieved  the  heavy  costs  for  

                                                                                                                         2  Martin  and  Sunley,  1998,  provide  a  concise  overview  of  the  historiography  of  Convergence  Theory  and  its  evolution  through  Endogenous  Growth  Theory.  

Page 14: Eleanor Awbery White MSc thesis LSE 2009

  14  

investment  in  long-­‐term,  experimental  research  prior  to  the  development  of  new  products;  such  

basic  research  is  unlikely  to  occur  without  incentives  or  certainty  of  commercial  success,  but  is  

instrumental  in  keeping  a  lead  in  technical  innovation.    This  is  why  convergence  theory  regards  

‘leading’  economies  as  most  likely  to  plan  R&D.    Imitation  is  sufficient  for  catch-­‐up  but  growth  at  

the  technological  frontier  occurs  only  through  innovation  (Grubler,  1998).      

 

This  theory  may  hold  true  for  industrial  manufacturing;  however,  high-­‐tech  development  is  now  

so  fast  that  the  transaction  costs  and  delays  in  its  diffusion  may  render  it  less  efficient  than  

domestic  innovation.    In  a  prophetic  article  in  1980,  Stout  predicted  that  cost  reductions  for  

innovation  following  the  onset  of  microprocessor  manufacturing  might  dramatically  change  the  

landscape  of  national  and  global  technological  development.    Earlier,  innovation  multiplied  

‘muscle,’  and  added  to  the  advantages  of  economies  of  scale.    Diffusion  of  microelectronic  

technology,  and  its  widespread  application  across  sectors  and  industries,  augments  ‘brain,’  and  

“makes  possible  the  economic  decentralization  of  processes,”  (Stout,  1980,  p164).    A  

characteristic  of  microprocessor  manufacturing  that  also  holds  true  for  the  knowledge  industry  

is  that  product  innovation  at  the  supply  side  often  equals  process  innovation  for  the  user.    “So  

dramatic  are  the  savings…the  effective  constraint  this  time  is  likely  to  be  the  mismatch  between  

traditional  skills  and  the  newly  necessary  skills,  in  programming,  in  personal  services,  in  

interfacing  between  the  intelligent  machine  and  the  user  and  in  providing  for  newfound  

leisure…the  growth  of  demand  for  adjustment  will  be  formidably  fast;  the  growth  of  supply  of  

adjustment,  through  education…and  multi-­‐skill  training…may  lag  a  long  way  behind  in  all  but  a  

handful  of  the  most  adaptable  and  successful  economies,”  (ibid,  p161).      

 

In  other  words,  technology  may  have  already  changed  the  nature  of  competition  and  economic  

growth.    Specialization  and  comparative  advantage  are  less  subject  to  environmental  constraint  

than  previously  (Farrell  et  al,  2008).    The  implications  for  definitions,  and  development,  of  

productive  learning  are  profound.    Whereas  innovation  based  competition  was  possible  only  for  

a  minority  of  leading  economies  in  the  past,  it  is  not  only  more  available  now,  but  may  be  

requisite  for  technological  convergence.    In  this  case,  learning  to  innovate  should  be  at  the  heart  

of  development  policy;  it  must  no  longer  be  marginalised  as  the  automatic  result  of  successful  

development.    

 

Page 15: Eleanor Awbery White MSc thesis LSE 2009

  15  

Government  support  for  learning  processes  that  contribute  to  growth  is  therefore  increasingly  

relevant,  in  particular  the  acquisition  of  high-­‐tech  skills  instrumental  in  creating  new  production  

possibilities  through  innovation.    It  is  proven  that  basic  R&D  facilities  play  a  key  role  in  nurturing  

such  skills  (Cohen  and  Levinthal,  1989);  but  there  is  less  understanding  of  the  informal  learning  

necessary  for  local  innovation.    

The  Industrial  Worker  Hypothesis  

Convergence  theory  predicted  uniformity  of  learning  and  gave  rise  to  the  Industrial  Worker  

Hypothesis,  that:  “the  more  similar  nations  are  in  their  industrial  development,  the  more  their  

workers  will  resemble  each  other  [and]  whatever  their  cultural  socialization…will  respond  to  

machine  technology  and  industrial  organization  in  much  the  same  way,”  (Form  and  Bae,  p621).    

Evidence  for  the  hypothesis  comes  from  studies  of  industrial  manufacturing  in  different  

cultures.    However,  the  theory  is  not  yet  tested  for  applicability  to  the  new  knowledge,  services,  

or  high-­‐tech  manufacturing  industries  in  emerging  economies.3    

 

But  high-­‐tech  industrial  development  has  increasingly  diverse  potential.    Nations  are  likely  to  

specialise  in  niche  industries,  and  technological  development  beyond  industrialisation  is  not  

predictably  uniform  (Stout,  1980).    Greater  individual  autonomy  is  required  for  the  application  

of  non-­‐manual  technical  skills,  particularly  those  in  product  and  process  development,  whereas    

traditional  manufacturing  requires  relatively  uniform  technological  skill  development  across  a  

workforce.    Creativity  in  the  application  of  technology  to  local  circumstances  may  now  be  more  

desirable  for  a  larger  proportion  of  the  high-­‐tech  workforce,  particularly  in  knowledge-­‐oriented  

development  and  services  (Yusuf  and  Nabeshima,  2007).          

1.  iii Changing  conditions  for  learning  

It  seems  that  the  changing  nature  of  the  technology  industry  requires  greater  attention  to  

individual  and  cultural  learning  processes  in  that  generic  technological  skills  may  be  insufficient  

for  a  growing  segment  of  the  national  workforce.    Governments  must  develop  appropriate  ways  

                                                                                                                         3  To  the  best  of  my  knowledge    –  I  found  no  research  in  this  area.    

Page 16: Eleanor Awbery White MSc thesis LSE 2009

  16  

to  understand  how  their  citizens  learn,  and  encourage  local  creativity  and  innovation  to  

maintain  competitiveness  in  global  technical  resourcing.      

 

The  following  chapters  compare  China  and  India’s  position  in  the  global  market  for  high-­‐tech  

labour.    In  light  of  the  discussion  above,  assessing  an  economy’s  human  capital  through  

quantitative  analysis  of  graduate  statistics  may  only  partially  indicate  technological  potential.  To  

consider  graduate  numbers  predictive,  it  is  not  enough  to  regard  them  as  the  quantitative  

product  of  a  country’s  learning;  their  significance  must  be  understood  in  relation  to  national  

paths  of  development.      

 

 

 

 

Page 17: Eleanor Awbery White MSc thesis LSE 2009

  17  

2 A  comparison  of  high-­‐tech  graduation  in  China  and  India    

“India,  the  Philippines  and  China  are  often  the  top  choices  for  locating  IT  and  engineering-­‐

based  services  for  companies  from  the  UK  and  the  US,  the  main  sources  of  demand.    If  US  

and  UK  companies  continue  to  concentrate  their  activities  on  these  countries  and  current  

rates  of  offshoring  persist,  the  demand  for  engineers  from  these  two  countries  would  fully  

absorb  the  suitable  supply  by  2011.”    

Farrell  et  al,  2008,  McKinsey  Global  Institute  Report,  p42.    

 

 

Graduate  statistics  are  most  frequently  used  to  compare  China  and  India  as  ‘supply’  countries  of  

high-­‐tech  labour  with  ‘demand’  countries,  in  particular  America  (Farrell  et  al,  2008).    

Comparisons  may  assess  labour  competition,  in  which  case  they  are  motivated  by  fear  of  job  

losses  in  the  West,  or  hopes  for  higher  employment  rates  in  the  East  (Greenspan,  2009;  ICMR,  

2005)  or  they  may  assess  technological  challenge,  and  are  concerned  with  declining  market  

share  (Gupta,  2008).    Sometimes  popular  coverage  fails  to  distinguish  between  these  and  

portrays  China  and  India  as  a  general  economic  threat,  using  graduate  statistics  as  ‘evidence’  

(Colvin,  2005;  Western  Morning  News,  2008).          

 

The  latest  detailed  analysis  of  high-­‐tech  graduate  awards  in  China  and  India  is  Gereffi  and  

Wadhwa’s  2005  comparison  of  engineering,  computer  science  (CS)  and  technology  graduate  

statistics  for  the  US,  China  and  India.4    They  concluded  that  the  US  produces  a  significantly  

higher  proportion  of  individuals  “capable  of  abstract  thinking  and  high-­‐level  problem  solving  

using  scientific  knowledge”  (p4).    Their  findings  are  much  quoted  within  an  international  

outsourcing  debate.    In  the  framework  of  East-­‐West  competition  this  debate,  if  not  entirely  

disregarding  the  significance  of  quantities,  focuses  primarily  on  ‘quality’  of  high-­‐tech  skills  (e.g.  

Farrell  et  al,  2008).    I  take  up  this  theme  later.    

 

This  chapter  reconsiders  graduate  numbers  as  significant  indicators  of  China  and  India’s  

technological  development.    The  use  of  graduation  statistics  in  selected  subjects  may  not  fully  

                                                                                                                         4  Gereffi  et  al.  published  follow-­‐up  articles  in  2006  and  2008.    Their  data  sets  are  for  2004.        

Page 18: Eleanor Awbery White MSc thesis LSE 2009

  18  

represent  the  high-­‐tech  potential  of  a  national  economy:  some  knowledge  industry  workers  

learn  their  skills  not  in  an  educational  institution,  but  on  their  own  or  ‘on  the  job’  (Graham,  

2006).    However,  graduate  numbers  year  on  year  do  represent  growth  or  decrease  in  the  high-­‐

tech  education  system,  and  available  high-­‐tech  labour  supply.  

 

China  and  India’s  graduate  counts  in  engineering,  CS  and  technology  from  2001  to  2007  are  

compared  below.    Relative  growth  may  indicate  whether  China  is  increasingly  technologically  

competitive  with  India.    A  similar  comparison  might  be  possible  including  or  comparing  awards  

in  natural  sciences  and  mathematics,  but  lies  beyond  the  scope  of  this  thesis.    To  avoid  

distorting  the  analysis  of  connections  between  education  and  R&D  policy  in  each  country,  a  

comparison  of  Chinese  and  Indian  graduate  diasporas  is  not  included;  although  incentives  for  

returnees  are  discussed  in  the  next  chapter.    The  focus  on  engineering,  CS  and  technology  

provides  a  fair  comparison  of  ‘potential’  at  the  level  of  qualification,  since  it  is  likely  that  the  

majority  of  graduates  in  these  subjects  would  choose  work  in  the  high-­‐tech  industry  above  

others  (Varghese,  2006).    This  cannot  be  assumed  for  those  graduating  in  natural  sciences  and  

mathematics,  though  a  proportion  of  them  do  indeed  move  into  the  high-­‐tech  industry.    

2.  i The  high-­‐tech  outsourcing  debate    

The  outsourcing  debate  concerns  the  degree  to  which  India,  and  more  recently  China,  present  a  

future  “Asian  challenge”  to  US  technological  supremacy.    The  effects  of  global  offshoring  on  

economic  relations  are  yet  to  be  fully  realized:  improvements  in  transaction  time,  transportation  

and  telecommunications  have  globalised  service  and  product  sourcing,  to  the  point  that  cost  of  

labour  and  development  of  new  technologies  across  national  boundaries  are  key  variables.  

Theoretically,  fungible  skills,  for  example  manual  labour  in  factories,  can  be  sourced  anywhere  

(Hall  and  Soskice,  2001).    Constraining  factors  are  political  stability  and  sophistication  of  

infrastructure.    Skills  for  high-­‐tech  innovation  are  more  usually  specialized  (Taylor,  2004):  

constraining  factors  then  extend  to  availability  of  labour  pools  with  the  required  skills.  

