effective methods in differential galois theory and ...apetizer - 1,2,3 examplesfundamental...

31
Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness Effective methods in Differential Galois Theory and Applications in Handling (Linear) Differential Equations Jacques-Arthur Weil XLIM,Limoges ,France —————————— [email protected] http://unil.im/jaw/ DESY, Theory Seminar Zeuthen, January 2014

Upload: others

Post on 03-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Effective methods in Differential Galois Theoryand Applications in Handling (Linear) Differential

Equations

Jacques-Arthur Weil XLIM,Limoges,France

——————————[email protected]

http://unil.im/jaw/

DESY, Theory Seminar Zeuthen, January 2014

Page 2: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

I. Apetizer - 1,2,3 examples

Page 3: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

I. Apetizer - 1 : Closed Form Solutions

A hypergeometric equation with diedral differential Galois group :

L(y) := ∂2(y) +x

x2 − 1∂(y)− 1

4n2(x2 − 1)y = 0, ∂ =

d

dx

Closed form solutions ?yes : y = exp

(±∫

12n

1√x2−1

dx)

Note : differential equation for f := y 2 :

Sym2(L) : ∂3(f ) + 3x

x2 − 1∂2(f ) +

(−1 + n2

)n2 (x2 − 1)

∂(f ) = 0

Rational solution : f = 1 .... from which we deduce y :this is given by the Kovacic algorithm .

In fact, y =(

x +√

x2 − 1) 1

2n: algebraic when n is

rational.

Page 4: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

I. Apetizer - 2 : Bessel equations

L(y) := ∂2(y)− (σ + 1− β)

β x∂(y) +

σ (−ρ+ x + 1)

x2β2y = 0

Solutions computed by Maple :

y (x) = C1 xσ+12β BesselJ

√σ2 − 2σ + 1 + 4σ ρ

β2, 2

√σ√

x

β

+ C2 x

σ+12β BesselY

√σ2 − 2σ + 1 + 4σ ρ

β2, 2

√σ√

x

β

No algebraic relations between solutions and theirderivatives in general. The differential Galois group is(projectively) SL(2,C).No rational first integral , except when parameters satisfy

... you will soon know what.

Page 5: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

I. 3. Is the Lorenz system rationally integrable ?

[Canalis-Durand, Ramis, Rouchon, and J.A.W, 2001]dxdt = −σ(x − y)dydt = ρ x − y − xzdzdt = −β z + xy

Can one find a rational first integral ?Particular solution x0 = y0 = 0, z0 = exp(−βt)Variational System : ε-perturbation (ε ”ideally small”)X = X0 + εX1,Y = Y0 + εY1,Z = Z0 + εZ1 then

d

dt

x1

y1

z1

=

−σ σ 0

ρ− e−β t −1 0

0 0 −β

x1

y1

z1

Page 6: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

I. 3.bis. when is the Lorenz system rationally integrable ?

d

dt

x1

y1

z1

=

−σ σ 0

ρ− e−β t −1 0

0 0 −β

x1

y1

z1

differential equation for x1 ? very easy : differentiate !

∂2 + (σ + 1) ∂ − σ ρ+ σ e−β t + σ

Now set x = e−β t and ∂ = d/dx :

∂2 − (σ + 1− β) ∂

β x+σ (−ρ+ x + 1)

x2β2

so x1 satisfies the Bessel differential equation !The Lorenz model is generically not rationally integrable .Exercise : for which values of the parameters could this

Lorenz system be actually rationally integrable ? ?

Page 7: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Outline

Apetizer - 1,2,3 examples

Fundamental AlgorithmsPolynomial and Rational solutionsFamilies of linear differential equationsLocal (formal) solutionsExponential solutions

Differential Galois GroupPicard-Vessiot fields and Differential Galois groupsNormality : What the Galois Group Measures

Kovacic AlgorithmsCase 1 : Reducible caseCase 2 : Imprimitive caseCase 3 : Primitive case

D-finiteness

Page 8: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

II. Elementary and Fundamental Algorithms

L(y) = y (n) + an−1y (n−1) + . . .+ a0y = 0, ai ∈ C (x)

1. Solutions in power series.

2. Polynomial solutions

3. Rational solutions

4. View the above as ”gluing” local solutions to global.

5. More gluing : exponential solutions.

Page 9: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Solutions in power series

