e:iliyas mirza (mathematics wo › oldques › xi_g6.pdf05. a particle has an initial velocity of 4i...

11
Head uut algavat kooliaastat! Seni oli vaba turu tingimustes või- malik valida mitme jäätmevedaja vahel ja linnal polnud mõju hinnaku- jundusele ega ülevaadet jäätmeveoga hõlmatusest. Nüüd on linn leidnud hankega parima pakkuja ja ettevõt- lusamet sõlminud Tallinna Jäätmete Taaskasutuskeskusega (TJT) lepingu viieks aastaks. Sellega koos on keh- testatud hinnad, mida saab muuta vaid omavalitsuse nõusolekul. TJT juht Kertu Tiitso rõhutab eesmärki hakata 1. oktoobrist osuta- ma nüüdisaegset teenust. Ennekõike tähendab see võimalust koguda ja ära anda oma jäätmed liikide kaupa ning tänu sellele hoida keskkonda. Ettevõte on hankinud uued autod, et liigiti sorteeritud prügi oleks muga- vam ära vedada. „Kuna meie ettevõte on ka jäät- mete käitleja, siis on prügi sorteeri- mine selle tekkekohas ka meie huvi- des. Esmalt on see aga kasulik igale elanikule ja ettevõtjale, sest liigiti kogutud prügi äraandmine on sood- sam. Teiseks sorteerib jäätmeid kogu arenenud maailm ja Euroopa rohe- liseks pealinnaks pürgides ei saa ka Tallinnas teisiti,” märgib Tiitso. Kolm prügikonteinerit TJT pakub rentida või osta vastava kleebisega tähistatud konteinereid kolme liiki prügi jaoks: biolaguneva- tele jäätmetele, paberile-kartongile ja segaolmejäätmetele, lisaks klaasi- jäätmetele. Eraldi saab tellida suur- jäätmete ja puulehtede äravedu. Kui konteinerisse on pandud mitteso- bivaid jäätmeid, siis jäetakse mahu- ti tühjendamata ja antakse kliendile sellest järgmisel päeval teada, maksta tuleb aga siiski pool hinnast. Viima- ne aeg on hakata prügi sorteerimist harjutama, sest Tiitso sõnul näeb uus jäätmeseaduse eelnõu ette hiljemalt 31. detsembriks 2023 korraldada igal kinnistul biojäätmete eraldi kogumi- ne ja/või kompostimine. Kui TJT teenindab juba prae- guseks Kesklinnas suuremat osa klientidest (ca 2500), siis vanalinn lisandub sügisest uue piirkonnana. Sestap tuleb kõigil vanalinna elanikel (korteriühistutel) ja ettevõtjatel sõl- mida septembri jooksul uus jäätme- veoleping. Ülejäänud Kesklinna kliendid, kel juba on leping TJT-ga, ei pea uut sõlmima, aga soovi korral saab seda teha. Senised linnaosa antud vabas- tused ja konteinerite ühiskasutused alates 1. oktoobrist enam ei kehti, vaja on esitada uus taotlus Kesklinna valitsusele. Lisainfot jagab AS Tallinna Jäät- mete Taaskasutuskeskus kodulehel www.tjt.ee, telefonil 609 6410 või e-postiga [email protected]. Korraldatud jäätmevedu hõlmab sügisest kogu linnaosa Alates oktoobrist läheb terve Kesklinn korraldatud jäätmeveole. Elanikud, korteriühistud ja ettevõtjad, kel tekivad jäätmed, peavad septembri jooksul sõlmima jäätmeveolepingu AS-iga Tallinna Jäätmete Taaskasutuskeskus. www.tallinn.ee/kesklinn 19. august 2020 Kesklinna Sõnumite järgmine number ilmub 16. septembril. Väljaandja: Tallinna Kesklinna Valitsus tel: 645 7229 e-post: [email protected] Trükki toimetanud: OÜ Rkontor TALLINNA KESKLINNAS ELAB 63 387 INIMEST. Viimase kahe kuu jooksul suure- nes Kesklinna elanike arv 154 võrra, sellest juulis 93. Aasta algusest on lisandunud Kesklinna 684 elanikku – linna- osadest enim. Tallinna rahvaarv tervikuna on tänavu kasvanud 1562 võrra ja augusti alguses elas pealinnas kokku 445 494 inimest. Allikas: rahvastikuregister, 1. august 2020 Jäätmeveolepingut saab sõlmida alates 1. septembrist. Selleks on kolm võimalust: 4 iseteeninduskeskkonnas https://tallinnavedu.ee/calculator/ 4 TJT kontoris Suur-Sõjamäe 29a 4 Kesklinna valitsuses Nunne 18 esmaspäeviti kl 14–17 Loe lk 2 Roosikrantsi tänavast Loe lk 5 Keskkonna heaks Loe lk 7 Ajaloost Loe lk 11 First time in English! Muinastuli Inglirannas 29. augustil, muinastulede öö ha- kul, süütame Inglirannas Russalka mälestusmärgi kõrval (Reidi tee promenaadi ääres) muinastule otse meres. Suveõhtu õdusat õhustikku loob akustilise kontserdiga Vaiko Eplik. Üritus algab päikeseloojangul kell 20. Võtke piknikukorviga head-pa- remat kaasa ja tulge nautima imelist vaadet muinastuledele ja õhtusele linnale!

Upload: others

Post on 02-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • ...01...Class : XI/G6 1

    Space for Rough Work

    PHYSICS

    funsZ'k1. Instructions regarding filling of OMR Sheet are

    mentioned on the OMR Sheet Only.2. The duration of the exam is 2 Hours.3. The Question Booklet consists of 100 questions,

    each of them is of 4 Marks. The maximum Marksare 400.

    4. Subject wise division of 100 Questions are asfollows : Physics50, Chemistry50.

    5. Candidates will be awarded 4 Marks for indicatedcorrect response of each question.

    6. One mark will be deducted for incorrect responseof each question.

    7. Space for rough work is also provided in theQuestion Booklet.

    1.

    2.3. 100 4

    400

    4. 100 50, 50.

    5. 4

    6. 1

    7.

    01. Two boats start from mid point of river in case (i) and inmid point of pond of still water in case (ii).If all velocity shown in figure are relative to water thenmark the correct option about time taken to reach thenearest bank.