 

Whether  focusing  on  their  differences  or  similarities,  an  East-­‐West  dyadic  implicitly  suggests  

cooperation  between  China  and  India.    However,  it  is  likely  that  if  either  economy  is  to  become  

increasingly  globally  competitive,  they  will  do  so  in  the  first  instance  through  competition  with  

Page 19: Eleanor Awbery White MSc thesis LSE 2009

  19  

each  other  for  the  growing  number  of  offshore  jobs.    This  thesis  is  more  concerned  with  China’s  

capacity  to  challenge  India’s  supremacy  in  the  global  market  for  high-­‐tech  skills  and  in  domestic  

capacity  for  innovation,  than  with  their  combined  impact  ‘against’  the  West.      

 

Some  global  sourcing  definitions  are  outlined  in  Box  1.    ‘Outsourcing,’  and  ‘offshoring’  are  often  

confused.    However,  the  technical  distinction  between  offshore,  in-­‐house  sourcing  and  

outsourcing  is  important  for  this  thesis.    If  an  MNC  offshores  labour  to  its  Chinese  or  Indian  

subsidiary,  no  local  institution  is  left  if  it  later  chooses  to  purchase  labour  elsewhere.    If  it  

terminates  a  contract  outsourced  to  a  Chinese  or  Indian-­‐owned  firm,  the  local  firm  (with  its  

managerial  talent,  client  base  and  organisational  connections)  remains  (Zhou,  2008).    Building  

domestic  institutions  to  meet  global  high-­‐tech  demand  is  therefore  more  sustainable  for  

employment  and  growth  than  supplying  a  specialised  labour  force  alone  (Khan  and  Jomo,  2000).    

The  next  chapter  discusses  the  extent  to  which  China  and  India  have  done  this.  

 

The  outsourcing  debate  is  fuelled  by  the  steady  growth  in  global  resourcing5  over  the  last  three  

decades.    Offshore  services  in  emerging  markets  grew  at  a  rate  of  30%  annually,  from  1998  to  

2005.    In  2005,  India’s  offshore  service  revenue,  at  $12.2bn,  was  the  largest  in  the  world.    

China’s  market  was  fifth  ($3.4bn),  after  Ireland,  Canada  and  Israel  (Farrell  et  al,  2008).    China  is  

developing  its  base  in  high-­‐tech  manufacturing  skills,  whereas  India’s  strengths  are  in  IT-­‐enabled  

services  (ITES),  for  example  business  process  outsourcing  (Fuller  and  Narasimhan,  2007),  

including  higher-­‐end  knowledge  processing  in  finance,  accounting  and  insurance  (Mitra,  2007).    

 

The  debate  concerns  both  quantity  and  quality.    Confusion  over  quantitative  data  is  common,  

due  in  part  to  different  classifications  of  graduates  used  in  each  country  (I  discuss  this  in  more  

detail  later).  Colvin  argued  Americans  may  be  “destined  to  be  the  scrawny  and  pathetic  dweebs  

on  the  world’s  economic  bench”  (2005,  p1),  based  on  the  remarkable  fact  that  China  and  India  

are  producing  six  times  more  engineering  graduates  per  year  than  the  US.  

 

                                                                                                                               5  The  process  a  company  goes  through  to  decide  where  to  locate  its  activities  and  who  will  do  them  (Farrell  et  al,  2008).        

Page 20: Eleanor Awbery White MSc thesis LSE 2009

  20  

 Box  1:  Global  Resourcing  definitions  

Source:  author        

                                                     This  assumes  a  model  in  which  a  count  of  engineers  is  a  proxy  for  position  along  a  standard  

linear  ‘catch-­‐up’  progression.    Others  (Raghavan,  2006;  Graham,  2006)  replied  that  the  superior  

“quality”  of  the  American  graduates  will  preserve  America’s  technological  lead.    These  two  

extreme  positions  over-­‐simplify  the  nature  of  learning  and  the  complex  interdependency  of  the  

global  high-­‐tech  market  –  and  ignore  its  volatility.    

 

 Outsource  onshore    Service  or  development  contracted  to  a  third  party  with  specialized  knowledge,  within  the  demand  market  

 Outsource  offshore    No  location  or  organizational  restrictions  on  service  provision  and  product  development  other  than  market  forces      

       Captive  onshore    Constrained  by  the  need  within  the  firm  for  local  customer  contact  and/or  knowledge  

 Captive  offshore    Products  developed  or  services  provided  in-­‐house,  but  outside  their  destined  market  

Control  

Location  

In-­‐house  

Outsource  

Onshore   Offshore  

Page 21: Eleanor Awbery White MSc thesis LSE 2009

  21  

Accurate  comparison  of  graduate  statistics  is  the  first  step  towards  understanding  growth  in  

national  technological  competency.    Rather  than  using  these  numbers  alone  as  predictive  

measures  of  catch-­‐up  development,  Chapter  3  analyses  their  role  in  national  high-­‐tech  and  

education  strategies.    This  is  an  alternative  application  of  data  normally  used  to  fuel  the  

outsourcing  debate,  which  models  learning  as  a  product,  not  cause,  of  technical  progress.    This  

thesis  holds,  to  the  contrary,  that  learning  drives  development.    Technological  potential  must  be  

measured  as  national  capacity  to  produce  innovative  technologies  and  organizations,  not  to  just  

supply  high-­‐tech  labour.    National  technological  strength  helps  shape  the  global  market,  rather  

than  merely  being  subject  to  its  volatility.    

2.  ii Data  sources    

Data  source  details  are  listed  at  the  end  of  the  thesis.    

 

Primary  data  sources  were  used  when  possible;  these  were  more  accessible  for  China  than  

India.    Some  data  for  India  was  taken  from  graphs  on  the  Government  of  India  website.    Those  

figures  are  rounded  to  the  nearest  500  graduates.    

 

Different  engineering,  computer  and  technology  subject  areas  are  amalgamated.    The  use  of  

different  sources  of  statistical  data  for  each  country  might  be  fair  grounds  for  doubt,  but  I  am  

confident  that  secondary  sources  had  first  hand  contact  with  primary  sources  that  were  

unavailable  to  me.    Additionally,  Gereffi  et  al.  sourced  data  from  the  Chinese  Ministry  of  

Education  and  Indian  Science  and  Technology  department  representatives  through  personal  

contact.    

 

The  Chinese  Ministry  of  Education  produces  aggregate  statistics  from  provincial  reporting;  but  

there  is  no  national  standard  of  definition  of  degrees.    Also,  Chinese  statistics  may  include  

mechanics  and  industrial  technical  qualifications  under  ‘engineering,’  which  is  not  so  in  India.    

This  may  suggest  the  comparison  is  slightly  biased  towards  China  in  absolute  terms,  however,  

for  the  purpose  of  this  analysis  the  positive  annual  growth  is  more  significant  than  absolute  

comparisons.    The  quantitative  bias  for  China  may  also  be  balanced  by  the  fact  that  provincial  

Page 22: Eleanor Awbery White MSc thesis LSE 2009

  22  

enrolments  for  degree  subject  specializations  of  less  than  10,000  are  not  forwarded  on  to  the  

national  statistics  (China  Statistical  Yearbooks,  introduction,  Education  Science  and  Technology).        

 

Gereffi  and  Wadhwa’s  qualitative  research,  including  interviews  with  Chinese  and  Indian  

universities  regarding  graduation  definitions  and  specializations  has  been  invaluable.    I  have  also  

used  consultancy  reports  such  as  the  McKinsey  Global  Institute  paper,  “Demand  for  Offshore  

Talent  in  Services.”    Although  not  necessarily  conducted  with  academic  rigour,  this  was  a  useful  

source  for  understanding  the  debate.      

2.  iii A  statistical  comparison  of  high-­‐tech  graduate  awards  in  China  and  

India  

In  this  section  I  present  data  in  engineering,  computer  science  and  IT  degree  awards  in  China  

and  India,  from  2001  to  2007.    

 

An  entirely  accurate  comparison  is  impossible  due  to  the  different  classification  criteria  for  

professions  and  subjects  across  international  and  provincial  borders  and  local  institutional  

settings.    An  ‘engineer’  for  example,  varies  in  definition  according  to  context.    In  academic  

circles  s/he  may  be  “a  person  capable  of  using  scientific  knowledge  to  solve  real-­‐world  

problems,”  (Gereffi  and  Wadhwa,  2005).    But  for  the  purposes  of  calculating  populations,  

quantitative  criteria  must  be  used,  for  example,  the  number  with  ‘engineering’  in  their  job  title,  

or  with  a  graduate  degree  in  a  subject  related  to  high-­‐technology.    In  China,  classifications  follow  

the  Soviet  model  adopted  during  the  Mao  era,  which  used  the  term  ‘engineering’  (工程    -­‐  gong  

cheng)  to  apply  to  a  broad  category  of  science  and  technology  (Rongping,  2003).    The  

outsourcing  boom  in  India  and  the  comparatively  lower  cost  of  CS  and  IT  awards,  compared  to  

traditional  engineering,  has  led  to  greater  numbers  of  Indian  students  graduating  from  

‘engineering’  institutions,  with  computer  training,  but  no  traditional  engineering  content  

(Varghese,  2006).    For  these  reasons,  combined  graduations  in  engineering,  CS  and  IT  seems  

most  accurately  comparable.    

 

Page 23: Eleanor Awbery White MSc thesis LSE 2009

  23  

 

 

Table  1:  Graduate  numbers  in  high-­‐tech  subjects,  2001  to  2007  by  degree  level.    

 

Notes: MCA = Master of Computer Applications. This is a Masters Degree created in 1997 offering foundation

skills in CS to individuals with a bachelors degree in a different subject. At graduation, the knowledge

base is roughly equivalent to that of an undergraduate award in CS.

NA = Not Available; I was unable to find data.

Sources are listed in detail in Appendix I.

Page 24: Eleanor Awbery White MSc thesis LSE 2009

  24  

Table  1  compares  graduate  numbers  in  engineering,  CS  and  IT  in  China  and  India  between  2001  

and  2007.    China  is  consistently  producing  between  two  and  three  times  as  many  technology  

graduates  as  India.    Both  China  and  India’s  technology  graduate  numbers  grew  steadily  at  

roughly  the  same  rate  between  2001  and  2007.  Over  the  period  studied  China’s  growth  rate  

(2.7)  was  fractionally  higher  than  India’s  (2.6),  and  China  produced  2.4  times  as  many  

technology  graduates  as  India.      However,  there  is  a  notable  difference  between  the  two  

countries  in  post  doctorate  awards.    India  produced  a  roughly  constant  700  annual  PhDs,  where  

data  was  available,  whereas  China  saw  a  dramatic  increase  from  5000  in  2001  to  14,479  in  2007.    

Additionally,  the  postgraduate  percentage  share  of  the  total  in  India  declined  from  15.3%  in  

2001,  to  6.2%  in  2007.6    By  contrast,  China’s  increased  from  10.2%  to  15.3%  over  the  same  

period.    This  suggests  that  the  aggregate  level  of  high-­‐tech  skills  in  China  steadily  improved  over  

the  time  period  studied,  whereas  the  type  and  level  of  skills  appears  to  have  remained  static  in  

India.    

 

However,  national  competitive  ability  may  be  better  judged  by  per  capita  rather  than  absolute  

comparisons.    Graph  1  shows  the  data  in  Table  1  as  graduates  per  million  population  for  each  

year  in  China  and  India.    China’s  population  (1.32bn)  is  1.2  times  India’s  (1.12bn),  so  with  2.4  

times  as  many  technical  graduates,  it  is  producing  twice  as  many  graduates  per  capita.    This  may  

be  a  significant  indicator  of  increasing  technological  competence.    Gereffi  and  Wadhwa’s  (2008)  

recommendations  for  US  educational  strategy  are  in  part  based  on  the  belief  that  a  higher  

proportion  of  engineers  per  population  correlate  to  a  country’s  capacity  for  innovation.      

