eh l4 runoff and hydrograph analysis

23
LECTURE 6 RUNOFF AND HYDROGRAPH ANALYSIS

Upload: redz00

Post on 18-Jul-2016

41 views

Category:

Documents


3 download

DESCRIPTION

EH L4 Runoff and Hydrograph Analysis

TRANSCRIPT

Page 1: EH L4 Runoff and Hydrograph Analysis

LECTURE 6

RUNOFF AND HYDROGRAPH

ANALYSIS

Page 2: EH L4 Runoff and Hydrograph Analysis

At the end of the week, students should be able to:

draw the resultant hydrograph based on catchment characteristics and rainfall –runoff conditions;state and apply base flow separation techniques and estimate direct runoff values;derive Unit Hydrograph from historical data;change unit hydrograph time lag;derive Unit Hydrograph using synthetic methods.

[email protected]

Page 3: EH L4 Runoff and Hydrograph Analysis

Runoff and Surface RunoffRunoff (Discharge/Streamflow) includes all the water flowing in the stream channel at any given section.Consist of 3 constituents :

1. direct precipitation over surface of the stream – small portion of total flow where precipitation balances by evaporation and can be ignored.

2. surface runoff – true surface runoff and subsurface storm flow

3. groundwater inflow or base flow

RUNOFF = SURFACE RUNOFF + GROUNDWATER INFLOW

[email protected]

Page 4: EH L4 Runoff and Hydrograph Analysis

Hydrograph of Stream FlowGraphical representation of discharge flowing in a river at a given direction with passage of time.A plot between time (X-axis) and discharge (Y-axis)Represent discharge fluctuations in the river at a given site; indicates peak flow that governs the design of given hydraulic structure.Peak flow – maximum flow in the river due to any given storm.

[email protected]

Page 5: EH L4 Runoff and Hydrograph Analysis

4 types of hydrograph : a) annual hydrograph ; b) monthly hydrograph ; c) seasonal hydrograph d) flood hydrograph.

[email protected]

Page 6: EH L4 Runoff and Hydrograph Analysis

Runoff Characteristics of Streams

A. Perennial StreamsB. Intermittent StreamsC. Ephemeral Streams

[email protected]

Page 7: EH L4 Runoff and Hydrograph Analysis

Flood HydrographsRepresent the short-term runoff phenomenon where it is the response of a given catchment to a rainfall input.A typical single-peaked skew distribution of discharge.Consist 3 characteristic regions:

1. rising limb2. crest segment3. falling limb/recession limb (depletion

curve)

[email protected]

Page 8: EH L4 Runoff and Hydrograph Analysis

A. Shape of basinB. Size of basinC. Land use D. SlopeE. Drainage DensityF. Climatic Factors

Factors Affecting FloodHydrograph

[email protected]

Page 9: EH L4 Runoff and Hydrograph Analysis

Baseflow Separation

Establishing a relationship between surface-flow and effective rainfall.

Separation of quick-response flow (surface flow and subsurface flow) from slow response flow (base flow).

[email protected]

Page 10: EH L4 Runoff and Hydrograph Analysis

A. Method I-Straight-Line Method

Joining beginning of surface runoff, Point Ato a point on recession limb (end of direct runoff), Point B with a straight line. (Fig. 6.5, pg202)

Point A can be identified when sharp change of runoff rate at beginning of hydrograph while Point B can be determined from

daywhere A=drainage area in km2

2.083.0 AN

[email protected]

Page 11: EH L4 Runoff and Hydrograph Analysis

B. Method II

Extend base flow curve at beginning Point A till it intersects with ordinate drawn at the peak discharge at Point C. (Fig. 6.5, pg202)Connect Point AC and CB with a straight line that demarcate base flow and surface runoff.

[email protected]

Page 12: EH L4 Runoff and Hydrograph Analysis

C. Method III

Extend backward of base flow recession curve at Point F till it intersects the ordinate at point of inflection.

F with a straight line and Point F and A with an arbitrary smooth curve.

[email protected]

Page 13: EH L4 Runoff and Hydrograph Analysis

COMPUTING RUNOFF USING UNIT HYDRODGRAPH THEORY

A T-hour unit hydrograph is defined as the hydrograph of runoff produced by an intense excess rainfall of 1cm occurring uniformly over the entire drainage basin and at a uniform rate for the short specified duration of T-hour (unit duration).