    ��

    ��

    A C

    RiverFlow

    Case (i) Case (ii)

    Still water

    dd

    B D

    v v

    v v

    (1) Boat A takes least time(2) Boat B takes maximum time(3) All the four boats A,B,C and D take same time(4) Time of reaching bank can not be compared.

    01. (i) (ii)

    ��

    ��

    A C

    RiverFlow

    Case (i) Case (ii)

    Still water

    dd

    B D

    v v

    v v

    (1) A (2) B (3) A,B,C D (4)

  • ...01...Class : XI/G6 2

    Space for Rough Work

    02. A shot is fired at an angle � to the horizontal such that it

    strikes the hill while moving horizontally Find initial angle

    of projection �.

    � 37°

    (1) tan � = 5

    2(2) tan � =

    8

    3

    (3) tan � = 2

    3(4) None of these

    03. A particle moves in x-y coordinate system such that its

    position coordinates are gives as ĵtsin4îtsin2r ���

    ,

    The path of the particle is:

    (1) straight line (2) parabola

    (3) circular (4) ellipse

    04. Can an object maintain uniform velocity when its

    acceleration is not zero?

    (1) no, impossible

    (2) yes, but only if the acceleration is in the direction of

    the velocity

    (3) yes, but only if the acceleration is opposite to the

    direction of the velocity

    (4) yes, if the acceleration is perpendicular to the

    velocity.

    02. �

    � 37°

    (1) tan � = 5

    2(2) tan � =

    8

    3

    (3) tan � = 2

    3(4)

    03. x-y

    ĵtsin4îtsin2r ���

    ,

    (1) (2)

    (3) (4)

    04.

    (1)

    (2)

    (3)

    (4)

  • ...01...Class : XI/G6 3

    Space for Rough Work

    05. A particle has an initial velocity of ˆ ˆ4i 4jm / s� and an

    acceleration of ˆ0.4 i� m/s2 , at what time will its

    speed be 5 m/s?

    (1) 2.5 sec (2) 17.5 sec

    (3) 27 sec (4) 8.5 sec

    06. A particle is projected with a velocity u, at an angle

    �, with the horizontal. At what time its vertical

    component of velocity becomes half of its net speed

    at the highest point?

    (1) g2

    u

    (2) g2

    u(sin� – cos�)

    (3) g2

    u(2 cos� – sin�)

    (4) g2

    u(2sin� – cos�)

    07. If b,a��

    and c�

    are unit vectors such that

    0cba����

    ��� , then the angle between a�

    and b�

    is

    (1) ��� (2) ���(3) 90° (4) ����

    08. Sum of two unit vectors is a unit vector. What ismagnitude of their vector difference

    (1) 2 (2) 3

    (3) 2

    1(4) 5

    05. t = 0 ˆ ˆ4i 4jm / s�

    ˆ0.4 i� m/s2 5 m/s

    (1) 2.5 sec (2) 17.5 sec

    (3) 27 sec (4) 8.5 sec

    06. �� u

    (1) g2

    u

    (2) g2

    u(sin� – cos�)

    (3) g2

    u(2 cos� – sin�)

    (4) g2

    u(2sin� – cos�)

    07. b,a��

    c�

    0cba����

    ��� a�

    b�

    (1) ��� (2) ���

    (3) 90° (4) ����

    08.

    (1) 2 (2) 3

    (3) 2

    1(4) 5

  • ...01...Class : XI/G6 4

    Space for Rough Work

    09. A plumber steps out of his truck, walks 60 m east and

    35 m south and then takes an elevator, 12 m down to the

    basement of a building where a bad leak is occurring.

    Assume x axis is east ; y-axis is north and z-axis is up,

    displacement of plumber is expressed conventionally as

    (1) k̂12ĵ35î60 �� (2) k̂12ĵ35î60 ���(3) k̂12ĵ35î60 ��� (4) k̂12ĵ35î60 ��

    10. A force k̂ĵ2î5F ����

    displaces a body from a point

    of coordinate (1, 1, 1) to another point of coordinates

    (2, 0, 3). Calculate the work done by the force.

    (1) 2 (2) 3

    (3) 4 (4) 5

    11. The hour hand of a clock is 6 cm long. The magnitude of

    the displacement of the tip of hour hand between

    1:00 pm to 5:00 pm. is :

    (1) 6 cm (2) 36 cm

    (3) 12 cm (4) 33 cm

    12. A particle moves along a straight line and its position as

    function of time is given by x = t3 – 3t2 + 3t + 3 then

    particle

    (1) stops at t = 1s and reverses its direction of motion

    (2) stops at t = 1s and continues further without change

    of direction

    (3) stops at t = 2s and reverses its direction of motion

    (4) stops at t = 2s and continues further without change

    of direction

    09. 60 m 35 m

    12 m

    x- y-

    z-

    (1) k̂12ĵ35î60 �� (2) k̂12ĵ35î60 ���(3) k̂12ĵ35î60 ��� (4) k̂12ĵ35î60 ��

    10. k̂ĵ2î5F ����

    (1, 1, 1) (2, 0, 3)

    (1) 2 (2) 3

    (3) 4 (4) 5

    11. 6 cm 1:00 pm 5:00 pm

    (1) 6 cm (2) 36 cm

    (3) 12 cm (4) 33 cm

    12.

    x = t3 – 3t2 + 3t + 3

    (1) t = 1s

    (2) t = 1s

    (3) t = 2s

    (4) t = 2s

  • ...01...Class : XI/G6 5

    Space for Rough Work

    13. A body is released from the top of a tower of height h .It takes t sec to reach the ground. Where will be the ball

    after time t

    2 sec

    (1) At h

    2from the ground

    (2) At h

    4 from the ground

    (3) Depends upon mass and volume of the body

    (4) At 3h

    4 from the ground

    14. A ball hits a wall and rebounds with the same speed, as

    diagramed below. The changes in the components of the

    momentum of the ball are:

    y

    ��

    x

    (1) �px > 0, �py > 0

    (2) �px = 0, �py > 0

    (3) �px < 0, �py > 0

    (4) �px = 0, �py < 0

    13. ht

    t

    2

    (1)h

    2

    (2)h

    4

    (3)

    (4)3h

    4

    14.