 

Despite  these  differences,  it  is  easy  to  see  how  similarities  in  numbers  and  growth  rates  in  an  

isolated  statistical  analysis  might  lead  to  the  conclusion  that  China  and  India’s  contribution  to  

high-­‐tech  global  resourcing  is  differentiated  mainly  by  sector  specialization,  not  by  technological  

potential,  and  that  therefore  they  are  either  equally  competitive,  or  that  competition  between  

the  two  is  irrelevant.    However,  looking  at  the  graduate  numbers  in  the  context  of  the  two  

countries’  political  economies,  their  education  strategy  and  their  policies  for  R&D  suggests  quite  

different  implications  for  national  learning  and,  consequently,  future  economic  advantage.      

 

                                                                                                                         6  I  did  not  include  MCAs  in  the  calculation  of  postdoctoral  percentages  for  India.    Despite  the  label  ‘Masters’  they  are  conversion  degrees,  to  the  equivalent  of  bachelor  level  skills  in  CS.      

Page 25: Eleanor Awbery White MSc thesis LSE 2009

  25  

Graph  1:    Technical  graduates  per  million  population  

         

 

Page 26: Eleanor Awbery White MSc thesis LSE 2009

  26  

3 High-­‐tech  development  strategy  in  China  and  India  

“China  has  excelled  in  mobilizing  resources  for  science  and  technology  on  an  unprecedented  

scale  and  with  exceptional  speed  and  is  now  a  major  R&D  player.”    

OECD,  Review  of  China’s  Innovation  Policy,  2007:  p22.    

 

“Science  teaching  and  research  face  a  challenge  in  Indian  universities.    A  major  reason  for  

this  trend  is  that  the  career  in  science  is  not  attractive  like  a  profession  in  business  

administration  or  in  politics.    Teachers  refuse  to  undertake  research…and  are  resistant  to  

major  structural  changes  in  the  system.”    

Varghese,  2006,  p12.  

 

 

A  comparison  of  graduate  statistics  bodes  well  for  China’s  competitiveness,  but  should  not  be  

taken  as  conclusive.    For  the  statistical  trajectories  to  be  meaningful,  it  is  necessary  to  view  

them  in  the  context  of  government  strategy  and  historical  perspective.    In  this  chapter,  I  

compare  China  and  India’s  policy  objectives  for  high-­‐tech  skill  development  and  their  impact  in  

each  country.  

3.  i A  policy  comparison  

China  and  India  have  both  liberalised  previously  centrally  planned  economies.    Following  Deng  

Xiaoping’s  ‘Gaige  Kaifang’  (‘reform  and  opening  up’)  in  the  early  1980s,  government  owned  

research  institutions  in  China  gained  greater  control  of  funding;  then  later  competition  was  

introduced  into  the  science  and  technology  sector  (Rongping,  2003).    India’s  reform,  instigated  

by  economic  crisis  in  1991,  was  a  dramatic  but  fragmentary  process  subject  to  sectional  politics  

and  difficulties  in  consensus  (Desai,  2007).    Widespread  market  liberalisation  occurred  in  the  

1990s,  more  rapidly  than  China’s  ‘step-­‐by-­‐step’  approach.    Structural  adjustment  conditions  of  

an  IMF  loan  led  to  an  influx  of  FDI  particularly  from  the  global  software  outsourcing  industry  

(Goyal,  1996).    

 

Page 27: Eleanor Awbery White MSc thesis LSE 2009

  27  

The  two  countries  are  hailed  as  likely  great  technological  powers  of  the  21st  century  (ICMR,  

2005;  Mitra  2007;  Gupta  et  al,  2009).    Similarities  are  emphasized  in  comparisons  between  them  

and  the  West,  for  example  in  graduate  statistics  (Gupta  et  al,  2009),  FDI  relative  to  GDP,  growth  

in  market  share  of  the  global  outsourcing  industry  (Williams,  2009)  and  low  wage  comparisons  

on  a  PPP  basis  (EIU,  2004).    However,  a  focus  on  similarity  in  outputs  hides  considerable  

differences  in  institutional  legacy,  policy  and  approach.      

 

China’s  industrial  know-­‐how  was  developed  under  the  Soviet  training  programme  during  the  

Cold  War,  and  after  the  Sino-­‐Soviet  split,  through  a  drive  for  self-­‐sufficiency.    Inheriting  

centralised  institutions,  high  literacy  levels  and  widespread  basic  technical  understanding  

(Bramall,  2006),  the  state  continues  to  drive  changes  in  science  and  technology  (S&T)  

infrastructure.    Chinese  reform  focussed  on  creation  of  a  legal  infrastructure  for  parity  with  

international  standardization,  and  nurturing  an  R&D  infrastructure  that  coordinates  education  

and  skills  training  with  commercial  enterprise  (OECD,  2007).    From  a  position  of  relative  

isolation,  the  Chinese  state  has  proactively  sought  international  educational  and  business  

collaboration.  

 

India’s  industrial  development  was  inseparable  from  its  colonial  past,  which  also  left  a  heritage  

of  international  development  relations,  widespread  familiarity  with  the  English  language  and  

ground  to  establish  a  democratic  legal  system.    In  contrast  to  China’s  style  of  self-­‐sufficiency,  

India’s  infant  industry  protectionism  under  Nehru  was  not  isolationist.    Following  Washington  

Consensus  criteria  for  governance  (see  Mavrotas  and  Shorrocks,  2007)  in  the  1990s,  India  lifted  

barriers  to  foreign  investment  and  allowed  the  outsourcing  business  to  flourish.    India’s  high-­‐

tech  boom  was  market-­‐driven,  compared  with  China’s  state-­‐driven  development  coordinated  

alongside  educational  reform.      

 

These  distinct  reform  paths  imply  underlying  differences  towards  convergence.    Greater  reliance  

on  the  market  to  lead  growth  implies  faith  that  technological  advancement,  including  skill  

development,  will  result  naturally.    Greater  institutional  guidance  during  liberalisation  directs  

technological  change  to  influence  the  market.      

Page 28: Eleanor Awbery White MSc thesis LSE 2009

  28  

The  legal  framework  for  high-­‐tech  education  and  development  

China’s  reform  put  in  place  a  legal  infrastructure  that  to  some  extent  already  existed  in  India  as  

a  legacy  of  colonialism  and  democratic  independence.    A  noticeable  difference  between  Indian  

and  Chinese  legislation  is  the  degree  to  which  ideology  or  pragmatism  dominates  statements.    

This  may  reflect  the  different  periods  in  which  legislation  was  formed  and  their  ideological  bent.    

Indian  S&T  legislation,  formed  under  newfound  independence,  seems  written  as  strategic  vision.    

By  contrast  Chinese  legislation,  written  to  guide  reform  of  changing  state-­‐market  relations,  is  

pragmatic;  it  reads  more  like  operational  policy.    The  differences  in  legislative  style  also  reflect  

historical  and  ideological  orientations  that  I  bring  to  the  fore  in  the  rest  of  the  chapter.  

 

China’s  institutional  reform  was  supported  by  a  proliferation  of  new  legislation  over  the  last  20  

years.    These  include  statutes  in  three  broad  categories  relevant  to  science,  technology  and  

research  (Yong,  2008).    First,  primary  law  such  as  the  Technology  Contract  Law  1987,  and  the  

Science  and  Technology  Progress  law  1993,  advanced  the  commercialization  of  science  and  

technology.    In  the  second  area,  concentrating  on  enterprise  innovation,  universities  were  

encouraged  to  exploit  the  economic  value  of  research  by  setting  up  their  own  companies  (OECD,  

2007).    The  third  phase  covered  regulations  for  International  Property  Rights  (IPR)  protection,  

including  Patent  Law  and  a  Statute  for  Computer  Software.    Ministries  disseminated  circulars  

promoting  the  popularization  and  dissemination  of  S&T  (Rongping,  2003).    Last  year  alone,  the  

State  Council  issued  over  60  supporting  policies  for  innovation,  covering  taxation  and  the  details  

of  state  financial  input  (Yong,  2008).    

 

India’s  legal  framework  is  older  and  was,  until  recently,  strongly  protectionist.    Its  1958  Scientific  

Policy  Resolution  created  a  Council  of  Scientific  and  Industrial  research,  to  develop  technology  in  

specified  areas,  most  importantly  agriculture.7    The  Technology  Policy  Statement,  1983,  

increased  the  drive  for  “self-­‐sufficiency…[and]  major  technological  break-­‐throughs  in  the  

shortest  possible  time  for  the  development  of  indigenous  technology.”    A  political  shift  occurs  in  

the  Science  and  Technology  Policy  2003,  which  sees  it  “essential  for  industry  [as  opposed  to  

government]  to  steeply  increase  its  investments  in  R&D.”      

                                                                                                                         7  See  Commentary  pages,  S&T  department,  Government  of  India  website  for  details.    

Page 29: Eleanor Awbery White MSc thesis LSE 2009

  29  

Reform  strategy  comparison  

Prior  to  reform,  both  nations  encouraged  technological  know-­‐how,  India  placing  emphasis  on  

productivity  gains  in  agriculture,8  China  more  on  heavy  industries  in  its  interior,  and  successful  

small-­‐scale  industrial  enterprise,  if  not  agricultural  (Bramall,  2006).      

 

Post-­‐reform,  China’s  approach  to  technology  development  continues  to  be  strongly  proactive.    

The  state  has  developed  bases  for  product  development  in  manufacturing  and  created  links  to  

kick-­‐start  commercial  high-­‐tech  enterprise.    For  example,  Lenovo,  a  globally  successful  computer  

manufacturer,  was  nurtured  in  the  Institute  of  Computing  Technology  of  the  Chinese  Academy  

of  Sciences;  and  the  Founder  Group,  a  technology  conglomerate,  originated  in  a  joint  project  

between  Beijing  and  Tsinghua  Universities  (Zhou,  2008).    

 

By  contrast,  India’s  reform  strategy  has  been  criticised  for  being  non-­‐interventionist  (Ahuja,  

2000).    Like  China,  education  strategy  encourages  increases  in  engineer  and  computer  science  

graduate  awards,  but  the  goals  of  the  S&T  higher  education  system  have  not  been  

systematically  restructured  towards  business  innovation.    Educational  institutes  are  suppliers  for  

the  labour  market  in  India,  but  are  not  oriented  towards  creating  it.    This  may  mean  India  is  

over-­‐reliant  on  its  global  position  as  a  supplier  of  comparatively  low-­‐waged  technical  workers.    

Policy  states  that  industry  will  lead  the  way  in  developing  high-­‐tech  research  facilities  in  India  

(S&T  policy,  2003).    

 

The  2003  policy  does,  however,  show  some  return  to  interventionism  and  policy  makers  have  

recently  expressed  concern  about  China’s  rise  and  its  lower  wages  (Mitra,  2007).    However,  the  

rhetoric  of  intervention  in  each  state  is  notably  different.    China’s  concern  is  with  institutional  

reform,  directing  convergence  of  educational  R&D  towards  commercialisation  and  industrial  

partnership.    Indian  policy  is  oriented  to  the  individual,  focusing  on  democratic  importance  of  

equality  of  opportunity;  for  example,  key  policy  objectives  are:  to  continue  to  increase  the  adult  

computer  literacy  rate  and  access  to  ICT  for  the  masses  (S&T  policy,  2003),  to  build  technical  

capacity  in  the  rural  areas  and  to  decrease  inequalities.    This  seems  in  keeping  with  India’s  

                                                                                                                         8  Industry  was  the  sixth  priority  after  five  agricultural,  water  and  housing  related  priorities,  in  its  1983  Technology  Policy  statement.    

