efficiency improvement in proton dose calculations with an

19
Efficiency improvement in proton dose calculations with an equivalent restricted stopping power formalism Daniel Maneval 1,2 Hugo Bouchard 3 Benoˆ ıt Ozell 4 Philippe Despr´ es 1,2 October 16, 2017 1 Universit´ e Laval, D´ epartement de physique, de g´ enie physique et d’optique, Qu´ ebec, Canada 2 Universit´ e Laval, D´ epartement de radiooncologie et centre de recherche du CHU de Qu´ ebec, Qu´ ebec, Canada 3 Universit´ e de Montr´ eal, D´ epartement de physique, Montr´ eal, Canada 4 ´ Ecole polytechnique de Montr´ eal, D´ epartement de g´ enie informatique et g´ enie logiciel, Montr´ eal, Canada

Upload: others

Post on 15-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Efficiency improvement in proton dose calculations with an

Efficiency improvement in proton dose

calculations with an equivalent restricted

stopping power formalism

Daniel Maneval 1,2 Hugo Bouchard 3 Benoıt Ozell 4 Philippe Despres 1,2

October 16, 2017

1Universite Laval, Departement de physique, de genie physique et d’optique, Quebec, Canada

2Universite Laval, Departement de radiooncologie et centre de recherche du CHU de Quebec,

Quebec, Canada

3Universite de Montreal, Departement de physique, Montreal, Canada

4Ecole polytechnique de Montreal, Departement de genie informatique et genie logiciel, Montreal,

Canada

Page 2: Efficiency improvement in proton dose calculations with an

The proton energy loss along a step length

Electromagnetic inelastic interactions with atomic electrons

• Split in soft and hard collisions.

Soft collisions Hard collisions

Ionization ranges short (sub-cutoff) significant

Transport Deterministic Monte Carlo

Physical quantities Stopping power Production cross section

Simulation scheme Condensed Analog

The proton Continuous Slowing Down Approximation (CSDA)

• An approximate variance reduction technique to compute the mean

proton energy loss (∆E )

• The true energy loss (∆Etrue) is obtained with the energy

straggling (δ∆E ):

∆Etrue = ∆E ± δ∆E1

Page 3: Efficiency improvement in proton dose calculations with an

The mean energy loss (∆E) calculations

Two schemes

EGSnrc for electrons/positons (Kawrakow, 2000; Kawrakow et al., 2016)

and Geant4 for all charged particles (Collaboration, 2015).

A new one proposed

named the equivalent restricted stopping power formalism: the Leqformalism

2

Page 4: Efficiency improvement in proton dose calculations with an

The ∆E calculations

Fetch the range

Compute the stepping

function

Determine the step length

with 2 step restrictions

Fetch the stopping power

Compute the mean

energy loss

Geant4

< 1% of E

Accept Compute

with an inverse

range table

yesNo

EGSnrc formalism

Fetch the fractional

energy loss

Fetch the equivalent

stopping power

Compute the step restriction

with a Taylor expansion

and a maximal fractional

energy loss

Determine the step length

with the step restriction

Fetch the stopping power

Compute

with a midpoint rule

3

Page 5: Efficiency improvement in proton dose calculations with an

Leq formalism benefit

Step lengthrestriction

Interface

proton trajectory

High dose accuracy simulations:

hardcollision

Balanced simulations: accuracy - computation time:

High accuracy with the formalism:

Geant4 or EGSnrc The Leq formalism

s = min(dvox , dhard , dmax) s = min(dvox , dhard)

4

Page 6: Efficiency improvement in proton dose calculations with an

The Leq formalism

L is the restricted/unrestricted stopping power. E is the proton kinetic

energy

The distance (s) space

d∆Eds = L(s)

⇔ ∆E =

∫ s

0

L (E ′)ds ′

Stopping power

Step

The energy (∆E) space

dsd∆E = L−1(E −∆E )

⇔ s = −∫ E−∆E

E

L−1(E ′)dE ′

The midpoint rule

of the Newton-Cotes formula:

⇒ ∆E = s · Leq (E , ε)

Leq (E , x) = L(x)[1+ 2L′(x)2−L(x)L′′(x)

L(x)2E2+x(x−2E)

6

]x = E

(1− ε

2

)and ε(s,E ) = ∆E

E

ε links the ∆E space with the s space.5

Page 7: Efficiency improvement in proton dose calculations with an

Leq Look-up tables

Leq (E , x) = L(x)[1+ 2L′(x)2−L(x)L′′(x)

L(x)2E2+x(x−2E)

6

] with x = E(1− ε

2

)Material Fixed ε Fixed Energies

Water

100 101 102

Energy (MeV)

101

102

Leq

(MeV

·cm

−1)

ǫ = 0 %ǫ = 10 %ǫ = 25 %ǫ = 50 %ǫ = 70 %ǫ = 100 %

0 20 40 60 80 100

ǫ (%)