    y

    ��

    x

    (1) �px > 0, �py > 0

    (2) �px = 0, �py > 0

    (3) �px < 0, �py > 0

    (4) �px = 0, �py < 0

  • ...01...Class : XI/G6 6

    Space for Rough Work

    15. An air plane is observed to move from A to B from

    ground, as shown in figure. The successive positions are

    shown at regular time intervals during which airplane does

    not change its orientation. Which of the following arrows

    can not represent direction of blowing wind–

    N

    E

    S

    W A

    B

    (1) (2)

    (3) (4) None of these

    16. Figure shows four possible trajectories of a kicked

    football. Ignoring air resistance, rank the curves

    according to the initial horizontal velocity component the

    highest first–

    1 2 3 4x

    y

    O(1) 1, 2, 3, 4 (2) 1, 3, 2, 4

    (3) 3, 4, 1, 2 (4) 4, 3, 2, 1

    15. A B

    N

    E

    S

    W A

    B

    (1) (2)

    (3) (4)

    16.

    1 2 3 4x

    y

    O

    (1) 1, 2, 3, 4 (2) 1, 3, 2, 4

    (3) 3, 4, 1, 2 (4) 4, 3, 2, 1

  • ...01...Class : XI/G6 7

    Space for Rough Work

    17. A frictionless wire AB is fixed on a sphere of radius R.

    A very small spherical ball slips on this wire. The time

    taken by this ball to slip from A to B is

    B

    A

    O

    R

    C

    (1)�cos

    2

    g

    gR(2) g

    gR�cos

    .2

    (3) gR

    2 (4) �cosggR

    18. The distance traveled by an object is given by

    x = at + )ac(

    bt2

    � where t is time and a, b, c are constants.

    The dimensions of b and c respectively are–

    (1) [LT–2], [LT–1] (2) [L2T–3], [LT–1]

    (3) [LT–1], [L2T–1] (4) [LT–1], [LT–2]

    19. Which of the following is not one of the seven

    fundamental SI units–

    (1) Henry (2) Ampere

    (3) Candela (4) Mole

    20. The dimensions of G (Gravitational constant)are–

    (1) [ML3T–2] (2) [M–1LT–2]

    (3) [M–1L3T–2] (4) [M–1L3T–1 ]

    17. R A B

    A B

    B

    A

    O

    R

    C

    (1)�cos

    2

    g

    gR(2) g

    gR�cos

    .2

    (3) gR

    2 (4) �cosggR

    18. x = at + )ac(

    bt2

    t a, b, c b c

    (1) [LT–2], [LT–1] (2) [L2T–3], [LT–1]

    (3) [LT–1], [L2T–1] (4) [LT–1], [LT–2]

    19. SI

    (1) (2)

    (3) (4)

    20. G ( )

    (1) [ML3T–2] (2) [M–1LT–2]

    (3) [M–1L3T–2] (4) [M–1L3T–1 ]

  • ...01...Class : XI/G6 8

    Space for Rough Work

    21. A body starts from origin and moves along x axis such that

    at any instant velocity is vt = 4t3 – 2t where t is in second

    and vt is in ms–1. The acceleration of the particle when

    it is 2 m from the origin is–

    (1) 28 ms–2 (2) 22 ms–2

    (3) 12 ms–2 (4) 10 ms–2

    22. A body moves with velocity v = ( �n x) m/s where x is itsposition. The net force acting on body is zero at–

    (1) x = 0 m (2) x = e2 m

    (3) x = e m (4) x = 1 m

    23. Force acting on a body of mass 1 kg is related to itsposition x as F = x3 – 3x N. It is at rest at x = 1. Itsvelocity at x = 3 can be–

    (1) 4 m/s (2) 3 m/s

    (3) 2 m/s (4) 5 m/s

    24. Two vectors b&a��

    are varying with time as�

    = 3t � + 4t2 � & �

    = (6t + 3) � + (7 sint) � . Find themagnitude of the rate of change of

    � �a b. at

    t = �/2 second–

    (1) 46� + 9 (2) 44� + 9

    (3) 40� + 9 (4) 38� + 9

    25. A force of 40N is responsible for the motion of a body

    governed by the equation s=2t+2t2 where s is in metres

    and t in sec. What is the momentum of the body at

    t = 2 second–

    (1) 400 kgm/s (2) 200 kgm/s

    (3) 300 kgm/s (4) 100 kgm/s

    21. x

    vt = 4t3 – 2t

    t vt ms–1

    2 m

    (1) 28 ms–2 (2) 22 ms–2

    (3) 12 ms–2 (4) 10 ms–2

    22. v = ( �n x) m/s x

    (1) x = 0 m (2) x = e2 m

    (3) x = e m (4) x = 1 m

    23.x F = x3 – 3x N x = 1

    x = 3

    (1) 4 m/s (2) 3 m/s

    (3) 2 m/s (4) 5 m/s

    24. ba��k;

    �= 3t � + 4t2 �

    � = (6t + 3) � + (7 sint) � ,

    t = �/2 sec� �a b.

    (1) 46� + 9 (2) 44� + 9

    (3) 40� + 9 (4) 38� + 9

    25. 40N

    s=2t+2t2 s t t = 2

    (1) 400 kgm/s (2) 200 kgm/s

    (3) 300 kgm/s (4) 100 kgm/s

  • ...01...Class : XI/G6 9

    Space for Rough Work

    26. The co-ordinates of a moving particle at a time t, are given

    by, x = 5 sin 10 t, y = 5 cos 10 t . The speed of the particle at

    time t is–

    (1) 25 (2) 50

    (3) 10 (4) 50 227. A particle is thrown upwards from ground. It

    experiences a constant resistance force which can

    produce retardation 2 m/s2. The ratio of time of ascent

    to the time of descent is– [g = 10 m/s2]

    (1) 1 : 1 (2) 3

    2

    (3) 3

    2(4)

    2

    3

    28. The drawing shows velocity (v) versus time (t) graphs

    for two cyclists moving along the same straight segment

    of a highway from the same point. The second cyclist

    starts moving at t = 3 min.At what time do the two

    cyclists meet–

    (1) 4 min (2) 6 min

    (3) 8 min (4)12 min

    26. t x = 5 sin

    10 t, y = 5 cos 10 t t

    (1) 25 (2) 50

    (3) 10 (4) 50 227.