Page 30: Eleanor Awbery White MSc thesis LSE 2009

  30  

egalitarian  polity  and  a  political  framework  increasingly  subject  to  the  necessities  of  vote  bank  

capture  (Desai,  2007).    

3.  ii Connections  between  education  and  industry  

Culturally  embedded  knowledge  oriented  into  a  positive  cycle  for  technical  progress  is  the  

hallmark  of  a  successful  industrial  economy  (Mokyr,  1992).    In  practice,  the  systemic  diffusion  of  

useful  and  reliable  knowledge  through  social  institutions,  particularly  the  academic  system,  is  

difficult  to  achieve  (Gaukroger,  2006);  but  once  successful,  the  boundaries  between  scientific  

knowledge  and  technical  application  are  not  always  discernible.    For  accounting  purposes,  the  

distinction  is  made  between  basic  and  applied  research  (see  box  2);  a  better  way  to  understand  

developing  a  country’s  skill  base  may  be  distinguishing  between  innovation  and  replication.    The  

more  technologically  competitive  a  country,  the  more  likely  it  will  have  oriented  its  R&D  

education  programme  towards  innovation  (Cohen  and  Levinthal,  1989).    A  reorientation  in  this  

direction  requires  the  establishment  of  lasting  connections  of  trust  between  educational  and  

industry  personnel,  as  well  as  physical  infrastructure  (Zhou,  2008).      

Analysis  of  China  and  India’s  domestic  sector  compatibility  

Government  strategy  in  China  promotes  coordination  between  institutions  and  business.    Until  

the  late  1990s,  China  relied  largely  on  imported  technology  and  its  S&T  capability  lagged  

economic  growth.    FDI  did  not  contribute  as  much  as  hoped  to  technology  transfer,  and  

government  intervention  has  since  reversed  the  trend,  with  a  focus  on  improving  capacity  for  

innovation  (OECD,  2007).    80%  of  large  domestic  enterprises  have  already  established  

cooperation  partnerships  with  universities  and  research  institutes  (Rongping,  2003).    As  the  

central  government  role  became  less  managerial  and  narrowed  its  focus  to  strategy  formation,  

it  created  a  National  Leading  Group  for  S&T  and  Education  to  organise  a  long-­‐term  plan  for  2006  

to  2020.    This  group  promotes  cooperation  between  industry,  universities  and  research  

institutes.    To  date,  about  a  quarter  of  the  750  R&D  centres  established  by  foreign  firms  in  China  

are  joint  units  with  universities  or  public  research  institutes  (OECD,  2007).  

 

 

Page 31: Eleanor Awbery White MSc thesis LSE 2009

  31  

Box  2:  Research  and  development  definitions.    

   

Research  and  Development  definitions    

 Basic  Research  

• Usually  carried  out  by  universities  • No  commercial  aim  • Expensive,  long-­‐term  investment  • If  successful,  creates  sustainable  

technological  edge  for  the  national  economy  

 Applied  Research  

• Experimental  • May  have  a  particular  aim  • Known  but  unquantifiable  commercial  

impact  • Development  of  an  entirely  new  product  

 

Process  Development  

• Creation  of  new  production  processes  • Extension  of  existing  production  

processes  • May  have  quantifiable  commercial  

impact;  often  spill-­‐over  improves  efficiency  

 

 

Product  Development  

• Improvement  or  extension  of  existing  products  

• Quantifiable  commercial  impact  

 Sources:  Varghese,  2006;  Gereffi  and  Wadhwa,  2005;  author.  

     Education-­‐industry  connections  impact  the  learning  curriculum;  for  example,  Shanghai  Jiao  Tong  

University  continuously  modifies  its  curriculum  in  engineering  in  response  to  developments  in  

automotive  design  (Rongping,  2003);  the  Suzhou  Industrial  Park  Institute  of  Vocational  

Technology  (SIPIVT)  has  introduced  an  ‘order-­‐driven’  training  model,  under  which  it  “selects  

students  together  with  enterprises  and  cooperates  with  them  to  design  labs,  set  specialities  and  

courses  and  create  teaching  programmes”  (OECD,  2007,  p42).    Kowalenko  (2004)  suggests  a  

connection  between  international  investment  in  technical  education  in  China  and  IBM’s  decision  

to  hire  thousands  of  programmers  there  in  2004.      

 

India  has  mixed  success  in  establishing  connections  between  its  education  system  and  industry.    

Driven  by  successful  outsourcing  and  ICT  investment,  professionally  oriented  graduate  awards  in  

Page 32: Eleanor Awbery White MSc thesis LSE 2009

  32  

computer  science,  engineering  and  software  development  have  mushroomed.    This  seems  the  

most  obvious  nation-­‐wide  connection  between  education  and  industry.    Rather  than  a  state-­‐led  

coordination  of  public-­‐private  research  and  development  as  in  China,  there  has  been  a  reliance  

on  foreign  firms  to  lead  the  way  in  establishing  R&D  initiatives.    To  some  extent,  this  has  

worked.    Firms  like  Cisco,  Microsoft  and  IMB  are  establishing  new  research  centres  in  India,  

despite  “government  indifference”  and  fears  that  students  “are  not  exposed  to  research  from  

an  early  age”  (Chandran,  2009,  p1).    However  Mitra  observes  “India’s  economy  predominantly  

continues  to  focus  on  absorption  of  existing  technology  rather  than  development  of  new  R&D  or  

innovation  at  the  global  knowledge  frontier”  (Mitra,  2007,  p13).    Chandran  interviewed  heads  of  

strategy  at  MNCs  investing  in  India,  who  complained  of  “few  government  incentives  and  an  

education  system  that  emphasizes  rote  learning”  (ibid,  p3).    Similar  concerns  have  been  

expressed  regarding  Chinese  education  (Greenspan,  2008);  however  policy  suggests  the  

government  seems  attuned  to  the  need  for  change  in  learning  methodology,  at  least  in  the  high-­‐

tech  postgraduate  arena.    

 

The  difference  is  beginning  to  show  in  attitudes  in  high-­‐tech  learners  in  India  and  China.  

Varghese  (2006)  surveyed  attitudes  of  students  towards  sciences,  teaching  and  research  in  India  

and  found  that,  despite  increasing  enrolments  in  engineering  and  technical  degrees,  59%  were  

dissatisfied  with  the  ICT  learning  process  and  only  1%  had  international  collaboration  on  a  

research  project.    Quality  performance  indicators  for  the  network  of  state  funded  Indian  

universities  are  falling  and  several  universities  have  closed  down  science  departments  through  

lack  of  funding.    “There  is  little  incentive  for  teachers  with  doctoral  degree  to  turn  their  skills  to  

research  projects  or  collaborations,”  (Varghese,  2006,  p3).    Anecdotal  evidence  from  online  

professional  forums  corroborate  his  findings:  

 

“Can  we  withstand  yet  another  beating,  this  time  in  higher  education,  by  the  Chinese?    What  

are  the  reasons  for  such  a  disparity?”  

 

“The  main  reason  is  the  different  models  of  higher  education  being  pursued  in  these  two  

countries.    China  has  a  system  of  funding  large  public  universities,  similar  to  that  in  the    

 

 

Page 33: Eleanor Awbery White MSc thesis LSE 2009

  33  

US…for  example,  out  of  the  795  institutes  that  provide  post-­‐graduate  programmes  in  China,  

none  is  privately  owned.”    

–  Participants    in  Rediff  business  forum,  2009,  June  2nd.  

 

China’s  coordination  of  research  and  industrial  development  is  reflected  in  emerging  publication  

competence.    Its  ranking  in  S&T  citation  indices  improved  from  fifteenth  in  1990  to  fifth  in  2004  

(Zhong  and  Yang,  2007).    India  ranked  fourteenth  in  2004,  with  1.9%  of  global  share  of  science  

citations  to  China’s  5%  (Padma,  2006).    China  now  rivals  the  US  in  nanotechnology  publication  

citations  in  top  scientific  journals  (OECD,  2007).    Varghese  (2006)  suggests  that  the  Indian  

diaspora  with  technical  competencies  in  the  United  States  is  fed  by  a  bottleneck  for  

postgraduate  entrants  domestically  –  and  that  many  students  remain  in  the  US,  particularly  in  

Silicon  Valley.    The  minimal  growth  in  Indian  PhD  statistics  reported  in  Chapter  2  reinforce  this  

view.    Indian  policy  recognises  the  need  to  instigate  “new  mechanisms…to  facilitate  the  return  

of  scientists  and  technologists  of  Indian  origin  to  India,”  (S&T  policy,  2003)  but  these  are  not  yet  

detailed  or  implemented.    Chinese  policy  encourages  overseas  education,  but  also  provides  

incentive  for  returners  such  as  allowing  remittance  of  their  after-­‐tax  earnings.    Development  

parks  in  China  employed  more  than  40,000  returners  in  2003  (OECD,  2007),  supported  by  the  

CAS  “Hundred  Talents”  programme.    “So  many  Chinese  expats  have  returned  in  the  past  few  

years  that  Valley-­‐slang  has  given  them  a  special  name,  B2C  (back  to  China)”  (The  Economist,  

2009).    

3.  iii A  historical  perspective  

Whereas  China  and  India’s  strategic  goals  are  similar  –  technological  catch-­‐up  and  skill  

development  –  their  approaches  and  methodologies  are  quite  different.    China’s  approach  is  

more  akin  to  Singapore  or  Taiwan,  emphasizing  a  nurturing  state,  strong  incentive  for  the  

development  of  domestic  technological  know-­‐how  and  productive  rent  creation  to  that  end  

(Khan  and  Jomo,  2000).    India’s  focus  has  been  more  ideologically  liberal  and  democratic,  

focusing  on  building  institutions  to  allow  the  market  mechanism  to  work  smoothly,  and  to  open  

doors  for  equal  opportunity  across  social  and  regional  divides.    Its  approach  seems  in  keeping  

with  an  International  Development  Consensus  that  promotes  creation  of  transparent  and  

accountable  governance,  ideal-­‐type  hallmarks  of  developed  Western  democracies.      

Page 34: Eleanor Awbery White MSc thesis LSE 2009

  34  

 

Although  an  unusual  comparison  to  draw  due  to  apparent  ideological  difference,  it  seems  that  

China’s  current  development  methodology  is  more  akin  to  the  development  of  early  

democracies  than  is  India’s.    Without  the  inheritance  of  rule  of  law,  China  has,  perhaps,  the  

social  ‘space’  to  create  a  body  of  practice  based  in  part  on  de  facto  success  stories  and  bottom-­‐

up  experience  which  is  later  institutionalized  legally  (De  Soto,  2000;  Chang,  2002).    It  also  draws  

on  Maoist  “mass  line”  and  historical  experience  of  the  People’s  Democracy  (Bennett,  1976).    

This  practice  tradition  might  help  develop  networks  of  informal  learning,  discussed  further  in  

the  final  chapter.      

3.  iv Conclusions  

A  policy  comparison  between  the  two  countries  gives  insight  into  potentially  different  causes  for  

the  dramatic  growth  in  graduate  numbers  in  engineering,  CS  and  technology.    Both  have  

encouraged  increased  graduate  enrolments  in  high-­‐tech  related  subjects,  and  the  growing  

offshore  market  for  high-­‐tech  skills  has  been  influential.    However  growth  of  S&T  capability  and  

innovation  is  core  to  China’s  development  strategy,  with  an  aim  to  move  from  a  low-­‐skill,  

resource-­‐intensive,  manufacturing  economy  to  a  global  leader  in  high-­‐tech  R&D  (OECD,  2007).    