[email protected]

Page 14: EH L4 Runoff and Hydrograph Analysis

There are 4 aspects of this definition that should be given special notice :

i. 1 cm depth of rainfall excess over basin area.

ii. Uniform spatial distribution of rainfall over the watershed.

iii. A rainfall excess rate that is constant with time

iv. Specific duration of rainfall excess.

[email protected]

Page 15: EH L4 Runoff and Hydrograph Analysis

Assumption in unit hydrograph :i. time invariance – runoff produced from a given

drainage basin due to a given effective rainfall shall always be the same irrespective of the time of its occurrence.

ii. Linear response-the runoff response of a drainage basin to the excess rainfall is assumed to be linear in which if an input x1(t) causes an output y1(t), and an input x2(t) causes an output y2(t), then an input x1(t) + x2(t) will cause an output y1(t) + y2(t).

[email protected]

Page 16: EH L4 Runoff and Hydrograph Analysis

Limitation of U.H. :i. excess rain only occurs uniformly over the

entire basinii. intensity should be constant during the

entire duration.iii. Unreliable for basins exceeding about 5000

km2 or less than 2km2.iv. Precipitation only considered from rainfallv. Catchment should not have unusual large

storages which will affect the linear relationship between storage and discharge.

vi. If precipitation is decidedly non-uniform, UH will not give good result.

[email protected]

Page 17: EH L4 Runoff and Hydrograph Analysis

S-Curve Hydrograph(Summation Curve Hydrograph)

Used for deriving unknown U.H. of desired unit duration. The duration of unknown hydrograph is either shorter or not an integral multiple of duration of known hydrograph.

S-curve is produced by continuous effective rainfall representing by a continuous rising curve, which ultimately attains a constant value when equilibrium discharge reached (entire catchment starts contributing to runoff).

[email protected]

Page 18: EH L4 Runoff and Hydrograph Analysis

When using S-curve for determining U.H. of unknown duration (t1), S-curve lagged by t1 hr when subtracted from origin S-curve is the unit hydrograph of t1 hr.

[email protected]

Page 19: EH L4 Runoff and Hydrograph Analysis

Synthetic Unit Hydrograph-Snyder’s Method

Apply for basins which are not gauged. U.H. are synthesized from known U.H. of a meteorologically homogeneous basin.

Most appropriate for large watersheds, but calibration of coefficients is recommended.

Formation of U.H. includes time to peak, time base, duration of rainfall excess, peak discharge, width of unit hydrograph at both 50% and 75% of peak discharge.

[email protected]

Page 20: EH L4 Runoff and Hydrograph Analysis

Time of peak depends on 2 elements: duration of rainfall excess (td) and time lag (tp).

Time lag,tp is the time interval from midpoint of unit rainfall excess to the peak of unit graph, tp = Ct (L Lca)0.3.

Duration of rainfall excess of t hours is given by

pp t

tt

112

5.5

[email protected]

Page 21: EH L4 Runoff and Hydrograph Analysis

Peak discharge Qps for unit hydrograph of standard unit duration of tr hour is given by

– For non-standard unit duration,tR, time to peak

and

- Peak discharge,

ppps t

ACQ 78.2

ppp t

ACQ'

78.2

42221

4'

Rp

rRpp

tt

tttt

[email protected]

Page 22: EH L4 Runoff and Hydrograph Analysis

Time base for this U.H, tb is given by

for large catchment while

for smaller catchment

The shape of Synder’s U.H. is largely controlled by 2 times parameters, W50 and W75 which represent the time widths of U.H. at discharges of 50% and 75% of peak discharge.

where and

hrstt pb '372

08.15087.5

qW

75.150

75WW

AQ

q pp

hrsttt Rpb

2'5

[email protected]

Page 23: EH L4 Runoff and Hydrograph Analysis

Caution should be used in applying Snyder’s method to a new area without first deriving coefficients for gauged streams in the general vicinity of the problem basin. The coefficients Ct and Cp have been found vary considerably form one region to another.

[email protected]