    2 m/s2

    [g = 10 m/s2]

    (1) 1 : 1 (2) 3

    2

    (3) 3

    2(4)

    2

    3

    28.

    (v) (t)

    t = 3 min.

    (1) 4 min (2) 6 min

    (3) 8 min (4)12 min

  • ...01...Class : XI/G6 10

    Space for Rough Work

    29. A boat is able to move through still water at 20 m/s.

    It makes a round trip to a town 3.0 km upstream. If

    the river flows at 5 m/s, the time required for this

    round trip is–

    (1) 120 s (2) 150 s

    (3) 200 s (4) 320 s

    30. To man running at a speed of 5 m/sec,the rain drops

    appear to be falling at an angle of 45° from the vertical.

    If the rain drops are actually falling vertically

    downwards, then velocity in m/sec is–

    (1) 5 (2) 5 3

    (3) 5 2 (4) 4

    31. Initially car A is 10.5 m ahead of car B. Both start moving

    at time t = 0 in the same direction along a straight line.

    The velocity time graph of two cars is shown in figure.

    The time when the car B will catch the car A, will be–

    (1) t = 21 sec (2) t = 52 sec

    (3) 20 sec (4) None

    29. 20 m/s

    3.0 km

    5 m/s

    (1) 120 s (2) 150 s

    (3) 200 s (4) 320 s

    30. 5 m/sec

    45°

    (1) 5 (2) 5 3

    (3) 5 2 (4) 4

    31. A, B 10.5 m t = 0

    B, A

    (1) t = 21 sec (2) t = 52 sec

    (3) 20 sec (4)

  • ...01...Class : XI/G6 11

    Space for Rough Work

    32. A particle of mass 1 kg is acted upon by a force 'F' which

    varies as shown in the figure. If initial velocity of the

    particle is 10 ms–1, the maximum velocity attained by the

    particle during the period is–

    (1) 210 ms–1

    (2) 110 ms–1

    (3) 100 ms–1

    (4) 90 ms–1

    33. If the distance 's' travelled by a body in time 't' is given

    by s = a

    t + bt2 then the acceleration equals–

    (1) 2

    3

    a

    t + 2b (2)

    22

    s

    t

    (3) 2b – 2

    3

    a

    t(4)

    s

    t 2

    34. Momentum of a body moving in a straight line is

    p = ( t2 + 2t + 1) kg m/s. Force acting on a body at

    t = 2 second.

    (1) 6 N (2) 8 N

    (3) 4 N (4) 2 N

    32. 1 kg 'F'

    10 ms–1

    (1) 210 ms–1

    (2) 110 ms–1

    (3) 100 ms–1

    (4) 90 ms–1

    33. 't'

    s = a

    t + bt2

    (1) 2

    3

    a

    t + 2b (2)

    22

    s

    t

    (3) 2b – 2

    3

    a

    t(4)

    s

    t 2

    34. p = ( t2 + 2t + 1) kg

    m/s. t = 2

    (1) 6 N (2) 8 N

    (3) 4 N (4) 2 N

  • ...01...Class : XI/G6 12

    Space for Rough Work

    35. Which of the following pairs have same dimensions–

    (1) work and angular momentum

    (2) light year and wavelength

    (3) stress and work

    (4) energy and modulus of elasticity

    36. A gas bubble oscillates with a time period T proportional

    to Pa db Ec where P is pressure, d is the density and E is

    the energy. The values of a, b & c are–

    (1) a = 2

    3 , b = �

    3

    1 , c = –

    2

    1

    (2) a = � 6

    5 , b =

    3

    1 , c =

    2

    1

    (3) a = � 6

    5, b =

    2

    1, c =

    3

    1

    (4) a = 2

    3, b = �

    3

    1, c =

    2

    1

    35.

    (1)

    (2)

    (3)

    (4)

    36. T

    Pa db Ec P = d =

    E = a, b, c

    (1) a = 2

    3 , b = �

    3

    1 , c = –

    2

    1

    (2) a = � 6

    5 , b =

    3

    1 , c =

    2

    1

    (3) a = � 6

    5, b =

    2

    1, c =

    3

    1

    (4) a = 2

    3, b = �

    3

    1, c =

    2

    1

  • ...01...Class : XI/G6 13

    Space for Rough Work

    37. Two similar cannon simultaneously fires two identical

    cannon balls at target 1 and 2 as shown in the figure. If

    the cannon balls have identical initial speeds, which of the

    following statements is true–

    (1) Target 2 is hit before target 1

    (2) Target 1 is hit before target 2

    (3) Both balls are hit at the same time

    (4) information is insufficient

    38. A stationary man observes that the rain strikes him at an

    angle 60° to the horizontal. When he begins to move with

    a velocity of 25 m/s then the drops appear to strike him

    at an angle of 30° from horizontal. the velocity of the rain

    drops is–

    (1) 25 m/s

    (2) 50 m/s

    (3) 12.5 m/s

    (4) 224 m/s

    37. (cannon)

    1 2

    (1) 2 1

    (2) 1 2

    (3)

    (4)

    38. 60°

    25 m/s

    30°

    (1) 25 m/s

    (2) 50 m/s

    (3) 12.5 m/s

    (4) 224 m/s

  • ...01...Class : XI/G6 14

    Space for Rough Work

    39. A man travelling in car with a maximum constant speedof 20 m/s watches the friend start off at a distance100 m ahead on a motor cycle with constant acceleration‘a’. The maximum value of ‘a’ for which the man in thecar can reach his friend is–

    av

    100 m(1) 2 m/s2 (2) 1 m/s2

    (3) 4 m/s2 (4) None of these

    40. A particle travels along a curved path between two pointsP and Q. P and Q are not shown in figure. Displacement

    of particle does not depend upon–

    (1) The location of P and Q

    (2) The length of line joining P and Q

    (3) The direction of Q from P

    (4) The choice of origin

    41. The direction of three forces 1N, 2N and 3N acting at apoint are parallel to the sides of an equilateral triangle

    taken in order. The magnitude of their resultant is–

    (1) 3 N (2) N2

    3

    (3) N2

    3(4) zero

    39. 20 m/s 100 m

    ‘a’ ‘a’

    av

    100 m(1) 2 m/s2 (2) 1 m/s2

    (3) 4 m/s2 (4)

    40. P Q P

    Q

    (1) P Q

    (2) P Q

    (3) P Q

    (4)

    41. 1N, 2N 3N

    (1) 3 N (2) N2

    3

    (3) N2

    3(4)

  • ...01...Class : XI/G6 15

    Space for Rough Work

    42. The following set represents magnitudes of three vectors.

    Which set of vectors can never give a zero vector on

    addition–

    (1) 3, 4, 5 (2) 2, 1, 3

    (3) 12, 10, 23 (4) 13, 5, 12

    43. A car is moving in east direction. It takes a right turn and

    moves along south direction without change in its speed.