For  the  last  two  decades,  Chinese  strategy  has  oriented  its  S&T  educational  programme  towards  

commerce  and  built  R&D  connections  between  education  and  industry  (Zhong,  2008).    Graduate  

numbers,  particularly  PhD  awards,  are  likely  to  have  increased  as  a  result  of  new  courses  and  

research  opportunities  created  through  this  reorientation.        

 

Political  rhetoric  in  India  makes  a  connection  between  education  and  industry,  but  in  practice  

they  are  separately  organised  by  the  state  and  the  market  respectively.    This  suggests  Indian  

increases  in  graduate  numbers  were  driven  over  the  last  two  decades  by  the  outsourcing  boom.    

The  difference  between  the  two  approaches  may  reflect  degrees  of  coordination  possible  

between  economic  and  educational  policy.      

 

In  China,  there  is  increasing  concern  that  emphasis  on  commercially-­‐oriented  R&D  has  starved  

basic  research  funding  –  now  only  6%  of  total  R&D  spending.    The  government  now  plans  to  

gradually  increase  basic  research  funding  (long-­‐term  strategy  plan,  2006).    So,  while  China  is  

Page 35: Eleanor Awbery White MSc thesis LSE 2009

  35  

racing  to  learn,  building  capacity  for  basic  R&D,  India  may  be  learning  to  race,  following  China  in  

changing  its  principal  strategy  towards  commercialisation  of  research.    This  move  is  still  

controversial  in  India  (Varghese,  2006).    This  suggests  that  India  is  strategically  ‘catching-­‐up’  

with  China,  though  the  reverse  is  often  assumed  based  on  outsourcing  figures  and  established  

markets.    

 

China’s  graduate  statistics  may  therefore  represent  a  logical  progression  towards  an  increasingly  

innovative  skill  base,  whereas  India’s  statistics  reflect  response  to  market  demand  for  routine  

skills.    Despite  some  globally  recognised  centres  of  excellence,  India’s  statistics  may  not  

represent  the  cultural  spread  of  innovation  necessary  for  sustained  technological  prowess.    Put  

another  way:  China  has  an  institutional  advantage  that  is  yet  unrealised  in  technological  output.  

 

Given  the  above  analysis,  we  would  expect  to  see  China  increasingly  competitive  in  the  market  

for  global  high-­‐tech  resources.    There  are  some  signs  of  this,9  though  not  as  many  as  we  might  

expect.    The  final  chapter  finds  China  underperforming  its  potential  compared  to  India,  and  

suggests  the  missing  link  is  a  better  understanding  of  the  informal  learning  of  its  high-­‐tech  

workforce.    Ethnography  can  provide  that  link.    

                                                                                                                         9  For  example,  a  recent  proliferation  of  outsourcing  blogs  noting  China’s  venture  into  software  development  and  comparing  China  and  India  as  service  providers.      

Page 36: Eleanor Awbery White MSc thesis LSE 2009

  36  

4 Learning  about  learning  

Sustained  share  in  the  global  technology  market  relies  ultimately  on  ability  to  innovate  (Kim  and  

Nelson,  2000).    The  analysis  in  Chapter  3  suggested  China  has  the  necessary  institutional  

framework  to  outgrow  India  in  technological  innovation  but  has  paid  less  attention  to  individual  

technical  creativity.    India’s  current  lead  may  rest  on  wage  competition,  established  connections  

with  global  markets,  and  its  workforce  well  trained  in  generic  skills,  notably  English  language,  

needed  to  meet  international  demand  (Mitra,  2007).      

 

China  and  India  are  the  most  competitive  offshore  locations  considering  wages  only;  yet  Farrell  

et  al.  (2008)  suggest  large  differences  in  the  percentage  of  their  engineering  and  technical  

graduates  suited  to  work  in  the  global  high-­‐tech  industry.    Only  10%  of  Chinese  candidates,  

versus  25%  of  their  Indian  peers,  are  a  good  fit  for  the  degree-­‐specific  occupations  for  which  

they  applied.10    Reasons  cited  are:  lack  of  necessary  language  skills,  “low  quality  of  education,”  

lack  of  practical  skills  and  lack  of  “cultural  fit”  shown  through  interpersonal  skills  and  attitudes  

towards  teamwork  and  flexible  working  hours.    

 

Such  reports  suggest  learning  differences  between  the  two  countries,  but  without  further  

detailed  research  might  lead  to  assumptions  regarding  cultural  differences  or  ‘quality  of  

individuals.’    Once  again,  ‘quality’  is  unexplained  and  technical  ability  (perhaps  included  in  ‘lack  

of  practical  skills  or  ‘low  quality  of  education’)  is  not  clearly  differentiated  from  social,  business,  

language  or  management  skills.    Placed  in  the  context  of  the  findings  of  chapters  2  and  3,  the  

percentages  suggest  a  large  margin  of  opportunity  for  China  to  increase  its  high-­‐tech  market  

share.    Put  another  way:  China  has  perhaps  the  greatest  unfulfilled  high-­‐tech  potential  in  the  

world.    

 

The  final  section  of  this  thesis  shows  how  ethnography  can  enable  realisation  of  that  potential.    

                                                                                                                         10  The  survey  interviewed  83  offshore  recruitment  managers  for  MNCs.    Chinese  and  Indian  percentages  are  low  compared  to  regions  such  as  Eastern  Europe  (50%)  and  China  is  the  lowest  of  all  cited.        

Page 37: Eleanor Awbery White MSc thesis LSE 2009

  37  

4.  i Untying  the  learning  bundle  

The  idea  that  the  market  alone  will  cause  unlimited  skill  development  is  no  longer  tenable.    

Endogenous  growth  theory  challenged  this  assumption,  modelling  the  role  of  institutions  in  the  

nurturing  of  talent  for  innovation.    An  economy  that  relies  primarily  on  supplying  low  wage  

labour  for  the  global  technology  market  is  therefore,  effectively,  feeding  domestic  production  

factors  to  the  global  market,  rather  than  feeding  the  domestic  economy  through  the  global  

market.    The  analysis  in  previous  chapters  suggests  that  India’s  political  economy  may  be  more  

inclined  towards  fulfilling  the  first  scenario  than  China’s.    India  has,  of  course,  developed  some  

internationally  renowned  institutions  for  R&D  innovation  –  but  they  may  not  represent  skill  

development  as  systemic  spread.  

 

What  nurtures  systemic  ability  to  apply  technical  skills  creatively  to  solve  real  world  problems  is  

an  elusive  and  historically  debated  question  (Mokyr,  1990,  1995;  Grubler,  1998).    It  is  clear  this  

ability  was  more  prevalent  in  some  circumstances  than  others,  for  example,  17th  century  Britain  

(Grubler,  1998)  or  during  the  last  few  decades  in  Silicon  Valley  (Graham,  2008).    Institutionalized  

connection  between  technical  education  and  industry  is  a  prerequisite  (Yusuf  and  Nabeshima,  

2007)  but  the  evidence  above  suggests  it  is  insufficient  alone  for  China.    Little  is  yet  understood  

about  favourable  and  unfavourable  local  circumstances  for  spreading  innovative  capacity  in  the  

current  high-­‐tech  market;  economic  models  such  as  the  Industrial  Worker  Hypothesis  assume  it  

is  an  acultural  result  confined  to  highly  developed  countries.    However  ethnography  can  provide  

different  answers.    Clearly  defining  different  skill  sets  is  the  first  step,  understanding  their  

relative  importance  is  the  second,  identifying  the  circumstances  in  which  they  propagate  is  the  

third.    

Routine  and  creative  skills  

Distinguishing  between  the  different  economic  roles  of  routine  and  creative  technical  skills  

helped  unravel  the  neoclassical  teleology  that  technological  progress  was  both  cause  and  effect  

of  growth.    Routine  skills  are  those  that  result  from  spread  of  existing  technology  –  ‘learning  by  

doing’  fits  this  category.    Creative  skills,  crucial  for  innovation,  require  local  knowledge  and  

Page 38: Eleanor Awbery White MSc thesis LSE 2009

  38  

application;  they  cannot  be  predicted  by  economic  models.11  Creative  technical  skills  are  those  

that  cause  growth  beyond  the  current  technology  paradigm12  (Kuhn,  1962)  and  lead  to  

sustainable  long-­‐term  development.    

 

Gereffi  and  Wadhwa  incorporate  this  distinction  into  two  ideal  types,  ‘transactional’  and  

‘dynamic’  skills  at  either  end  of  a  spectrum  (2005  and  2008).    Transactional  engineers  possess  

“solid,  technical  training”  and  are  “responsible  for  routine  tasks  in  the  workplace”  (2005,  p21).    

They  typically  hold  technician  awards  or  diplomas.    They  graduate  from  “lower-­‐tier  universities”  

with  less  emphasis  on  research  or  interdisciplinary  opportunities.    Dynamic  engineers  “are  

individuals  capable  of  abstract  thinking  and  high-­‐level  problem  solving  using  scientific  

knowledge,  and  are  most  likely  to  lead  innovation.”    They  “thrive  in  teams,  work  well  across  

international  borders,  have  strong  interpersonal  skills  and  are  capable  of  translating  technical  

engineering  jargon  into  common  language”  (ibid).    They  are  more  likely  to  graduate  from  top  

international  institutions.      

 

Gereffi  and  Wadhwa’s  definition  is  a  step  up  from  the  majority  of  analyses  of  outsourcing,  which  

refer  to  ‘quality’  as  the  main  variable  for  success,  without  exploration  or  qualification.    However,  

their  research  addressed  reform  of  the  high-­‐tech  graduate  curriculum  in  the  US,  and  their  

description  is  somewhat  imprecise.    Their  one  sentence  definition  of  ‘dynamic’  engineers  

(above)  includes  cognitive  ability,  knowledge  acquisition,  proven  behaviour,  social  skills,  

professionalism  and  familiarity  with  certain  environments,  technical  translation,  language  skills  

and  international  exposure.    Their  distinction  is  useful  as  a  starting  point,  but  does  not  address  

causes.    More  dynamic  skills  are  perceived  to  represent  better  quality  education  –  but  there  is  

no  analysis  of  what  that  means  and  how  those  skills  are  attained.      

 

The  differentiation  between  routine  and  creative  skills  underlies  the  ‘quality’  debate  in  

outsourcing  discourse  (see  section  2.1).    However,  the  discourse  assumes  the  move  from  routine  

to  innovative  skills  is  incremental,  and  that  more  creative  technical  skills  are  learned  by  

progression  up  the  qualification  ladder.    Conceptualising  the  difference  in  this  way  relegates  

                                                                                                                         11  Endogenous  Growth  Theory  models  technological  innovation  as  part  of  the  growth  cycle,  but  does  not  attempt  to  quantify  it.    12  Although  Kuhn’s  theory  of  paradigm  shift  was  exogenous,  his  ideas  extended  beyond  exogenous  neoclassicism.      

Page 39: Eleanor Awbery White MSc thesis LSE 2009

  39  

learning  to  formal  education  and  disregards  other  learning  processes.    This  thesis  suggests  the  

locally  specific  contribution  of  informal  learning  to  innovative  technical  ability  makes  the  

difference  between  scarce,  haphazard  innovation,  and  its  systemic  embededdness.      

English  language  

Although  English  language  competence  is  not  yet  common  amongst  the  populace,  Chinese  

educational  policy  now  prioritises  it.    High  school  graduate  exams  for  university  entrance  include  

English  as  compulsory.    To  attend  the  top  universities,  students  must  obtain  near  perfect  scores  

on  their  exams  —  including  English;  “the  result  is  that  top  university  graduates  in  China  do  have  

good  English  language  skills,”  (Hong,  2009).    

