egu 2014 invited talk (mostly on simulation of ecohydrology) - by giacomo bertoldi et al

27
Process-based modeling in alpine catchments Giacomo Bertoldi, Stefano Della Chiesa, Michael Engel, Georg Niedrist, Johannes G. Brenner , Stefano Endrizzi, Matteo Dall’Amico, Emanuele Cordano, Ulrike Tappeiner, Riccardo Rigon. EGU 2014, Vienna, Austria, 28 April – 2 May 2014 Institute for Alpine    Environment

Upload: cafe-geoframe

Post on 06-May-2015

236 views

Category:

Education


0 download

DESCRIPTION

This contains the description of the use of GEOtop 2.0 in simulating the ecohydrology of a mountain environment

TRANSCRIPT

Page 1: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Process-based modelingin alpine catchments

Giacomo Bertoldi, Stefano Della Chiesa, Michael Engel, Georg Niedrist, Johannes G. Brenner , Stefano Endrizzi, Matteo Dall’Amico, Emanuele Cordano, Ulrike Tappeiner, Riccardo Rigon. 

EGU 2014, Vienna, Austria, 28 April – 2 May 2014

Institute for Alpine    Environment

Page 2: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Aims and outlineMotivationIn mountain regions ecohydrological processes exhibit rapid changes within short distances due to the complex interplay of topography, soil, biological and atmospheric processes. 

Are process‐based models able to deal with this complexity?OutlineAn (hopefully) useful instrument: the GEOtop 2 ‐ DV model.

Application of the model to mountain areas:1. Plot scaleModelling snow, soil moisture, ET, biomass  along an elevation gradient:Model as a tool to investigate coupled eco‐hydrological processes.2. Catchment scaleRemote sensing land surface temperature in complex terrain:Model as tool  to interpret processes behind observations 

Discuss advantages and constraints of process based modelling in mountain areas

Page 3: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Coupled process based modelling in mountain areas 

LWatm V

D0VILWsurr

1V SWsurr

1V

sTs4

Shortwaveradiation (yellow)Longwave radiation(red)

SWrefl

Complex topography

Bertoldi et al., J of Hydromet, 2006.

sSnow module

Endrizzi et al., GMDD, 2014Zanotti et al., Hydrol Proc, 2004

Water budget

Rigon et al., J of Hydromet, 2006.

Figures adapted from VIC model (Liang et al., 1994)

Energy budget

Bertoldi al., Ecohydrol, 2010.

Vegetation dynamics

Della Chiesa et al., Ecohydrol., 2014

From SHE model (Abbot et al., 1986)

Page 4: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

The GEOtop 2.0  – DV  model

Rigon et al., JHM, 2006; Endrizzi et al. GMDD, 2014.

Processes

Dynamic vegetationmodel (for grasslands)

From Montaldo et al.,  2005;Della Chiesa et al., 2014

Page 5: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Does it works?

Is  it usable ?      Or … too complex?

Is it useful ?

Two applications in mountain context

1. Plot scaleModelling snow, soil moisture, ET, biomass  along an elevation gradient:Model as a tool to investigate coupled eco‐hydrological processes.

2. Catchment scaleRemote sensing land surface temperature in complex terrain:Model as tool  to interpret processes behind observations.

Page 6: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Application 1: modelling along an elevation gradient

Motivation

In dry inner‐alpine regions, managed grasslands are irrigated.Climate change raises issues about future water availability.

Which are the effects of the elevation gradient on SWE, SWC, ET,grassland productivity?

Della Chiesa et al., Modeling changes in grassland  hydrological cycling along an elevational gradient in the Alps,Ecohydrology, 2014

.

Page 7: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

An experimental elevation transect

Elevation as a proxy of climate change: Mazia Valley, emerging LTER

Station B2000 mHs, SWC, Biomass, GAI

StationB1500 mHs, SWC, Biomass, GAI,ET

StationB1000 mHs, SWC, Biomass, GAI

T~ 3.5K

T~ 3.5K

Page 8: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Elevation gradient: validation

Multiple variables validation: SWE, SWC, above ground biomass (Bag), ET

Two years of data: calibration in B1500, validation in B1000, B2000

B2000 m

B1500 m

B1000 m

Snow Height [cm] SWC 5cm [] ET [mm]

Not Measured

Not Measured

r2=0.66RMSE=7.1

r2=0.57RMSE=5.9

r2=0.55RMSE=2.9

r2=0.80

r2=0.78

r2=0.82

Bag [gDMm‐2]

RMSE=0.04

RMSE=0.05

RMSE=0.04

r2=0.93RMSE=58.39

Page 9: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Elevation gradient: resultsB2

000 m

B1500 m

B1000 m

Simulation extension to 20 year 

Coupling snow – veg – ET ‐ SWC Water limitation below 1500 m

SWC along the year

Page 10: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Elevation gradient: resultsB2

000 m

B1500 m

B1000 m

Coupling snow – veg – ET ‐ SWC

SWC along the year

Irrigation below 1500 m

Page 11: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Application 1: modelling along an elevation transect

Insight on process understanding

In the Vinschgau valley, water limits ET below an elevation threshold of 1500 m a.s.l. while, above, the temperature and vegetation period length act as limiting factor. 