    What is the direction of average acceleration of the car–

    (1) North east (2) South east

    (3) North west (4) South west

    44. The magnitudes of two forces 21 F&F��

    is 10 N and 8 N.

    The angle between them is 120°. The magnitude of their

    difference is–

    (1) N244 (2) N84

    (3) N164 (4) None of these

    45. î2BA ����

    and ĵ4BA ����

    then angle between

    BandA��

    is–

    (1) 127° (2) 143°

    (3) 53° (4) 37°

    46. The time dependence of a physical quantity p is given by

    p p e t� �( )� where � is constant and t is time. The constant �.

    (1) is dimensionless (2) has dimensions T–2

    (3) has dimensions T2 (4) has dimensions of p

    47. If y = 3x2 � 2x + 1, find the value of x for which dx

    dy = 0.

    (1) 1/3 (2) 1/4

    (3) 1/2 (4) None of these

    42.

    (1) 3, 4, 5 (2) 2, 1, 3

    (3) 12, 10, 23 (4) 13, 5, 12

    43. 90°

    (1) (2)

    (3) (4)

    44. 1F�

    2F�

    10 N 8 N

    120°

    (1) N244 (2) N84

    (3) N164 (4)

    45. î2BA ����

    ĵ4BA ����

    A�

    B�

    (1) 127° (2) 143°

    (3) 53° (4) 37°

    46. p

    p p e t� �( )� � t �.

    (1) (2) T–2

    (3) T2 (4) p

    47. y = 3x2 � 2x + 1, x dx

    dy = 0

    (1) 1/3 (2) 1/4

    (3) 1/2 (4)

  • ...01...Class : XI/G6 16

    Space for Rough Work

    48. A man moves in an open field such that after moving 10

    m in a straight line, he makes a sharp turn of 60° to his

    left. Find the total displacement of the man just after 6

    such turns–

    (1) 10 m (2) 20 m

    (3) 70 m (4) 30 m

    49. Two vectors B&A��

    have magnitudes 2 & 1

    respectively. If the angle between B&A��

    is 60°, then

    which of the following vectors may be equal to B2

    A ��� .

    A�

    B�

    (1) (2)

    (3) (4)

    50. A person pushes a box kept on a horizontal surface withforce of 100 N. In unit vector notation force F

    � can be

    expressed as–

    45°

    y

    xF

    (1) 100 )ĵî( � (2) 100 )ĵî( �

    (3) 250 )ĵî( � (4) 250 )ĵî( �

    48.

    10m 60°

    6

    (1) 10 m (2) 20 m

    (3) 70 m (4) 30 m

    49. A�

    B�

    A�

    B�

    60°

    B2

    A ���

    A�

    B�

    (1) (2)

    (3) (4)

    50. 100 N

    45°

    y

    xF

    (1) 100 )ĵî( � (2) 100 )ĵî( �

    (3) 250 )ĵî( � (4) 250 )ĵî( �

  • ...01...Class : XI/G6 17

    Space for Rough Work

    51. A photon of 300 nm is absorbed by a gas and then emitstwo photons. One photon has a wavelength 496 nm then

    the wavelength of second photon in nm :

    (1) 759 (2) 859

    (3) 959 (4) 659

    52. If the total energy of an electron in hydrogen like atomin an excited state is –3.4 eV, then the

    de-Broglie wavelength of the electron is :

    (1) 4.3

    150Å (2)

    8.6150

    Å

    (3)4.3

    150nm (4)

    8.6150

    nm

    53. An electron, a proton and an alpha particle have kinetic

    energies of 16E, 4E and E respectively. What is the

    quantitative order of their de-Broglie wavelengths?

    (1) �e > �

    p = �� (2) �p = �� = �e

    (3) �p > �

    e > �� (4)��e > �� > �p

    54. The radii of two of the first four Bohr’s orbits of the

    hydrogen atom are in the ratio 1 : 4 The energy

    difference between them may be :

    (1) Either 12.09 eV or 10.2 eV

    (2) Either 2.55 eV or 10.2 eV

    (3) Either 13.6 eV or 3.4 eV

    (4) Either 3.4 eV or 0.85 eV

    51. 300 nm

    496 nm

    nm

    (1) 759 (2) 859

    (3) 959 (4) 659

    52. –3.4 eV

    (1) 4.3

    150Å (2)

    8.6150

    Å

    (3)4.3

    150nm (4)

    8.6150

    nm

    53. �-

    16E, 4E E

    (1) �e > �

    p = �� (2) �p = �� = �e

    (3) �p > �

    e > �� (4)��e > �� > �p

    54.

    1 : 4

    (1) 12.09 eV 10.2 eV

    (2) 2.55 eV 10.2 eV

    (3) 13.6 eV 3.4 eV

    (4) 3.4 eV 0.85 eV

    CHEMISTRY

  • ...01...Class : XI/G6 18

    Space for Rough Work

    55. The potential energy of the electron present in the ground

    state of Be3+ ion is represented by:

    (1) re

    0

    2

    ��� (2) r

    e

    0���

    (3) 20

    2

    r

    e

    ��� (4) r

    e

    0

    2

    ���

    56. An ion Mna+ has the magnetic moment equal to 4.9 BM.

    The value of a is : (atomic no. of Mn = 25)

    (1) 3 (2) 4

    (3) 2 (4) 5

    57. �2zd orbital has :

    (1) Two lobes along z-axis and a ring along xy-plane

    (2) Two lobes along z-axis and two lobes along xy-plane

    (3) Two lobes along z-axis and a ring along yz-plane

    (4) Two lobes and a ring along z-axis

    58. Photon having wavelength 310 nm is used to break the

    bond of A2 molecule having bond energy

    288 kJ mol–1 then % of energy of photon converted to

    the K.E. is [hc = 12400 evÅ , 1 ev = 96 kJ/mol]

    [hc = 12400 evÅ , 1 ev = 96 kJ/mol]

    (1) 25 (2) 50

    (3) 75 (4) 80

    55. Be3+

    (1) re

    0

    2

    ��� (2) r

    e

    0���

    (3) 20

    2

    r

    e

    ��� (4) r

    e

    0

    2

    ���

    56. Mna+ 4.9 BM

    a : (Mn = 25)

    (1) 3 (2) 4

    (3) 2 (4) 5

    57. �2zd :

    (1) z- (lobes) xy-

    (ring)

    (2) z- (lobes) xy-

    (lobes)

    (3) z- (lobes) yz-

    (ring)

    (4) z- (ring) (lobes)

    58. 310 nm A2

    288 kJ mol–1

    % (K.E.)