 

English  is  widely  spoken  in  India  and  is  the  common  language  for  education  and  business.    

English  competency  is  commonly  cited  as  a  benefit  in  marketing  to  attract  outsourcing  to  India  

(e.g.  Machrotech,  2009).    English  competence  in  India,  versus  deficiency  in  China,  is  cited  as  the  

primary  reason  that  India  will  maintain  its  rank  as  the  top  services  outsource  destination  (GSLI,  

2009).    Anecdotal  evidence  from  interviewing  company  recruiters  in  China  says  that  language  

deficiency  is  the  most  pressing  issue  in  China,  versus  “the  overall  quality  of  the  education  

system  in  India”  (Farrell  et  al,  2008,  p31).    Is  it  really  that  important?      

 

Possibly  it  is;  possibly  not.    It  has  not  been  measured  in  relation  to  other  skills,  so  we  do  not  

know  exactly  how  much  it  matters  to  high-­‐tech  recruiters  and  whether  its  desirability  varies  per  

sector  or  level  of  technical  competence  required.    We  also  do  not  know  what  role  it  might  play,  

if  any,  in  innovation  in  China.    There  is  no  doubt  that  English  competency  has  fuelled  India’s  

success  in  outsourcing.    However,  Ireland’s  fall  from  one  of  the  most  desirable  offshore  

locations  in  servicing,  to  one  of  the  last  five  in  the  top  fifty  in  2009  (GSLI)  suggests  English  

language  ability  alone  is  not  enough  to  influence  companies’  offshore  location  decisions.      

 

Until  there  is  further  research  to  measure  the  relative  importance  of  different  skills,  policy  

makers  will  not  know  which  to  prioritise  to  increase  technological  competence.      

Page 40: Eleanor Awbery White MSc thesis LSE 2009

  40  

Formal  and  informal  learning  

The  fact  that  China  has  a  greater  proportion  of  formally  qualified  high-­‐tech  graduates  than  India,  

but  less  success  in  global  offshore  recruitment  is  sometimes  accounted  for  by  suggestions  that  

Chinese  technical  qualifications  are  ‘lower  quality’  (Bulkeley,  2007).    Given  well-­‐established  

connections  with  universities  internationally  (OECD,  2007),  the  availability  of  international  

curricula,  the  high-­‐level  of  technical  and  scientific  publishing  (GSLI,  2009)  this  seems  improbable.    

This  thesis  suggests  a  gap  between  informal  and  formal  learning  is  likely  –  but  to  understand  

causes,  we  need  to  research  skill  gaps  and  how  individuals  learn  to  bridge  them.  

 

Formal  education  can  spread  universal  technical  skills  but  informal  learning  is  culturally  specific.    

However,  assuming  that  the  distinction  between  formal  and  informal  learning  is  the  same  as  

that  between  technical  and  ‘soft’  skills  is  problematic.    Technical  skills  may  be  learned  through  

universal  processes,  but  using  technical  knowledge  creatively  is  particular.    Creative  technical  

ability  must  be  distinguished  from  the  acquisition  of  social,  management,  business  and  other  

skills  for  recruitment,  but  elements  of  both  are  only  acquired  experientially.            

 

Creative  application  required  for  innovation  is  most  likely  acquired  ‘on  the  job’  through  trial  and  

error  processes,  through  contact  with  successful  innovators  and  working  in  teams  that  inspire  

experiment.    How  creativity  is  learned  is  a  difficult  question  to  answer,  but  empirical  studies  of  

successful  and  unsuccessful  attempts  to  innovate  –  for  example,  of  learning  journeys  of  people  

who  make  successful  start-­‐ups  in  China  and  those  who  fail  –  will  go  some  way  towards  

understanding  this.    

 

We  need  more  evidence  for  how  the  Chinese  high-­‐tech  workforce  acquires  particular  skills  in  

using  technology  innovatively.    Ethnography  is  the  only  available  method  to  do  this.        

4.  ii The  way  forward  

An  ethnography  of  high-­‐tech  informal  learning  in  China  is  not  yet  established,  but  there  are  

studies  of  informal  learning  in  Chinese  societies,  and  of  high-­‐tech  workplaces  in  the  West  and  

the  East,  that  establish  methodological  precedent.    In  this  section  I  pose  some  questions  that  

Page 41: Eleanor Awbery White MSc thesis LSE 2009

  41  

might  be  asked  of  informal  high-­‐tech  learning  in  China,  and  cite  examples  of  ethnographers  who  

have  asked  similar  questions  in  different  contexts.      

 

What  values  are  most  influential  in  high-­‐tech  learning  environments  in  China?    Stafford  (1995,  

2008a  and  2008b)  studies  the  difference  between  explicit,  didactic  learning  and  informal,  

community  based  learning  in  identity  formation  in  Chinese  children.    His  approach  explains  the  

transmission  of  values  and  their  impact  on  learning;  for  example  he  shows  how  moral  values  of  

filial  piety  are  embedded  in  the  ways  that  children  learn  and  eventually  come  to  make  economic  

decisions.    

 

How  do  particular  cultural  manifestations  of  transmission,  continuity  and  change  meet,  or  

affect,  the  informal  transmission  of  technical  creativity?    There  is  a  contradiction  inherent  in  the  

business  environment  that  reflects  a  social  dialectic  of  continuity  and  displacement  (Lave  and  

Wenger,  1991;  Bourdieu,  1977).    But  high-­‐tech  learning  is,  by  definition,  the  introduction  of  the  

new  at  both  societal  and  individual  levels;  one  might  conceptualise  this  as  a  bias  towards  

continual  displacement  in  high-­‐tech  environments.    In  what  circumstances  is  technical  creativity  

supported,  hampered,  or  simply  missing?    How,  where  and  why  is  it  introduced  and  successfully  

embedded  in  learning  processes?  

 

How  does  the  confluence  of  social  and  working  roles  impact  high-­‐tech  learning  in  Chinese  

contexts?    Fuller  and  Narasimhan  (2006,  2007)  studied  the  impact  of  a  Science  and  Technology  

Industrial  Park  (STIP)  in  Chennai  on  changing  familial  roles,  in  particular  the  empowerment  of  

women  as  workers,  the  effect  of  profession  on  social  prestige  and  changing  power  relationships  

between  generations.    Their  study  gives  insight  into  the  nature  of  shifting  social  frameworks  in  

India  that  form  the  environment  in  which  high-­‐tech  learning  takes  place.    

 

What  are  the  power  relationships  encountered  in  learning  situations  and  the  channels  that  

afford  or  prevent  interchange  among  communities  of  practice?    Anthropologists  Lave  and  

Wenger  working  in  Silicon  Valley  in  the  1980s  developed  a  social-­‐practice  oriented  model,  

“Situated  Learning”  to  study  workplace  participation.    Their  method,  Legitimate  Peripheral  

Participation  (LPP),  avoids  assumptions  that  top-­‐down  knowledge  acquisition  is  embedded  in  

high-­‐tech  workplaces.    It  challenges  understanding  learning  as  either  the  cognitive  acquisition  of  

Page 42: Eleanor Awbery White MSc thesis LSE 2009

  42  

propositional  knowledge,  or  purely  behavioural  ‘learning  by  doing’  (Lave  and  Wenger,  1991),  by  

identifying  discrepancies  between  prescribed  learning  techniques  and  actual  practice.    

 

An  example  is  Orr’s  study  (Seely  Brown  and  Duguid,  2000)  of  Xerox  technicians.    Formal  

corporate  training  and  approved  procedures  were  mainly  useless  in  learning  to  diagnose  

problems  in  sophisticated  machinery.  Technicians  came  to  know  their  machines  “as  shepherds  

know  their  sheep,”  (ibid,  p1);  creative  solutions  to  problems  were  developed  through  

collaborative  improvisation,  and  transmitted  via  storytelling  around  the  coffee  machine.    

Individuals  earned  social  and  work  prestige  through  their  creativity  in  solving  the  hardest  

technical  problems.    

 

Zhou’s  (2008)  study  of  Zhonggwancun  (ZGC)  is  a  good  concrete  example  of  the  need  for  the  

ethnographic  research  I  propose.    He  suggests  ZGC  has  the  infrastructure  and  technical  expertise  

to  be  as  successful  as  Silicon  Valley,  and  then  analyzes  why  it  isn’t.    He  proposes  young  

enterprises’  “business  management  and  marketing  ability  lags  significantly  behind  their  R&D  

capacity”  (p89).    But  some  firms  have  successfully  overcome  these  obstacles.    An  ethnographer  

might  follow  several  indigenous  start-­‐ups  to  discover  what  informally  learned  skills  contribute  to  

success,  how  they  were  acquired,  and  which  obstacles  to  individuals’  learning  prevent  progress.    

Business  and  social  networks  in  ZGC,  established  routes  for  the  dissemination  of  best  practice,  

are  thriving  (p95).    Through  them,  ethnographic  case  studies  might  contribute  to  the  

development  of  a  globally  competitive  Chinese  centre  of  entrepreneurial  excellence.      

 

The  value  of  each  of  these  examples  is  their  demonstration  of  informal  learning  as  

environmentally  and  socially  particular.    This  thesis  has  proposed  that  understanding  the  

particular  circumstances  conducive  to  informal  learning  of  high-­‐tech  skills,  and  enabling  their  

cultural  spread,  is  the  missing  link  that  will  enable  China’s  high-­‐tech  workforce  to  reach  its  full  

potential  and  surpass  India  in  technical  innovation.          

 

 

 

 

 

Page 43: Eleanor Awbery White MSc thesis LSE 2009

  43  

Conclusion:  

This  thesis  assessed  China’s  technological  potential  compared  to  India.    It  found  that,  through  

the  combination  of  quantitative  relevant  graduate  statistics  and  policy  orientation,  China  is  

institutionally  better  positioned  to  compete  in  high-­‐tech  than  India,  but  under-­‐performing  in  the  

acquisition  of  informal  skills  for  high-­‐tech  development.    The  final  chapter  showed  how  

ethnography  can  help  China  reach  its  potential  and  surpass  India  in  the  global  market  for  high-­‐

tech  resources.  

 

For  the  most  part,  learning  high-­‐tech  skills  is  understood  as  individually  and  culturally  uniform,  

due  to  economic  modelling  developed  for  industrial  manufacturing  and  accumulation  of  

technological  know-­‐how  at  the  national  level.    But  regarding  high-­‐tech  skills  only  in  the  

aggregate  remains  problematic.    One  effect  is  that  the  relative  impact  of  different  types  of  skills  

has  not  been  measured.    Another  is  that  particularly  effective  informal  learning  is  not  

understood  and  propagated.    This  may  lead  to  loss  of  efficiency  in  learning  at  local  and  national  

levels.      

     

Ethnography  of  local  paths  of  informal  and  creative  high-­‐tech  learning  can  provide  the  missing  

link,  discovering  and  disseminating  local  stories  of  practice  that  are  conducive,  or  obstacles  to  

innovation  in  China.  