0

200

400

600

800

Leq

(MeV

·cm

−1) 0.5 MeV

1.5 MeV5 MeV15 MeV50 MeV350 MeV

Gold

100 101 102

Energy (MeV)

102

103

Leq

(MeV

·cm

−1)

ǫ = 0 %ǫ = 10 %ǫ = 25 %ǫ = 50 %ǫ = 70 %ǫ = 100 %

0 20 40 60 80 100

ǫ (%)

0

500

1000

1500

2000

2500

3000

Leq

(MeV

·cm

−1) 0.5 MeV

1.5 MeV5 MeV15 MeV50 MeV350 MeV

6

Page 8: Efficiency improvement in proton dose calculations with an

ε look-up tables

ε(s,E ) = ∆EE determined when solving s +

∫ E(1−ε)

EdE′

L(E ′) = 0

Material Fixed Step lengths Fixed Energies

Water

100 101 102

Ener gy (M eV)

10 7

10 5

10 3

10 1

101

102

(%)

(%)

10 5 4 3 2 1 0

10 7

10 5

10 3

10 1

101102

(%)

Gold

100 101 102

Ener gy (M eV)

10� 7

10� 6

10� 5

10� 4

10� 3

10� 2

10� 1

100

101

102

(%)

1.0 mm0.1 mm10� 2 mm

10� 3 mm

10� 4 mm10� 5 mm

(c) Gold

Energy (MeV)

(%

)

10� 5 10� 4 10� 3 10� 2 10� 1 100

Step (mm)

10� 7

10� 6

10� 5

10� 4

10� 3

10� 2

10� 1

100

101

102

(%)

0.5 M eV1.5 M eV5 M eV15 M eV50 M eV350 M eV

MeVMeVMeVMeVMeVMeV

Step (mm)

(d) Gold

7

Page 9: Efficiency improvement in proton dose calculations with an

Geant4 setups

Simulation setups Geant4 CSDA parameters Time (h) Errors (%)

dmax Linear loss Step function Maximum Falloff

Reference 1 µm 1% (20%, 50 µm) 140 - -

High Accuracy (HA) 10 µm 1% (20%, 50 µm) 14 0.2 0.9

Balanced (Bal) 1 mm 0.1% (0.1%, 1 µm) 2.5 0.8 4.7

Default 1 mm 1% (20%, 50 µm) 0.8 4.8 16.5

0

10

20

Dose(G

y) Default

BalancedHigh AccuracyReference

305 310 315 320 325 330

Depth (mm)

14

8

12

16

Error

(%)

0 50 100 150 200 250 300

Depth (mm)

10−3

10−2

10−1

100

Max

imum

step

(mm)

Reference Bragg peak

DefaultBalancedHigh AccuracyReference

8

Page 10: Efficiency improvement in proton dose calculations with an

GPU-based Implementations

Graphic processor Unit (GPU)

• pGPUMCD: a new GPUMCD branch dedicated to proton MC transport

• GPUMCD: a validated GPU-based MC dose calculation code for

photons and electrons (Hissoiny et al., 2011c)

Efficiency

Leq formalism intrinsic efficiency:

• pGPUMCD-L: the Geant4 CSDA scheme

• pGPUMCD-Leq

Material ρ ne (×1023) I Tmine

g.cm−3 cm−3 eV MeV

Lung∗ 0.26 0.86189 69.69 0.148

Water 1.0 3.3428 78 0.352

Bone∗∗ 1.85 5.9056 91.9 0.512

Copper 8.96 24.625 322 1.4

Gold 19.32 46.665 790 2.3∗ ICRU inflated lung (ICRU, 1992)∗∗ Bone, Compact (ICRU) (Berger et al., 2005) 9

Page 11: Efficiency improvement in proton dose calculations with an

Leq formalism validation

0 50 100 150

Depth (mm)

0

50

100

150

Do

se

(G

y)

Geant4

pGPUM CD

Er r or

� 0.75

� 0.50

� 0.25

0.00

0.25

0.50

0.75

Erro

r (

%)

Geant4

pGPUMCD

Error

Dos

e (G

y)

(a) Lung 70 MeV

0 20 40 60 80

Depth (mm)

0

20

40

60

80

100

Do

se

(G

y)

Geant4

pGPUM CD

Er r or

� 0.75

� 0.50

� 0.25

0.00

0.25

0.50

0.75

Erro

r (

%)

(b) Water 100 MeV

0 100 200 300

Depth (mm)

0

10

20

30

40

50

60

Do

se

(G

y)

0 75

0 50

0 25

0.00

0.25

0.50

0.75

rro

r (

%)

Err

or (

%)

(c) Water 230 MeV

0 50 100 150 200

Depth (mm)

0

10

20

30

40

50

60

Do

se

(G

y)

� 0.75

� 0.50

� 0.25

0.00

0.25

0.50

0.75E

rro

r (

%)

Depth (mm)

Dos

e (G

y)

(d) Bone 230 MeV

0 20 40 60

Depth (mm)

0

5

10

15

20

25

Do

se

(G

y)