    [hc = 12400 evÅ , 1 ev = 96 kJ/mol]

    (1) 25 (2) 50

    (3) 75 (4) 80

  • ...01...Class : XI/G6 19

    Space for Rough Work

    59. In Balmer series of lines of hydrogen spectrum, the first

    line from the red end corresponds to which one of the

    following inter-orbit jumps of the electron for Bohr orbits

    in an atom of hydrogen ?

    (1) 5 � 2 (2) 4 � 1

    (3) 2 � 5 (4) 3 ��2

    60. The uncertainty in position and velocity of the particle

    are 0.1 nm and 5.27×10–27 ms–1 respectively then the

    mass of the particle is : (h = 6.625 × 10–34Js)

    (1) 200 g (2) 300 g

    (3) 100 g (4) 10000 g

    61. The density of air is 0.001293 g/ml at S.T.P. Its vapour

    density will be :

    (1) 10 (2) 15

    (3) 1.44 (4) 14.4

    62. If 10 g of Ag reacts with 1 g of sulphur , the amount of

    Ag2S formed will be [Atomic weight of Ag = 108,

    S = 32] ?

    (1) 7.75 g (2) 0.775 g

    (3) 11 g (4) 10 g

    63. Which of the following statement is correct :

    (1) 1 mole of electrons has 1.6 × 10–19 C of charge.

    (2) 1 mole of electron weighs 0.54 mg

    (3) 1 mole of electrons weighs 5.4 mg

    (4) 1 mole of electrons weighs 0.54 kg

    59.

    (1) 5 � 2 (2) 4 � 1

    (3) 2 � 5 (4) 3 ��2

    60. 0.1 nm

    5.27×10–24 ms–1

    (h = 6.625 × 10–34Js)

    (1) 200 g (2) 300 g

    (3) 100 g (4) 10000 g

    61. S.T.P. 0.001293

    (1) 10 (2) 15

    (3) 1.44 (4) 14.4

    62. 10 g Ag, 1 g Ag2S

    [Ag = 108 , S = 32] ?

    (1) 7.75 g (2) 0.775 g

    (3) 11 g (4) 10 g

    63.

    (1) 1 1.6 × 10–19 C

    (2) 1 0.54 mg

    (3) 1 5.4 mg

    (4) 1 0.54 kg

  • ...01...Class : XI/G6 20

    Space for Rough Work

    64. When a mixture consisting of 10 moles of SO2 and 16

    moles of O2 were passed over a catalyst, 8 mole of SO

    3

    were fomed at equilibrium. The number of moles of SO2

    and O2 which did not enter into reaction were

    (1) 2 , 12 (2) 12 , 2

    (3) 3 , 10 (4) 10 , 3

    65. A solution containing 0.1 mol of a metal chloride MClx

    requires 500 ml of 0.8 M AgNO3 solution for complete

    reaction MClx + xAgNO

    3 � xAgCl + M(NO

    3)

    x. Then

    the value of x is

    (1) 1 (2) 2

    (3) 4 (4) 3

    66. The temperature at which molarity of pure water is equal

    to its molality is :

    (1) 273 K (2) 298 K

    (3) 277 K (4) None

    67. What is the molarity of H2SO

    4 solution that has a density

    1.84 gm/cc at 35ºC and contains 98% by weight-

    (1) 4.18 M (2) 8.14 M

    (3) 18.4 M (4) 18 M

    68. 5.85 g of NaCl is dissolved in 1 L of pure water. The

    number of ions in 1 mL of this solution is

    (1) 6.02 × 1019 (2) 1.2 × 1022

    (3) 1.2 × 1020 (4) 6.02 × 1020

    64. SO2 10 O

    2 16

    SO3 8

    SO2 O

    2

    (1) 2 , 12 (2) 12 , 2

    (3) 3 , 10 (4) 10 , 3

    65.

    MClx 0.1 0.8 M AgNO

    3 500

    ml MClx + xAgNO

    3 � xAgCl +

    M(NO3)

    x , x

    (1) 1 (2) 2

    (3) 4 (4) 3

    66.

    (1) 273 K (2) 298 K

    (3) 277 K (4)

    67. H2SO

    4 35ºC

    1.84 gm/cc 98%

    (1) 4.18 M (2) 8.14 M

    (3) 18.4 M (4) 18 M

    68. 1 L 5.85 g NaCl 1

    mL

    (1) 6.02 × 1019 (2) 1.2 × 1022

    (3) 1.2 × 1020 (4) 6.02 × 1020

  • ...01...Class : XI/G6 21

    Space for Rough Work

    69. How many gram ions of SO4–2 are present in 1 gram

    molecule of K2SO4. Al2(SO4)3. 24H2O :

    (1) 2 (2) 3

    (3) 1 (4) 4

    70. 100 gm impure CaCO3 on heating gives 5.6 lt. CO2 gas

    at STP. Find the percentage of calcium in the lime stone

    sample.

    [At. wt. : Ca = 40 ; C = 12 ; O = 16]

    (1) 10 (2) 20

    (3) 1 (4) 30

    71. 20 mL of H2O2 after acidification with dilute H2SO4

    required 30 mL of 12

    N KMnO4 for complete oxidation.