 

       

   

       

Page 44: Eleanor Awbery White MSc thesis LSE 2009

  44  

Data  sources  for  graduate  statistics  

China  data      For  2003  doctorate  and  masters  awards  and  all  awards  2004  to  2007  the  China  Statistical  Yearbook  was  used:      China  Statistical  Yearbook,  2008,  Tables:    20-­‐9,  Number  of  postgraduate  students  by  field  of  study,  2007,  p781  20-­‐12,  Number  of  students  in  adult  institutions  of  higher  education  by  field  of  study,  2007,  p783  20-­‐14,  Number  of  students  enrolled  in  Internet  based  courses  by  field  of  study,  2007,  (engineering)  p784  20-­‐16,  Students  in  secondary  vocational  schools  by  field  of  study,  2007  (IT  graduates,  with  certificate  of  professional  competence),  p785  

   

China  Statistical  Yearbook,  2007,  Tables:  21-­‐9,  Number  of  postgraduate  students  by  field  of  study,  2006,  p791  21-­‐12,  Number  of  students  in  adult  institutions  of  higher  education  by  field  of  study,  2006,  p793  21-­‐14,  Number  of  students  enrolled  in  Internet  based  courses  by  field  of  study,  2006,  (engineering)  p794  21-­‐16,  Students  in  secondary  vocational  schools  by  field  of  study,  2006  (IT  graduates,  with  certificate  of  professional  competence),  p795      China  Statistical  Yearbook,  2006,  Tables:  21-­‐9,  Number  of  postgraduate  students  by  field  of  study,  2005,  p802  21-­‐12,  Number  of  students  in  adult  institutions  of  higher  education  by  field  of  study,  2005,  p804  21-­‐14,  Number  of  students  enrolled  in  Internet  based  courses  by  field  of  study,  2005,  (engineering),  p805  21-­‐16,  Students  in  secondary  vocational  schools  by  field  of  study,  2005  (IT  graduates,  with  certificate  of  professional  competence),  p806      China  Statistical  Yearbook,  2005,  Tables:  21-­‐9,  Number  of  postgraduate  students  by  field  of  study,  2004,  p694  21-­‐12,  Number  of  students  in  adult  institutions  of  higher  education  by  field  of  study,  2004,  p696  21-­‐14,  Number  of  students  enrolled  in  Internet  based  courses  by  field  of  study,  2004,  (engineering),  p697  21-­‐16,  Students  in  secondary  vocational  schools  by  field  of  study,  2004  (IT  graduates,  with  certificate  of  professional  competence),  p698    

Page 45: Eleanor Awbery White MSc thesis LSE 2009

  45  

 China  Statistical  Yearbook,  2004,  Tables:  21-­‐9,  Graduates  of  institutions  of  higher  education  by  field  of  study,  p782    Chinese  data  for  2001  to  2002,  and  2003  diplomas  and  bachelors  awards  relied  on  secondary  source,  Gereffi  and  Wadhwa  2004.          

India  data      PhDs  2001  to  2002:  Chatterjee  and  Moulik,  2006.    PhDs  2003  and  2004:  Gereffi  and  Wadhwa  2005  (Sourced  through  NASSCOM  and  AICTE)    PhDs  2007:  Department  of  Science  and  Technology,  Ministry  of  Science  and  Technology,  Govt  of  India,  R&D  stats  at  a  glance.  October  2008      Masters  degrees,  2004  to  2006:    Statistical  Abstract,  India,  2007:  31.4:  Number  of  scholars  by  courses  and  stages  in  recognized  institutions,  p572  –  573    

 Statistical  Abstract,  India,  2005  &  2006:    33.4:  Number  of  scholars  by  courses  and  stages  in  recognized  institutions,  p480  –  481  

 Masters  2001  to  2004  and  bachelors  degrees  2003  and  2004:  Gereffi  and  Wadhwa,  2005  (sourced  through  All  India  Council  for  Technical  Education  (AICTE))    

   Bachelors,  2001  and  2002:    All  India  Council  for  Technical  Education  Annual  Report  for  2001  –  2002:  p15  to  17.  All  India  Council  for  Technical  Education  Annual  Report  for  2002  –  2003:  p16  to  18.      Bachelors  2003  and  2004:      Gereffi  and  Wadhwa,  2005  (sourced  from  India’s  National  Association  of  Software  and  Service  Companies  (NASSCOM)  and  from  Department  of  Education  tables).  NASSCOM  statistics  are  compiled  from  several  sources,  private  and  public.    The  most  heavily  relied  on  are  The  Institute  of  Applied  Manpower  Research  and  the  Ministry  of  Human  Resources.    They  also  use  IndiaStat  for  private  consultancy.    

Page 46: Eleanor Awbery White MSc thesis LSE 2009

  46  

     Masters  and  bachelors  2007:  Taken  from  Indiastat  enrolment  figures  for  2007,  less  average  drop  out,  cited  by  percentage  in  Gereffi  and  Wadhwa  2008.      http://www.indiastat.com/education/6370/enrolmentinhighereducationclassesabovexii/366801/enrolmentforbachelordegree.d.d.sc.d.phil.inindia/449448/stats.aspx      Population  data  is  taken  from  World  Bank  development  indicators  for  China:  http://web.worldbank.org/WBSITE/EXTERNAL/COUNTRIES/EASTASIAPACIFICEXT/CHINAEXTN/0,,contentMDK:20601872~menuPK:318976~pagePK:141137~piPK:141127~theSitePK:318950,00.html    and  for  India:  http://ddp-­‐ext.worldbank.org/ext/DDPQQ/report.do?method=showReport        

Page 47: Eleanor Awbery White MSc thesis LSE 2009

  47  

Bibliography  

 Abramovitz,  M.  1986:  “Catching  up,  forging  ahead  and  falling  behind,”  Journal  of  Economic  History,  Vol.  46:2,  pp.  385  -­‐  406.      Adshead,  S.  1997:  Material  culture  in  Europe  and  China:  1400  to  1800,  the  rise  of  consumerism.    Basingstoke:  Macmillan.          Ahuja,  S.  2000:  “Information  technology  in  India;  the  shift  in  paradigm”  Institute  for  Integrated  Learning  in  Management,  New  Delhi.      Aldrich,  H.  E,  Birley,  S,  Dubini,  P,.Greve,  A,  Johannisson,  B,  Reese,  P.  R,  &  Sakano,  T.  1991:  The  generic  entrepreneur?  Insights  from  a  multinational  research  project,  University  of  North  Carolina  at  Chapel  Hill.    Arrow,  K.  1962:  “The  economic  implications  of  learning  by  doing”,  The  Review  of  economic  studies,  29:3,  pp.  155  –  173.    Ball,  R.E.  1957:  “The  impact  of  technology  on  economic  growth”  American  Journal  of  Economics  and  Sociology.    April,  16:3,  pp.  281  -­‐  290.      Becker,  H.  1972:  “A  school  is  a  lousy  place  to  learn  anything  in.”  American  Behavioural  Scientist,  16:  p85  -­‐  105    Bennett,  G.A.  1976:  Yundong:  mass  campaigns  in  Chinese  communist  leadership.  (China  Research  Monograph,  no.  12)  California:  Institute  of  East  Asian  Studies    Bhagowati,  G.  2005:  “Facing  the  challenges  of  labour  shortage  and  rising  wages,”  Outsourcing  Journal,  January  15th.        Bialik,  C.  2005:  “Sounding  the  alarm  with  a  fuzzy  stat,”  The  Wall  Street  Journal,  October  27th.      Bourdieu,  P.  1977:  Outline  of  a  Theory  of  Practice.  Cambridge:  Cambridge  University  Press.      Bramall,  C.  2006:  The  industrialisation  of  rural  China.  Oxford:  Oxford  University  Press.    Bulkeley,  D.  2007:  “Engineers  produced  in  India  or  China?    It’s  the  Quality,  Stupid!”  Electronics,  Design  and  Strategy  News,  August    Chandran,  R.  2009:  “India  becomes  R&D  hot  spot  as  high-­‐tech  firms  cut  costs.”  Reuters,  July.    

Page 48: Eleanor Awbery White MSc thesis LSE 2009

  48  

Chang,  H.J.  2002:  Kicking  away  the  ladder:  development  strategy  in  historical  perspective.    London:  Anthem  Press.      China  Statistical  Yearbooks,  2004  -­‐  2008:  Beijing:  China  Statistical  Press.          Circular  of  the  Ministry  of  Science  and  Technology  on  disseminating  the  announcement  of  import  taxation  policy  of  encouraging  the  popularization  of  science,  2007:    Government  of  China.  http://www.asianlii.org/cn/legis/cen/laws/cotmosatodtaoitpoetpos1434/    Cohen,  W.M  and  Levinthal,  D.A,  1989:  “Innovation  and  learning:  the  two  faces  of  R&D,”  The  Economic  Journal,  99,  September,  pp.  569  -­‐  596    Colvin,  G.  2005:  “America  isn’t  ready  [here’s  what  to  do  about  it]  in  the  relentless,  global,  tech-­‐driven,  cost-­‐cutting  struggle  for  business,”  Fortune,  July.        Dalton,  G.  1961:  “Economic  theory  and  primitive  society.”  American  Anthropologist,  63:1,    pp1-­‐25    De  Soto,  H.  2000:  The  Mystery  of  Capital.    Bantam  Press:  London.          Desai,  M.  2007:  “Why  is  India  a  democracy?”  from  Desai,  M  and  Ahsan,  A.  Divided  by  Democracy.    New  Delhi:  Roli  Books,  pp.  13  -­‐  74.    Economist  Intelligence  Unit  (EIU),  2004:    “Harnessing  Innovation  –  R&D  in  a  global  growth  economy,”  White  paper,  May.    EIU:  London.      The  Economist,  2009:  “The  more  the  merrier:  a  special  report  on  entrepreneurship,”  March  12th.      Farrell,  D.  Laboissiere,  M.  Pascal  R.  Rosenfeld  J.  Segundo,  C.  Sturze  S  and  Umezawa  F.    2008:  “The  emerging  global  labour  market.”  Parts  I,  II  and  III,  a  McKinsey  Global  Institute  Report.        Form,  W.  and  Bae,  K.H.  1988:  “Convergence  theory  and  the  Korean  connection,”  Social  Forces,  March,  66:3,  pp.  618  -­‐  644.    Fuller,  C.J.  and  Narasimhan,  H.  2006:  “Engineering  Colleges,  ‘Exposure’  and  Information  Technology    -­‐  professionals  in  Tamil  Nadu”  Economic  and  Political  Weekly,  XLI:3,  January  21st.      Fuller,  C.J.  and  Narasimhan,  H.  2007:  “Information  Technology  Professional  and  the  New-­‐Rich  Middle  Class  in  Chennai  (Madras),  Modern  Asian  Studies,  41:1  pp.  121  -­‐  150.    GSLI,  2009:  Global  Services  Location  Index,  A.T.  Kearney.    http://www.atkearney.com/images/global/articles/global-­‐services-­‐locations-­‐index-­‐rankings-­‐2009.jpg    Gao,  S.J.  2005:  “Building  good  institutions  for  China’s  technological  progress  and  high-­‐tech  industries  development”  Development  Research  Centre  of  China  State  Council.      