A nice example :

L(y) := 56 y (x)− 2 xd

dxy (x) +

(1− x2

) d2

dx2y (x) = 0

Basic class of solutions : formal power series.L(∑∞

N=0 u(N)xN) = 0 induces a linear recursion :

− (N + 8) (N − 7) u (N) + (N + 1) (N + 2) u (N + 2) = 0

We obtain local solutions :

−1 + 28 x2 − 350

3x4 + O

(x6)

, x − 9 x3 +99

5x5 + O

(x6)

Tool : differential equations ↔ recursions - and linear algebra.This is really the basic object : fine algorithms are crucial

Page 10: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Polynomial solutions

L(y) := 56 y (x)− 2 xd

dxy (x) +

(1− x2

) d2

dx2y (x) = 0

Polynomial solution P =∑d

i=0 u(i)x i ?

− (N + 8) (N − 7) u (N) + (N + 1) (N + 2) u (N + 2) = 0

Polynomial : power series where all terms are zero after degree d ..Read the recursion for N = d : must have d = 7

Compute u(i) from recursion and check u(8) = u(9) = 0.Result : x − 9 x3 + 99

5 x5 − 42935 x7

Fast algorithm : Bostan, Cluzeau and Salvy 2004 (& refs therein)

Page 11: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Rational Solutions

M(y) := −2(22 x2−212 x+451)(x−4)2(x−1)(x+1)

y + 2 (2 x+1)(2 x−3)(x−4)(x−1)(x+1) y ′ + y ′′

Singularities : −1, 1, 4,∞Rational solution must be f (x) = P(x)

(x−4)α(x−1)β(x+1)γ .

Pole order α at x = 4 ? let T = x − 4, and compute L(Tα) :

(α + 3) (α + 2)T−2 +

(8

15α +

8

5

)T−1 + O (1)

So we must have α = −3 or α = −2.−3 and −2 are called the exponents of L at x = 4.Exercise : show that β = γ = 0.

M

(P(x)

(x − 4)3

)= .. = L(P)

so rational solution :x−9 x3+ 99

5x5− 429

35x7

(x−4)3

Page 12: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Families of linear differential equations depending on parameters

ν (ν + 1) y (x)− 2 xd

dxy (x) +

(1− x2

) d2

dx2y (x)

For which values of ν can we have a polynomialsolution ?

− (N + 1 + ν) (N − ν) u (N) + (N + 1) (N + 2) u (N + 2)

The above methods show that ν must be an integer.But ... parameter ν is also the number of terms that we have tocompute in a power series to decide whether this has a polynomialsolution...Fact : this problem is undecidable in full generality – but canoften be decided, with intelligence (or good collaborators)Note - the above polynomials are the Legendre polynomials .Ref : PhD Delphine Boucher, Limoges, 2000

Page 13: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Local (formal) solutions

L(y) = y (n) + an−1y (n−1) + . . .+ a0y = 0, ai ∈ C (x)

Singularities of L : poles of the ai (and maybe ∞).Ordinary points

At a non-singular point x0 : basis of solutions in C [[x0]] (Cauchy).Singular points

At a singular points, we will need more ingredients :Regular Singular Point :

basis of local solutions of the form (x − x0)αφ̂, withφ ∈ C [[x − x0]] or φ ∈ C [[x − x0]][log(x)].In this case : α is called an exponent of L at x0.

Page 14: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

L(y) = y (n) + an−1y (n−1) + . . .+ a0y = 0, ai ∈ C (x)

Regular Singular Point :basis of local solutions of the form (x − x0)αφ̂, withφ ∈ C [[x − x0]] or φ ∈ C [[x − x0]][log(x)].In this case : α is called an exponent of L at x0.

Irregular Singular Point :Need to replace (x − x0)α by exp(

∫ ex0x−x0

dx)

the ex0 ∈ 1

(x−x0)1r

[ 1

(x−x0)1r

] are generalized exponents and r is

the ramification index at the singularityPractical computation :

algorithmic, technicalities remain for parametrized cases.Local solutions are the founding object of all further algorithms.

Page 15: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Exponential solutions

Def : y is an exponential solution of L(y) = 0 ifr := y ′/y ∈ Q(x) : y = exp(

∫r).