    The strength of H2O2 solution is : [Molar mass of H2O2

    = 34]

    (1) 2 g/L (2) 4 g/L

    (3) 8 g/L (4) 6 g/L

    72. 10 mL of 1 N HCl is mixed with 20 mL of 1 M H2SO

    4

    and 30 mL 1 M NaOH. The resultant solution has :

    (1) 20 meq of H+ ions

    (2) 20 meq of OH–

    (3) 0 meq of H+ or OH–

    (4) 30 milli moles of H+

    69. K2SO4. A 2(SO4)3. 24H2O 1

    SO4–2

    (1) 2 (2) 3

    (3) 1 (4) 4

    70. 100 CaCO3 5.6 L CO2 STP

    CaCO3 Ca

    [At. wt. : Ca = 40 ; C = 12 ; O = 16]

    (1) 10 (2) 20

    (3) 1 (4) 30

    71. 20 mL H2O2 H2SO4

    30 mL, 12

    N KMnO4

    H2O2 (H2O2

    = 34)

    (1) 2 g/L (2) 4 g/L

    (3) 8 g/L (4) 6 g/L

    72. 1 N HCl 10 mL; 1 M H2SO

    4 20 mL 1 M

    NaOH 30 mL

    (1) H+ 20 meq

    (2) OH– 20 meq

    (3) H+ OH– 0 meq

    (4) H+ 30

  • ...01...Class : XI/G6 22

    Space for Rough Work

    73. Which of the following statements are incorrect :

    (1) 0.2 moles of KMnO4 will oxidise one mole of ferrous

    ions to ferric ions in acidic medium.

    (2)1.5 moles of KMnO4 will oxidise 1 mole of ferrous

    oxalate in acidic medium.

    (3) 0.6 moles of KMnO4 will oxidise 1 mole of ferrous

    oxalate to one mole of ferric ion and carbon dioxide

    in acidic medium.

    (4) 1 mole of K2Cr

    2O

    7 will oxidise 2 moles of ferrous

    oxalate to ferric ions and carbon dioxide in acidic

    medium.

    74. Equivalent weight of chlorine molecule in the equation is

    3 Cl2 + 6 NaOH ��� 5 NaCl + NaClO

    3 + 3 H

    2O

    (1) 42.6 (2) 35.5

    (3) 59.1 (4) 71

    75. The valency factor of �2 when, (i) it is formed by the

    reaction of potassium iodide and potassium iodate in acid

    medium and (ii) when it reacts with hypo, are respectively

    :

    (1) 2, 2 (2) 35

    , 2

    (3) 53

    , 2 (4) 5, 2

    76. The number of moles of ferrous oxalate oxidised by onemole of KMnO

    4 in acidic medium is :

    (1) 25

    (2) 52

    (3) 53

    (4) 35

    73.

    (1) KMnO4 0.2

    (2) KMnO4 1.5 1

    (3) KMnO4 0.6 1

    (4) K2Cr

    2O

    7 1 2

    74. :

    3 Cl2 + 6 NaOH ��� 5 NaCl + NaClO

    3 + 3 H

    2O

    (1) 42.6 (2) 35.5

    (3) 59.1 (4) 71

    75. �2 (i)

    (ii)

    (1) 2, 2 (2) 35

    , 2

    (3) 53

    , 2 (4) 5, 2

    76. KMnO4

    (1) 25

    (2) 52

    (3) 53

    (4) 35

  • ...01...Class : XI/G6 23

    Space for Rough Work

    77. Consider the redox reaction 2S2O32– + �2 ��� S4O6

    2–

    + 2 �– :

    (1) S2O32– gets reduced to S4O6

    2–

    (2) S4O62– gets oxidised to S2O3

    2–

    (3) �2 gets reduced to �–

    (4) �2 gets oxidised to �–

    78. The element with atomic number Z = 118 will be :

    (1) noble gas

    (2) transition metal

    (3) alkali metal

    (4) alkanline earth metal

    79. M3+ has electronic configuration as [Ar] 3d10 4s2, hence

    it lies in :

    (1) s-block (2) p-block

    (3) d-block (4) f-block

    80. Which species has the maximum ionic radius:

    (1) Na+ (2) O2–

    (3) F– (4) Mg2+

    81. In which case bond length is shortened ?

    (1) When bond multiplicity increses between atoms.

    (2) When increase difference in electronegativities of

    atoms.

    (3) In both cases.

    (4) In none of the cases.

    77. 2S2O32– + �2

    ��� S4O62– + 2 �– :

    (1) S2O32– , S4O6

    2–

    (2) S4O62–, S2O3

    2–

    (3) �2 , �–

    (4) �2 , �–

    78. Z = 118 :

    (1)

    (2)

    (3)

    (4)

    79. M3+ [Ar] 3d10 4s2

    (1) s- (2) p-

    (3) d- (4) f-

    80.

    (1) Na+ (2) O2–

    (3) F– (4) Mg2+

    81.

    (1)

    (2)

    (3)

    (4)

  • ...01...Class : XI/G6 24

    Space for Rough Work

    82. Ionisation potential of Na would be numerically the same

    as :

    (1) electron affinity of Na+

    (2) electronegativity of Na+

    (3) electron affinity of He

    (4) ionisation potential of Mg

    83. Higher values of ionisation energies of the 5d-transition

    elements are consistent with the :

    (1) relative smaller effective nuclear charge

    (2) relative smaller size of their atoms

    (3) relative smaller penetration

    (4) all are correct

    84. Following are the values of the Electron gain enthalpy

    (in kJ mol–1) of the formation of O– and O2– from O :

    (1) –142, – 744 (2) –142, 744

    (3) 142, 744 (4) –142, – 142

    85. Which of the following compunds does not contain–1

    formal charge on any of O atom :

    (1) O3 (2) H3PO4

    (3) HNO3 (4) N2O5

    82. Na

    (1) Na+

    (2) Na+

    (3) He

    (4) Mg

    83. 5d-

    (1)

    (2)

    (3)

    (4)

    84. O O – O2–

    (kJ mol–1 )

    (1) –142, – 744 (2) –142, 744

    (3) 142, 744 (4) –142, – 142

    85. O –1

    (formal) :

    (1) O3 (2) H3PO4

    (3) HNO3 (4) N2O5

  • ...01...Class : XI/G6 25

    Space for Rough Work

    86. Which of the following compounds will have the largest

    lattice energy ?