� 0.75

� 0.50

� 0.25

0.00

0.25

0.50

0.75

Erro

r (

%)

(e) Copper 230 MeV

Depth (mm)0 10 20 30

Depth (mm)

0

5

10

15

20

Do

se

(G

y)

� 0.75

� 0.50

� 0.25

0.00

0.25

0.50

0.75

Erro

r (

%)

Depth (mm)

(d) Gold 230MeV

Err

or (

%)

The ranges (R80) matched within 1 µm

10

Page 12: Efficiency improvement in proton dose calculations with an

Leq formalism efficiency

Geant4 pGPUMCD-L pGPUMCD-Leq Intrinsic speed up factors

Material Energy THAG4 TBal

G4 THAL TBal

L TLeq GPU ( TG4/TL) Leq ( TL/TLeq)

(MeV) (hour) (second) (millisecond) HA Bal HA Bal

Lung 70 6.5 2 12.25 2.85 70 1,900 2,500 175 41

Water 100 3.5 1.9 4.73 2.12 46 2,600 3,200 103 46

Water 230 14 2.5 91 4.34 145 550 2,100 630 30

Bone 230 8 2.3 17.62 3.05 84 1,600 2,700 210 36

Copper 230 2.5 1.6 4.11 1.64 40 2100 3,500 103 41

Gold 230 1.7 1.4 3.23 1.30 31 1900 3,800 103 42

• Geant4/EGSnrc: linear algorithmic time complexity, i.e. O(n) where

n represents the number of subdivision in a voxel to maintain the

mean energy loss accuracy. n is fixed by dmax .

• the Leq formalism: constant algorithmic time complexity, i.e. O(1)

11

Page 13: Efficiency improvement in proton dose calculations with an

Leq formalism with the energy straggling

100

101

102Dose

(Gy)

Water 230 MeVWater 100 MeV

Lung

Bone

CopperGold

Geant4pGPUMCD

0 50 100 150 200 250 300

Depth (mm)

−2

−1

0

1

2

Error(%

)

The ranges (R80) matched within 100 µm

12

Page 14: Efficiency improvement in proton dose calculations with an

Computation times

Geant4:

1.4 to 20 hours per million transported protons

pGPUMCD:

31 to 173 milliseconds per million transported protons

13

Page 15: Efficiency improvement in proton dose calculations with an

Conclusion

The Leq formalism led to an intrinsic efficiency gain factor ranging

between 30-630, increasing with the prescribed accuracy of

simulations.

It allows larger steps leading to a constant algorithmic time

complexity. It significantly accelerates Monte Carlo proton transport

while preserving accuracy.

The Leq formalism constitutes a promising variance reduction

technique for computing proton dose distributions in a clinical context.

The Leq formalism could be used for other charged particles.

The multiple scattering was validated, not presented here.

Under investigations: nuclear interactions

More details concerning the Leq formalism: (Maneval et al., 2017)

14

Page 16: Efficiency improvement in proton dose calculations with an

Acknowledgements

15

Page 17: Efficiency improvement in proton dose calculations with an

References I

References

Martin J. Berger, JS Coursey, M.A. Zucker, and J Chang. Estar, pstar,

and astar: Computer programs for calculating stopping-power and

range tables for electrons, protons, and helium ions (version 1.2.3).

Technical report, National Institute of Standards and Technology,

Gaithersburg MD, 2005. URL http://physics.nist.gov/Star.

Geant4 Collaboration. Physics reference manual. obtainable from the

GEANT4 website: http://geant4. cern, 2015.

Sami Hissoiny, Benoıt Ozell, Hugo Bouchard, and Philippe Despres.

Gpumcd: A new gpu-oriented monte carlo dose calculation platform.

Medical Physics, 38(2):754–764, 2011c. URL

http://link.aip.org/link/?MPH/38/754/1. arXiv:1101.1245v1.

16

Page 18: Efficiency improvement in proton dose calculations with an

References II

ICRU. Photon, Electron, Proton and Neutron Interaction Data for Body

Tissues. ICRU Report. International Commission on Radiation Units

and Measurements, Bethesda, Md., U.S.A, 1992. URL

http://books.google.ca/books?id=E9UqAAAAMAAJ.

Iwan Kawrakow. Accurate condensed history Monte Carlo simulation of

electron transport. I. EGSnrc, the new EGS4 version. Medical Physics,

27(3):485–498, 2000. URL

http://link.aip.org/link/?MPH/27/485/1.

Iwan Kawrakow, David Rogers, F. Tessier, and B. Walters. The egsnrc

code system: Monte carlo simulation of electron and photon transport

(pirs-701). National Research Council (NRC), Report, 2016.

17

Page 19: Efficiency improvement in proton dose calculations with an

References III

Daniel Maneval, Hugo Bouchard, Benoıt Ozell, and Philippe Despres.

Efficiency improvement in proton dose calculations with an equivalent

restricted stopping power formalism. Physics in Medicine and Biology,

2017. URL

http://iopscience.iop.org/10.1088/1361-6560/aa9166.

18