Lemma : Let y exponential solution, y ′/y = r ∈ Q(x). For allsingular points xi , there exists exi ∈ Q[t−1

i ] such that r = S + Q′

Qwhere

S =∑ exi

ti− t∞e∗∞, Q ∈ Q[x ]

and(Fuchs’ relation) : deg(Q) +

∑Const(exi ) = 0

”Beke” Algorithm : for each combination of the exi , check if thereis a polynomial Q such that the above holds (linear algebra).Drawbacks : exponential number of combinations to be checked,complicated definition field for the chosen combination.Best : Cluzeau et van Hoeij, 04 : reduce mod p to decide the”good” combinations !

Page 16: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

III. Differential Galois Group

Page 17: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Let k be a differential field :k = C (x),C ((x)),C (x , exp(x)),C (x ,

√x , exp(

√x), . . ..

L(y) = y (n) + an−1y (n−1) + . . .+ a0y = 0

All that follows extends mutatis mutandis to linear differentialsystems

Y ′ = A(x)Y , A ∈Mn(k)

Page 18: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

L(y) = y (n) + an−1y (n−1) + . . .+ a0y = 0

DefinitionA differential field extension K ⊃ k is called aPicard-Vessiot extension of k (for L(y) = 0) if

1. K = k(y1, y′1, . . . , y

(j)i , . . . , y

(n−1)n ), where the yi are a basis of

solutions of L(y) = 0 (i.e K is the differential field generated 1

by the solutions of L.

2. K and k have the same field of constants.

Construction : assume 0 not singular. Pick series solutions

y1, . . . , yn. Let I ideal of polynomials in k[Xi ,j ] s.t P(y(j)i ) = 0.

Then k[Xi ,j ]/I is Picard-Vessiot Ring.I is the ideal of relations

V (L) := SolK (L) is a C -vector space of dimension n.

1. Note that as L(yi ) = 0, we have y(n)i and the higher derivatives in K , which

really makes it a differential field

Page 19: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

L a differential operator, K = PV (L) Picard-Vessiot Extension.V (L) = Span(y1, . . . , yn).

DefinitionWe call a differential k-automorphism of K anautomorphism g of K which leaves k fixed et which commuteswith the derivation,i.e :

1. ∀y ∈ K , g(y)′ = g(y ′)

2. ∀y ∈ k , g(y) = y

The differential Galois group G = Gal(L) = Gal∂(K/k) isthe group of differential k-automorphisms of K .

g ∈ Gal(L), L(y) = 0 −→ L(g(y)) = 0 ⇒ g(yi ) =∑

j

ci ,jyj

Essential Property 1 :Faithful representation of Gal(L) as a group of matrices

Gal(L) is a linear algebraic group

Page 20: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Exercise : the Galois group of a logarithm

Let L := log(x) in a Picard-Vessiot extension K ⊃ C (x).Let g ∈ Gal(K/C (x)).

g(L) ?g(L)′ = g(L′) = g(1/x) = 1/x = L′ so there exists a constantcg ∈ C s.t g(L) = L+ cg

y ′′ +1

xy ′ = 0.

Solutions are 1 and L. The Galois group is :

G =

{(1 cg

0 1

), cg ∈ C

}Compare with the monodromy : log(xe2iπ) = log(x) + 2iπ

Page 21: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Some classical examples of linear algebraic groups.

1. GL(n,C ) and SL(n,C ) (defined by det(g) = 1).

2. The group of upper triangular matrices T (defined by Ti ,j = 0for j < i).

3. Let In denote the identity matrix of size n and the standardsymplectic matrix

J =

(0 In−In 0

)The set of matrices M that satisfy tM.J.M = J (this relationinduces a finite set of polynomial relations on the entries ofM) is called the Symplectic group Sp(2n,C ) and will becentral in the applications to symplectic mechanics.

4. Any finite group of matrices (check this !)

G is an equidimensional variety ;G ◦ : component containing the identityTangent plane at the identity : Lie algebra g

Page 22: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

IV. Normality : What the Galois Group Measures

Essential Property 2 :

Theorem (Galois normality)

Let K denote a Picard-Vessiot extension of k, let G be itsdifferential Galois group, and let z ∈ K . Then :

z ∈ k ⇐⇒ ∀g ∈ G , g(z) = z .

Page 23: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Normality : caracterizing algebraic elements

Normality : z ∈ k ⇐⇒ ∀g ∈ G , g(z) = z .