    (1) Al2O

    3(2) CaO

    (3) LiBr (4) MgBr2

    87. CuI2 is unstable even at ordinary temperature because:

    (1) the Cu2+ ion with a comparatively small radius has a

    strong polarising power.

    (2) the Cu2+ ion with a 17 electron outer shell has weak

    polarising power.

    (3) the I– ion with a larger radius has a high polarisability.

    (4) both (1) and (3)

    88. Which of the statements is correct about SO2 ?

    (1) two �, two ��and no lone pair of electrons around

    central atom

    (2) two � and one���around central atom

    (3) two �, two � and one lone pair of electron around

    centeral atom

    (4) none of these

    89. The ion which is not tetrahedral in shape is :

    (1) BF4– (2) NH

    4+

    (3) XeO4

    (4) ICl4–

    90. The ONO angle is maximum in :

    (1) HNO3

    (2) NO2+

    (3) HNO2

    (4) NO2

    86.

    (1) Al2O

    3(2) CaO

    (3) LiBr (4) MgBr2

    87. CuI2

    (1) Cu2+

    (2) Cu2+, 17

    (3) I–

    (4) (1) (3)

    88. SO2

    (1) � ��

    (2) � 1 �

    (3) �, �

    (4)

    89.

    (1) BF4– (2) NH

    4+

    (3) XeO4

    (4) ICl4–

    90. ONO

    (1) HNO3

    (2) NO2+

    (3) HNO2

    (4) NO2

  • ...01...Class : XI/G6 26

    Space for Rough Work

    91. In XeF2(g)

    , XeF4(g)

    and XeF6(g)

    the number of lone pairs

    on Xe respectively are :

    (1) 2, 3, 1 (2) 1, 2, 3

    (3) 4, 1, 2 (4) 3, 2, 1

    92. The structure of F2SeO is analogous to :

    (1) SO3

    (2) ClO–3

    (3) XeO3

    (4) (2) and (3) both

    93. Which of the following statement is true for O2F

    2– ?

    (1) The electrons are located at the corners of a trigonal

    bipyramidal but one of the equatorial pairs is

    unshared.

    (2) It has sp3d hybridisation and is T–shaped.

    (3) Its structure is analogous to SF4.

    (4) (1) and (3) both

    94. In which of the following compounds B atoms are in

    sp2 and sp3 hybridisation states ?

    (1) Borax (2) Diborane

    (3) Borazole (4) All

    91. XeF2(g)

    , XeF4(g)

    XeF6(g)

    Xe

    (1) 2, 3, 1 (2) 1, 2, 3

    (3) 4, 1, 2 (4) 3, 2, 1

    92. F2SeO

    (1) SO3

    (2) ClO–3

    (3) XeO3

    (4) (2) (3)

    93. O2F

    2–

    (1)

    (2) sp3d T–

    (3) SF4

    (4) (1) (3)

    94. B sp2 sp3

    (1) (2)

    (3) (4)

  • ...01...Class : XI/G6 27

    Space for Rough Work

    95. Which of the following is a wrong order with respect to

    the property mentioned against each :

    (1) NO¯ > NO > NO + –bond length

    (2) H2 > H

    2+ > He

    2+ –bond energy

    (3) O22– > O

    2 > O

    22+ – magnetic moment

    (4) NO2+ > NO

    2 > NO

    2¯ –bond angle

    96. Which reaction involves a change in the electron–pair

    geometry for the under lined element ?

    (1) BF3 + F– ��� BF

    4–

    (2) NH3 + H+ ��� NH

    4+

    (3) 2 SO2 + O

    2 ��� 2 SO

    3

    (4) H2O + H+ ��� H

    3O+

    97. Which one (s) of the following structures cannot represent

    resonance forms for N2O

    (diamagnetic)?

    (A) (B)

    (C) (D)

    (E)

    (1) A and C (2) C , E and D

    (3) D and E (4) C and D.

    95.

    (1) NO¯ > NO > NO + –

    (2) H2 > H

    2+ > He

    2+ –

    (3) O22– > O

    2 > O

    22+ –

    (4) NO2+ > NO

    2 > NO

    2¯ –

    96.

    (1) BF3 + F– ��� BF

    4–

    (2) NH3 + H+ ��� NH

    4+

    (3) 2 SO2 + O

    2 ��� 2 SO

    3

    (4) H2O + H+ ��� H

    3O+

    97. N2O

    ( )

    (A) (B)

    (C) (D)

    (E)

    (1) A C (2) C , E D

    (3) D E (4) C D.

  • ...01...Class : XI/G6 28

    Space for Rough Work

    98. Which of the following statements are correct ?

    (I) structure is not allowed because octet

    around 'O' can not be expanded.

    (II) H2O

    2 is ionic compound

    (III) In B2 molecule, the highest occupied molecular

    orbital is � molecular orbital.

    (IV) The lp–bp repulsion is stronger than bp–bp repulsion.

    (1) (I) and (III) (2) (II) and (III)

    (3) (I) and (IV) (4) (III) and (IV)

    99. Among the following compounds, the correct order of

    the polarity of the bonds is :

    SbH3 , AsH

    3 , PH

    3 , NH

    3 .

    (1) SbH3 < AsH

    3 < PH

    3 < NH

    3

    (2) AsH3 < SbH

    3 = PH

    3 < NH

    3

    (3) PH3 < AsH

    3 < SbH

    3 < NH

    3

    (4) AsH3 < PH

    3 < SbH

    3 < NH

    3

    100. The high oxidising power of fluorine is due to :

    (1) High electron affinity

    (2) High ionisation energy

    (3) Both (1) and (2)

    (4) None of these

    98.

    (I) 'O'

    (II) H2O

    2

    (III) B2 �

    (IV) lp–bp bp–bp

    (1) (I) (III) (2) (II) (III)

    (3) (I) (IV) (4) (III) (IV)

    99.

    SbH3 , AsH

    3 , PH

    3 , NH

    3

    (1) SbH3 < AsH

    3 < PH

    3 < NH

    3

    (2) AsH3 < SbH

    3 = PH

    3 < NH

    3

    (3) PH3 < AsH

    3 < SbH

    3 < NH

    3

    (4) AsH3 < PH

    3 < SbH

    3 < NH

    3

    100.

    (1)

    (2)

    (3) (1) (2)

    (4)