ekofisk revisited g. a. jones 1, d. g. raymer 2, k. chambers 1 and j-m. kendall 1 1. university of...

29
Ekofisk Revisited G. A. Jones 1 , D. G. Raymer 2 , K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir monitoring seismic experiment Hypocentre determination using grid search methods Monte Carlo hypocentre error analysis Multiplet relocation Fault reactivation and production induced deformation

Upload: lillian-weaver

Post on 28-Mar-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Ekofisk Revisited

G. A. Jones 1, D. G. Raymer 2, K. Chambers1 and J-M. Kendall 1

1. University of Bristol; 2. Schlumberger Cambridge Research

• Reservoir monitoring seismic experiment• Hypocentre determination using grid search methods• Monte Carlo hypocentre error analysis• Multiplet relocation• Fault reactivation and production induced deformation

Page 2: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Challenges in microseismicityAnisotropy and shear

wave splitting

Focal mechanism

Fault/fracture identification

Repeating earthquakes

Page 3: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

The Ekofisk reservoir

• Located in the central Graben of the Norwegian North Sea

• Field discovered in 1969 and was the first economically viable chalk reservoir

• Sea-floor subsidence ~30cm/year

• The challenge: to monitor subsidence, compaction and its effects on reservoir permeability

Page 4: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

The Ekofisk microseismic experiment

• One of the 1st microseismic monitoring experiments experiments in oil industry

• Vertical downhole geophone array of 6, 3 component receivers spaced 20 meters

• Geophones located in producing part of reservoir

• 4490 events triggered over the 18 day experiment in April 1997

Page 5: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Signal characteristics

Page 6: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Event evolution with time

Page 7: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Event evolution with time

Page 8: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Velocity model construction

Page 9: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Arrival time picking and polarisationsV

eloc

ity (

µm

)

P S

Page 10: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Polarisation analysis – refining position and azimuth

Jones et al. in press

Page 11: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

• Use the array-velocity model symmetry to reduce problem from 3D to 2D

• Simplification of the problem allows for a dense grid search procedure to be implemented

Page 12: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Which hypocentre method?

• Which minimisation function to use?– P- and S-times

individually? – Differential S-P?– All possible combinations

of differential arrival times?

• Or use EDT surfaces?

Page 13: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

EDT tolerance selection

Page 14: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Arrival Time Monte Carlo TestS-P

All pairs

EDT

Page 15: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Velocity Model Monte Carlo TestS-P

All pairs

EDT

Page 16: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Summary of Monte Carlo Analysis

∆rtt(m) ∆ztt(m) ∆rvel(m) ∆zvel(m)

S-P 0.13 ± 9.6 -1.5 ± 17.5 1.5 ± 13.5 0.7 ± 29.6

All pairs 0.04 ± 1.3 -0.04 ± 2.7 2.0 ± 5.2 1.8 ± 6.7

EDT -0.06 ± 14.6 -0.4 ± 7.8 0.4 ± 22.5 1.3 ± 12.0

Page 17: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Hypocentre Locations

Page 18: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Multiplet Identification

Page 19: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Arrival time re-pickingBefore After

Page 20: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Multiplet polarisation analysis

• Modified polarisation analysis of de Meersman et al. 2006

Page 21: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir
Page 22: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Location of 5 largest multiplet clusters identified with cluster analysis

Page 23: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 1

Page 24: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 2

Page 25: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 3

Page 26: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 4

Page 27: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Cluster 5

Page 28: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Results• Different mechanism of

failure seen based on waveform characteristics and location.

• Mechanisms include stress triggering - cluster 2, pore pressure diffusion cluster 4, and fault re-activation - clusters 1,3 and 5.

• Clusters dip away from monitoring well

Page 29: Ekofisk Revisited G. A. Jones 1, D. G. Raymer 2, K. Chambers 1 and J-M. Kendall 1 1. University of Bristol; 2. Schlumberger Cambridge Research Reservoir

Conclusions

• Use of all available arrival time pairs result in most robust hypocentres at Ekofisk

• Errors in velocity model x2 those of arrival times

• Numerous possible mechanisms of microseismic activity present at Ekofisk:– Fault re-activation– Pore pressure diffusion– Stress triggering – Production induced activity around wells