TheoremLet z ∈ K . Then z is algebraic of degree m over k if and only ifOrbG (z) has exactly m elements.All solutions of L(y) = 0 are algebraic if and only if G is a finitegroup.

Sketch : z algebraic iff P =∏

g∈G (Y − g(z)) has coefficients in k .Generalization : The dimension of OrbG (z) mesures the differentialorder of z (Katz).

Page 24: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Normality : caracterizing exponential elements

Normality : z ∈ k ⇐⇒ ∀g ∈ G , g(z) = z .

TheoremAn non-zero element z of K is exponential over k if and only if, forall g ∈ G , there exists a constant cg ∈ C such that g(y) = cg .y.

Page 25: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

V. Order 2 Equations : the Kovacic Algorithms

L(y) := y ′′ + a1(x)y ′ + a0(x)y = 0

Closed form solutions ? Galois group ?Assume that ∃f ∈ k, a1 = f ′/f , so that Gal(L) ⊂ SL(2,C ).

Kovacic 77-86 ;Baldassari & Dwork 79Singer 81Duval & Loday-Richaud 91Ulmer & Singer 93 ;Ulmer & Weil 95 ; Fakler 97 ;Berkenbosch & van Hoeij & Weil 02-0519th century : Klein, Fuchs, Pepin, Vessiot, Marotte, etc.

Page 26: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Case 1 : Reducible case

DefinitionLet G be a linear group acting on a vector space. We say that (theaction of) G is reducible if there exists a non-trivial subspaceW ⊂ V such that G (W ) ⊂W .

In our case : subspace of dimension 1 ↔ exponential solution.

Page 27: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Case 2 : Imprimitive case (definition)

DefinitionLet G be an irreducible group acting on a vector space V . We saythat G is imprimitive if there exist subspaces Vi such thatV = V1 ⊕ . . .⊕ Vr and G permutes transitively the Vi :

∀i = 1, . . . , r ∀g ∈ G , ∃j ∈ {1, . . . , r} : g(Vi ) = Vj .

In our case, we must have r = 2 and dim(V1) = dim(V2) = 1.The matrices have the form(

a 00 a−1

)or

(0 b−b−1 0

)with a, b ∈ C ∗.

Page 28: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Case 2 : Imprimitive case (algorithm)

LemmaAssume that G is irreducible. Then :G is imprimitive ..

if and only ifthe Riccati equation has an algebraic solution of degree 2

if and only ifG has a semi-invariant of degree 2.

How we detect this situation :semi-invariant of degree 2 ↔ exponential (radical) solution ofSym2(L).Let’s get back to the hypergeometric example of slide 3..

Page 29: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

Case 3 : Primitive case

Remaining possibilities :3 exceptional finite groups (tetraedral, octaedral, icosaedral),

caracterized by their invariants : see notesOR

The Galois group is SL(2,C ) : no closed form solution. Let’s getback to the Bessel example of slide 4 ..

Page 30: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

VI. D-finiteness, Chevalley approach and Tannakian Correspondance.

Underlying philosophy to what we have seen :Assume we want to study some algebraic property P of solutions

1. Transform it into a group property

2. Transform this to a representation property

3. Chevalley : a representation property is characterized by thefact that a line is fixed under the group in some tensorialconstruction C(V (L))

4. Associate to C(V (L) a linear differential equation C(L) :Tannakian equivalence

5. −→ rational solutions of tensor constructionsExample : factoring

Page 31: Effective methods in Differential Galois Theory and ...Apetizer - 1,2,3 examplesFundamental AlgorithmsDi erential Galois GroupKovacic Algorithms D- niteness Outline Apetizer - 1,2,3

Apetizer - 1,2,3 examples Fundamental Algorithms Differential Galois Group Kovacic Algorithms D-finiteness

To Summarize

1. Basic Algorithms : local analysis (power series) and globalrecombining (polynomials, rational functions, exponentials)

2. A differential polynomial in D-finite objects is D-finite.

3. Galois = classifying object : you do not see theGalois group but you see its effectsRelate ”Algebraic relations among solutions” to ”rational(exponential) solutions in tensor constructions”.

4. Available in Maple• DEtools package• Packages from the Limoges C.A group (rational solutions,

tensor constructions, local solutions) : see my web pagehttp://unil.im/jaw