Modelling lesson learning

Need of coupled modelling of energy and water fluxes, snow and vegetation dynamic.

Model validation against multiple variablesadds additional constrains to model consistency.

SWE     →     SWC↕

Bag ↔ LAI ↔ ET

Page 12: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Application 2: land surface temperatureMotivationLST is a key variable of the surface energy budget.Improving its estimation in energy budget models can improve fluxes partitioning estimation.

Which are the factors controlling LST in mountain environments(i.e. elevation, solar radiation, land cover, soil moisture)?

Bertoldi et al., Topographical and ecohydrological controlson land surface temperature in an Alpine catchment, Ecohydrology, 3, 189 – 204, 2010.   

tEwLSTETLSTHwLSTGLSTR ssn

),()(),()( 4

Page 13: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Modeling land surface temperatureStubai Valley experimental area (Tyrol, Austria)

(Institute of Ecology Innsbruck University)

•257 km2, elevation 1000 ‐ 3500 m.

• Humid inner‐alpine climate. 

• Comparison with 60 m LANDSAT LST TIR ETM+ map (13 September 1999, 10.50 AM).

• Parameters from field data (Hammerle et al. 2007) and literature for different land cover types (Findell et al. 2007).

• One year model spin‐up to reach equilibrium.

•Model validation against ground observations.

• Leaf Area Index (LAI);  Roughness length (z0).

Page 14: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

LST: spatial patterns comparison

Aspect R2=0.63

Numerical experiment:add only one spatially varying factor at a time

Page 15: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

LST: spatial patterns comparison

Aspect R2=0.63

Elevation R2=0.74

Page 16: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

LST: spatial patterns comparison

Aspect R2=0.63

Elevation R2=0.74

Land cover R2=0.88

Page 17: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

LST: spatial patterns comparison

The model helps to identify factors controlling LST patterns 

Aspect R2=0.63

Elevation R2=0.74

Land cover R2=0.88

Moisture R2=0.89

Page 18: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Application 2: land surface temperatureInsight on process understanding

Most relevant factors controlling LST result radiation distribution and elevation.

Alpine vegetation and aspect strongly alter LST vertical distribution.

Modelling lesson learning

Need to have a model with LST as explicit prognostic variable.

Model helps to discriminate controlling factors.

(Complex) model allows to simplify complex patterns.

Page 19: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Benefits (and issues) from process based modeling ?

Issues

“Distributed model are overparameterized”.

“ Such a models cannot be really calibrated”.

“They cannot be used for unequipped basins”.

“Reality is simpler than that (and we learn just from simple models)”.

From “analogic” ….

Possible solutions

Coupling processes introduces additional constrains.

Use multiple/ multi‐scale observations. 

Tools to extend detailed experimental campaigns.

Numerical experiments allow to discriminate controlling factors.

Toward “digital”?

Page 20: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

GEOtop is an Open Source collaborative project and others are invited to bring into new components.

https://code.google.com/p/geotop/Main model developers: 

Università di Trento; Zurich University (Now Quebec University);Mountain‐eering S.r.l; EURAC research; University of Augsburg KIT.

Creating a community. Try it!

Page 21: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Acknowledgments

This study is supported by the projects “HiResAlp” and “HydroAlp” financed by Provincia Autonoma di Bolzano, Alto Adige, Ripartizione Diritto allo sudio, Università e ricerca scientifica.

The RADARSAT2 images were made available through the project ESA AO 6820 in the framework of the SOAR program.

• We hereby would like to thank:C. Notarnicola, EURAC, Institute for Alpine Environment.  

Thank you for your attention!

Page 22: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al
Page 23: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Application 3: remote sensing of soil moistureMotivation

Limited availability of reliable soil moisture high resolution products on mountain areas. Heterogeneity in soil type, land cover,  topography limits distributed models parameterization.

How far can SAR remote sensing help for improving modelling surface soil moisture in mountain grassland areas?

Bertoldi, G., et al. Estimation of soil moisture patternsin mountain grasslands by means ofSAR RADARSAT2 images and hydrological modeling. J. Hydrol. (2014)

RADASAT2 SAR 

Page 24: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Soil moisture: observations

Fixed Stations

Field surveys

Mazia, South Tyrol, Italy ~ 100 km2

RADASAT2 SAR images 20m res

Surface SWC retrieval (SVR Pasolli 

et el., 2011)

Page 25: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Soil moisture: spatial patterns comparisonSWC  SWC 

Page 26: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al

Soil moisture: spatial patterns comparison

Insight on process understandingModel suggest that soil type and land management are major controls on  surface SWC.

Modelling lesson learningLimitation in model performance  due coarse soil type / land cover information available.SAR remote sensing is able to provide higher spatial resolution information.Use RS information for model parameterization / data integration/ assimilation. 

SWC  SWC 

Page 27: EGU 2014 invited talk (mostly on simulation of ecohydrology) - by Giacomo Bertoldi et al