Page 49: Eleanor Awbery White MSc thesis LSE 2009

  49  

Gaukroger,  S.  2006:  The  emergence  of  a  scientific  culture:  science  and  the  shaping  of  modernity,  1210  to  1685.    Oxford:  Clarendon.        Gereffi,  G  and  Wadhwa  V.    2005:  “Framing  the  engineering  outsourcing  debate:  placing  the  United  States  on  a  level  playing  field  with  China  and  India,”  Duke  School  of  Engineering.      Gereffi,  G,  Wadhwa  V,  Rissing  B,  and  Ong  R.  2008:  “Getting  the  numbers  right:  international  engineering  education  in  the  United  States,  China  and  India.”  Journal  of  Engineering  Education,    January.    Geer,  B  (ed.)  1972:  Learning  to  work.    California:  Sage  Publications.    Giddens,  A.  1979:  Central  problems  in  social  theory:  Action,  structure  and  contradiction  in  social  analysis.    Berkely:  University  of  California  Press.      Giddens,  A.  1991:  Modernity  and  self-­‐identity:  self  and  society  in  the  late  modern  age.  Cambridge:  Polity  Press.    Gladney,  Dru  C.  1993:  “Hui  Urban  entrepreneurialism  in  Beijing:  State  policy,  ethnoreligious  identity  and  the  Chinese  city,”  in  Urban  Anthropology  in  China,  Guldin  &  Southall  (eds),  Brill:  UCLA.    Government  of  India,  Human  Resource  Development,  Department  of  Higher  Education,  Annual  Reports.      http://www.education.nic.in/secondary.htm    Goyal,  S.  1996:  “The  political  economy  of  India’s  economic  reforms.”  Centre  for  development  and  the  environment,  University  of  Oslo,  Norway,  and  the  Institute  for  studies  in  industrial  development,  New  Delhi.      Graham,  P.  2006:  “A  student’s  guide  to  start-­‐ups,”  from  a  talk  given  at  MIT,  October.        http://paulgraham.com/mit.html    Graham,  P.  2008:  “After  Credentials,”  December.  http://paulgraham.com/credentials.html    Greenspan,  A.  2008:  “China  vs  America?  Learning  Strategies  in  the  21st  Century”  The  Globalist,    August  25.        Grubler,  A.  1998:  Technology  and  global  change.    Cambridge:  Cambridge  University  Press    Gupta,  AK  and  Wang,  H.  2009:  “The  odds  favour  business  schools  in  China  and  India.”  Business  Week,  May  8th.    Hall,  P.  and  Soskice,  D.  (eds.)  2001:  Varieties  of  Capitalism:  the  Institutional  Foundations  of  Comparative  Advantage.    Oxford:  Oxford  University  Press.      Hong,  H.  2009:  “Where’s  the  best  place  to  offshore.    China  or  India?”  Longcircle  Engineering  Services,  www.longcircle.com    

Page 50: Eleanor Awbery White MSc thesis LSE 2009

  50  

ICMR,  Asia.  2005:  “India  and  China;  threat  to  the  US  economy,”  Caselet  number:  CLIBE002    Khan,  M.  and  Jomo,  K.S.  (eds).  2000:  Rents,  rent-­‐seeking  and  economic  development:  theory  and  evidence  in  Asia.  Cambridge  University  Press:  Cambridge      Kim,  L  and  Nelson,  R.  2000:  Technology,  learning  and  innovation.  Cambridge:  Cambridge  University  Press    Kopp,  A.  2008:  “Trade  Costs  and  Business  Environment:  a  Focus  on  Africa,”  a  World  Development  Report,  World  Bank:  Department  for  Energy,  Transport  and  Water.        Kowalenko,  K.  2004:  “IEL  contributes  to  China’s  high-­‐tech  success”  Institute  of  Electircal  and  electronics  engineers  (IEEE).    January  7th.      Kuhn,  T.S.  1996  (1962):  The  Structure  of  Scientific  Revolutions,  University  of  Chicago  Press    Lave,  J  and  Wenger,  E.  (eds)  1991:  Situated  learning,  legitimate  peripheral  participation.  Cambridge:  Cambridge  University  Press.    Law  of  the  People’s  Republic  of  China  on  Science  and  Technology  Progress,  1993:  http://www.ccchina.gov.cn/en/NewsInfo.asp?NewsId=5386    Machrotech:  an  offshore  outsourcing  company  matching  companies  with  service  providers  in  India.    2009:    http://www.machrotech.com/ContentPages/offshore_software_development_india    Martin,  R  and  Sunley,  P.  1998:  “Slow  convergence?  The  New  Endogenous  Growth  Theory  and  regional  development.”  Economic  Geography,  74:3,  July,  pp.  201  -­‐  227.    Mavrotas,  G.  and  Shorrocks,  A.  (eds.)  2007:  Advancing  Development,  New  York:  Palgrave  Macmillan.    Mitra,  R.M.  2007:  “India’s  emergence  as  a  global  R&D  centre.”  Swedish  institute  for  growth  policy  studies  (ITPS).    Ostersund:  Lenanders  Grafiska,  26690.      Mokyr,  J.  1990:  The  Lever  of  Riches:  Technical  Creativity  and  Economic  Progress.  Oxford:  Oxford  University  Press    Mokyr,  J.  1995:  Gifts  of  Athena,  Historical  origins  of  the  knowledge  economy.  Princeton,  N.J:  Princeton  University  Press.    Mong,  A.  May  2009:  “China’s  graduates  face  grim  job  prospects”  NBC  News  International.      National  Science  Board,  US.  2006:    Chapter  3,  “Science  and  engineering  labour  force.”    Arlington:  National  Science  Board.  http://www.nsf.gov/statistics/seind06/c3/c3s1.htm#c3s116    North,  D.C.  1990:  Institutions,  institutional  change  and  economic  performance.    Cambridge:  Cambridge  University  Press.    

Page 51: Eleanor Awbery White MSc thesis LSE 2009

  51  

 OECD  Review  of  Innovation  Policy,  2007:  China  Synthesis  Report,  Beijing  Conference  Version.    OECD  Publishing  in  collaboration  with  the  Ministry  of  Science  and  Technology  (MOST),  China,  August.    Oxfeld,  E.  1992:  “Individualism,  Holism,  and  the  Market  Mentality:  Notes  on  the  Recollections  of  a  Chinese  Entrepreneur.”  Cultural  Anthropology,  7:3,  pp.  267-­‐300    Padma,  T.V.  2006:  “India  lagging  in  science  and  technology,”  Science  and  Development  Network,  August  29th.  http://www.scidev.net/en/news/india-­‐lagging-­‐in-­‐science-­‐and-­‐technology-­‐says-­‐offi.html    Pavitt,  K.    1973:  “Technology,  international  competition  and  economic  growth:  some  lessons  and  perspectives,”  World  Politics,  25:2,  January,  pp.  183  -­‐  285.        Plattner,  S.  1989:  Economic  Anthropology,  Stanford  University  Press.        Polanyi,  K.  1968:  “The  economy  as  instituted  process,”  in  E.E.  Leclair  &  H.K.  Schneider  (eds),  Economic  anthropology,  pp.  122  -­‐  42    Raghavan,  P.  2006:  “India  has  the  brains,  but  where’s  the  beef?”  Stanford  University  consultant  professor,  op-­‐ed  for  Forbes.com,  July.    http://www.forbes.com/2007/08/05/india-­‐higher-­‐education-­‐oped-­‐cx_prg_0813education.html    Rodrik,  D.  1998:  “Globalisation,  social  conflict  and  economic  growth,”  The  World  Economy,  21:2,  March.    Rongping,  M.  2003:  “Development  of  science  and  technology  policy  in  China.”  Institute  of  policy  and  management:  Chinese  Academy  of  Sciences  (CAS).      Ross,  A.  2006:  Fast  Boat  to  China,  New  York:  Pantheon  Books    Science  and  technology  policy  2003:  Ministry  of  Science  and  Technology,  Government  of  India.  http://www.dst.gov.in/stsysindia/stp2003.htm#c3    Scientific  Policy  Resolution  1958:  Ministry  of  Science  and  Technology,  Government  of  India.  http://www.dst.gov.in/stsysindia/spr1958.htm    Seyfarth,  R.M.  and  Cheney,  D.L.  2002:  “What  are  big  brains  for?”  Procedings  of  the  National  Academy  of  Sciences,  US,  99:7,  April  2nd.        Seely  Brown,  J.  and  Duguid,  P.  2000:  “Balancing  Act:  How  to  Capture  Knowledge  without  killing  it,”  Harvard  Business  Review,  May  –  June.        Seely  Brown,  J.  and  Gray,  ES.  October  2007:  “The  People  are  the  company;  tech  reps  at  Xerox,”  Fast  Company,  Issue  01.      

Page 52: Eleanor Awbery White MSc thesis LSE 2009

  52  

Skinner,  R.J.  1976:  “Technological  determinism:  a  critique  of  convergence  theory,”  Comparative  Studies  in  Society  and  History,  18:1,  January,  pp.  2  -­‐  27.        Solow,  R.  1997:  Learning  from  ‘Learning  by  doing,’  California:  Stanford  University  Press.    Sridhar,  V.  and  Seetharam  Sridhar,  K.  June  2009:  “India  must  learn  from  China”  Business  Standard,  and  Rediff  Business  News.        Stafford,  C.  1995:  Roads  of  Chinese  Childhood:  Learning  and  Identification  in  Anang,  Cambridge:  Cambridge  University  Press    Stafford,  C.  2008a:  Logic  and  emotion  in  Chinese  economic  life.  (Unpublished.)    Stafford,  C.  2008b:  Anthropological  and  macroeconomic  perspectives  on  learning  and  economy  in  Taiwan.  (Unpublished.)      Stewart,  A.  1991:  A  prospectus  on  the  anthropology  of  entrepreneurship  Baylor  University:    ET  &  P    Stout,  D.K.  1980:  “The  impact  of  technology  on  economic  growth  in  the  1980s,”  Daedalus,  109:1,  Modern  technology:  problem  or  opportunity?    Winter,  pp.  159  -­‐  167.    Suchman,  L.  1996:  “Constituting  Shared  Workspaces.”  In  Y.  Engeström  and  D.  Middleton  (Eds.)  Cognition  and  Communication  at  Work,  New  York:  Cambridge  University  Press,  pp.  35  -­‐  60.    Taylor,  M.Z.  2004:  “Empirical  Evidence  against  Variety  of  Capitalism’s  Theory  of  Technological  Innovation,”  International  Organization,  58:3,  summer,  pp.  601  -­‐  631.        Technology  Contract  Law  of  the  People’s  Republic  of  China,  1987:  http://sanfrancisco.china-­‐consulate.org/eng/kj/wjfg/t43950.htm    Technology  Policy  Statement,  1983:  Department  of  Science  and  Technology,  Government  of  India.  http://www.dst.gov.in/stsysindia/sps1983.htm    Upadhya,  C  and  AR  Vasavi.  2008:  In  an  outpost  of  the  global  economy:  Work  and  workers  in  India’s  Information  Technology  Industry.      Varghese,  G.    2006:    “Declining  trends  in  science  education  and  research  in  Indian  universities”    (unpublished:  Mahatma  Gandhi  University.)    Western  Morning  News,  The  Plymouth  (UK)  2008:  “Threat  to  society  comes  from  within,”  May  20th.      Williams,  M.  2009:  “Bill  Gates  urges  India  to  move  from  low-­‐cost  to  R&D,”  Reuters,  July  24th.  http://in.reuters.com/article/technologyNews/idINIndia-­‐41294620090724    Woodfield,  R:  2000:  Women,  work  and  computing.  Cambridge:  Cambridge  University  Press    

Page 53: Eleanor Awbery White MSc thesis LSE 2009

  53  

Yates,  C  and  Sclater,  S.D.  2000:  “Culture,  psychology  and  transitional  space,”  Chapter  9  in  Culture  in  Psychology,  Corinne  Squire,  (ed.)    Yong,  S:  2008:  “Favoring  an  economic  and  legal  environment  for  innovation  in  China,”  press  release  for  the  Ministry  of  Science  and  Technology  of  the  People’s  Republic  of  China.  http://168.160.11.102/eng/pressroom/200706/t20070613_50402.htm    Yusuf,  S.  and  Nabeshima,  K.  (eds.)  2007:  How  Universities  Promote  Economic  Growth,  Washington:  The  World  Bank.        Zhong,  X  and  Yang,  X.    2007:    “Science  and  technology  policy  reform  and  its  impact  on  China’s  national  innovation  system.”  Science  Direct,  August,  pp.  317  -­‐  325.    Zhou,  Y.  2008:  The  Inside  Story  of  China’s  High-­‐tech  Industry;  Making  Silicon  Valley  in  Beijing,  Maryland:  Rowman  and  Littlefield.