elastic conducting polymer composite nanofibers milroy ca 1, ellison c 1, schmidt ce 1,2 1 dept. of...

25
Elastic conducting polymer composite nanofibers Milroy CA 1 , Ellison C 1 , Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical Engineering, UT Austin

Upload: nathaniel-cole

Post on 18-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Elastic conducting polymer composite nanofibers

Milroy CA1, Ellison C1, Schmidt CE1,2 1Dept. of Chemical Engineering, UT Austin

2Dept. of Biomedical Engineering, UT Austin

Page 3: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Tissue regeneration

• Nanofibers enhance biomaterial interface:

– Mechanical :

– Chemical:

– Electrical:

pyrrole, pTS, FeCl3

pyrrole , pyrrole-COOH,

pTS, FeCl3

COOH

COOH

COOH

EDC, NHS

NGF

PLGA PPyPLGA PPy(COOH)PLGA NGF-PPyPLGA

NH

O

NH

O

NH

O

Page 4: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Conducting polymerInsulators: <10-8 S/cmSemiconductors: 10-8 – 103 S/cmConductors: >103 S/cmPolypyrrole: 40-200 S/cm S = Siemens (inverse ohms)

Skotheim TA Handbookof Conducting Polym. (1998)

HN -e

HN

NH

HN *

*

X-

X = anion,(e.g. Cl-, ClO4-, etc)

Electroconductive

Biocompatible in vivo

Capable of delivering active compounds

Page 5: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Conductive nanofibers

Lee, Schmidt (Py-PLGA); Liu, Wallace (Py-SIBS);

Martin (PEDOT-PLGA); Srivastava, Thorsen (Py-PVP)

PLGA nanofibers (electrospun by Dr Aaron Goldstein at Virginia Tech)

HN -e

HN

NH

HN *

*

X-PPy polymerization

Conductive

Nano-fibrous PPy-coated PLGA nanofibers

PLGA: poly(lactic acid-co-glycolic acid)

Page 6: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Conductive elastomer

Polypyrrole (PPy) Polyurethane (PU)

Carbothane® TPU PC-3585A (Lubrizol)

Page 7: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Synthesis of PPyPU

Dissolve PU in chloroform

(CHCl3)

add pyrrole, surfactant

(SDS)

30 minutes stir time

add aqueous initiator (FeCl3) dropwise via

syringe

3 hours of vigorous

stirring

Precipitate product

(pure ethanol)

• Films• Foams• FIBERS

Broda, Lee. JBMR-A, 2011.

Page 8: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Emulsion polymerizationPyrrole

Fe3+ Fe2+

Polypyrrole

- --

--- Micelle

HN

HN

NH

HN*

n

X-

-

-

--

-

monomer

polymer

Page 9: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Methods

Electrical conductivity Mechanical properties• ASTM 412D (tensile

testing of elastomers)• INSTRON™ 3345• 10N, 50N loadcell• rectangular strips• vice grips• 5 mm/min

Rs = R*W/D

W

D

Electrospinning parameters:• raw material: 5:1 (PU:Py) dissolve to 8 wt% PyPU in CHCl3

• configuration: 10 cm collection distance, 12 kV voltage, 3 mL/hr flow rate

Page 10: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Nanofiber dimensions

PPyPU composite fibers:0.771 µm (mean)0.372 µm (std. dev)

Polyurethane fibers: 2.407 µm (mean) 1.097 µm (std. dev)

2 µm 2 µm

2 µm 2 µm

Page 11: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Elastic PPyPU nanofibers

Young’s Modulus: ~ 0.616 Mpa

Load at maximum tensile strain: ~ 0.76 N

Tensile strain (mm/mm)

Tens

ile s

tres

s (M

pa)

light

peel

Page 12: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Conductive PPyPU nanofibersRs values

PPyPU fibers:

Front:38.24 kΩ/sq(δ = 24.57)

Back:29.96 kΩ/sq(δ = 44.73)

Ppy-PLGA:

64 kΩ/sq(δ = 44.73)

2 µm

2µm

Page 13: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

PPy nanoparticles

80 keV, carbon formvar slot grid (imaged by Dwight Romanowicz)

Page 14: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Future research

• Gordon Wallace collaboration (Wollongong)

1. Commercial electrospinner

2. Controlled polymerization, Py-functionalized CNT

3. Probe sonication, self-assembly

• Additional PU formulations to tune mechanical properties

Page 15: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Acknowledgements

Dr. Dwight Romanovicz(UT Austin)

Dr. John Hardy(UT Austin)Ben Harrison(Wake Forest)

Willson lab(UT Austin)

Ellison lab(UT Austin)

Page 16: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Questions?

Page 17: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Supplemental slides

Page 18: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Conductive nanofibers

2 µm2 µm200 nm

Page 19: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Conductive nanofibers

2 µm2 µm

Page 20: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Rayleigh Instability (revisited)

Governing Equations:• Conservation of Mass (Continuity)• Conservation of Momentum

(Navier-Stokes)

Consider a sinusoidal perturbation to an axisymmetric cylindrical jet:

k : wavenumber ( ) ω : growth rate of perturbation ω > 0 instability grows

ω < 0 instability decaysω = 0 standing wave

Dispersion Relationship

Hohman 01

ω

Page 21: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Electrospinning Jet Stability

Governing Equations:

R = R(z)

• Jet modeled as a perturbation from a cylinder with dR/dz <<1

• “Leaky Dielectric” Model• Sufficiently Dielectric to

maintain a field tangential to fluid surface

• Poorly conductive, free charge only at surface

• Conservation of Mass • Conservation of Charge

• Momentum Balance (Navier Stokes)

• Effective Electric Field at centerline of jet

Hohman, 2001

Page 22: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Linear Stability Analysis of JetDispersion Relation:• Apply similar perturbations

• Equation is cubic, thus three branches

• Two destabilizing branches:• Rayleigh mode – is

suppressed as electric field is increased

• Conducting mode – is enhanced as electric field is increased.

• Destabilizing if Re ω > 0

Dispersion relations when > 0

Hohman 01

Page 23: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Methods (fiber optimization) Parameter Setpoints____ solvent type CHCl3, THF, HFIP polymer wt.% 8wt%, 10wt%, 12wt% E-field strength 12 kV, 15 kV polymer flow rate 3 mL/hr, 5 mL/hr collection distance 8 cm, 10 cm

** Normal spinning time: 30 minutes

Page 24: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

SEM from Xia 04

Methods (electrospinning)

Taylor Cone

Stable Jet

Bending Instability

Diagram adapted from Bhardwaj 2010

Page 25: Elastic conducting polymer composite nanofibers Milroy CA 1, Ellison C 1, Schmidt CE 1,2 1 Dept. of Chemical Engineering, UT Austin 2 Dept. of Biomedical

Thermogravimetric Analysis

Polyurethane Polypyrrole - polyurethane composite(5:1 ratio, PU:Py)