effective field theory, holography, and non-equilibrium physics...2016/07/20  · field theory:...

48
Effective field theory, holography, and non-equilibrium physics Hong Liu

Upload: others

Post on 29-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Effectivefieldtheory,holography,andnon-equilibriumphysics

    HongLiu

  • Equilibriumsystems

    Forequilibriumsystems:

    Renormalizationgroup,universality

    Microscopicdescription

    Macroscopicphenomena

    lowenergyeffectivefieldtheory:

    Directcomputation:almostalwaysimpossible

    Ginsburg-Landau-Wilsonparadigm

    Expressfreeenergyintermsofappropriatelowenergyd.o.f.,constrainedonlybysymmetries

    Couldinprinciplebegeneralizedtonon-equilibriumsystems,but….

  • Non-equilibriumsystemsMicroscopicdescription

    Macroscopicphenomena

    Manytheoreticalapproaches,

    “Too”microscopic:likeLiouvilleequation,BGKKYhierarchy,Boltzmannequation…...

    “Too”phenomenological:hydrodynamics,stochasticsystems…

    Inthistalk:twonewapproaches

    1.non-equilibriumeffectivefieldtheory

    2.Holographicduality

    (toomanyd.o.f ortooformal)

    Firstprinciple,withsmallnumberofd.o.f.

  • Non-equilibriumeffectivefieldtheory

  • PathintegralinageneralstateNon-equilibriumproblems:interestedindescribingnonlineardynamicsaroundastate.

    Shouldbecontrastedwithpathintegralfortransitionamplitudes,

    Closedtimepath(CTP)orSchwinger-Keldysh contour

  • Non-equilibriumeffectivefieldtheoryMicroscopicSchwinger-Keldysh pathintegral:(double#ofd.o.f.)

    Integrateoutall“massive”modes:

    1.Whatare?

    notmanageablebeyondperturbationtheory

    2.Whatarethesymmetriesof?

    Dependonclassofphysicalsystemsand

    Lowenergygaplessmodes(twosets)

  • Non-equilibriumEFT

    Renormalizationgroup,universality

    Microscopicdescription

    Macroscopicphenomena

    lowenergyeffectivefieldtheory:

    Notmuchexplored

    Example:effectivefieldtheoryforgeneraldissipativefluids.

  • Effectivefieldtheoryfordissipativefluids

    PaoloGloriosoMichaelCrossley

    arXiv:1511.03646

    SeealsoHaehl,Loganayagam,RangamaniarXiv:1510.02494,1511.07809

  • FluiddynamicsConsideralong wavelengthdisturbanceofasysteminthermalequilibrium

    conserved quantities:cannot relaxlocally,onlyviatransportsGaplessandlong-livedmodes(universal)

    non-conserved quantities:relaxlocally,

    Hydrodynamics

    dynamicalvariables:(localequilibrium)slowlyvaryingfunctionsofspacetime

    Phenomenologicaldescription:

  • O’Haraetal(2002)

  • Despitethelongandglorioushistoryofhydrodynamics

    Itislikeameanfieldtheory,doesnotcapturefluctuations.

    Therearealwaysstatistical fluctuations…..

    transports,

    Importantinmanycontexts:

    Atlowtemperatures,quantum fluctuationscanalsobeimportant.

    Longtimetail,

    dynamicalaspectsofphasetransitions,

    non-equilibriumstates,

    turbulence,

    finitesizesystems….

  • Phenomenologicallevel:stochastic hydro(Landau,Lifshitz)

    :noiseswithlocalGaussiandistribution,fluctuation-dissipationrelations

    3.fluctuationsofdynamicalvariablesthemselves

    Far-from-equilibrium:

    1.interactionsamongnoises

    2.interactionsbetweendynamicalvariablesandnoises

    Untilnownosystematicmethodstotreatsuchnonlineareffects.

    non-equilibriumfluctuation-dissipationrelations?

    Goodfornear-equilibriumdisturbances

  • Searchingforanactionprinciplefordissipativehydrodynamicshasbeenalongstandingproblem,datingback atleasttotheidealfluidactionofG.Herglotz in1911.

    Manyactivitiessince70’stounderstand hydrodynamicfluctuations,longtimetails…

    SearchingforanEFTdescriptionshouldbedistinguishedfromsearchinganactionwhichjustreproducesconstitutiverelations(whichmaynotcapturefluctuationscorrectly).

    Wewillbeabletoaddresstheseissuesbydevelopinghydrodynamicsasanon-equilibriumeffectivefieldtheoryofageneralmany-bodysystematafinitetemperature.

    Subsequent work include Taub, Salmon; Jackiw et al.; Andersson et al.

    The last decade has seen a renewed interest: including, Dubovsky,Gregoire,Nicolis andRattazzi inhep-th/0512260andfurtherdeveloped byDubovsky,Hui,Nicolis andSon,Grozdanov et al, Haehl et al, Kovtun et al ….

    Holographic derivation: Nickel, Son; de Boer, Heller, Pinzani-Fokeeva; Crossley, Glorioso., HL, Wang.

  • Hydroeffectivefieldtheory

    hydrodynamicmodes(2sets)

    1.Whatare? donotwork

    2.Whatarethesymmetriesof?

    3.Integrationmeasure?

    Atlongdistancesandlargetimes:

    Allcorrelationfunctionsofthestresstensorandconservedcurrentsinthermaldensitymatrix

  • DynamicalvariablesRecallLagrangedescriptionofhydrodynamics:

    :labelfluidelements : describefluidmotion

    Forageneralmany-bodysysteminagenericdensitymatrixstate,wedevelopedan”integrating-in”proceduretoshowthat gaplessd.o.f.associatedwithaconservedstresstensor canbedescribedby:

    :internaltime

  • Standardhydrovariables(whicharenowderivedquantities)

    Noise:

    Asignificantchallenge:ensuretheeoms fromtheactionofXcanbesolelyexpressedintermsofthesevelocity.(e.g.solids v.s.fluids)

  • Symmetries

    Requiretheactiontobeinvariantunder:

    labelindividualfluidelements, internaltime

    definewhatisafluid!

    Itturnsoutthesesymmetriesindeeddomagicforyou:

    atthelevelofequationsofmotion,theyensurealldependenceondynamicalvariablescanbeexpressedinandtemperature.

    Recoverstandardformulationofhydrodynamics(modulo phenomenological constraints)

  • ConsistencyconditionsandsymmetriesWeareconsideringEFTforasystemdefinedwithCTP:

    Whencoupledtoexternalsources:

    • Reflectivitycondition:

    • Unitarity condition:

    RequirestheactiontosatisfyaZ2 reflectionsymmetry

    Introducefermionic partnerseachfordynamicalvariablesandrequiretheactiontohaveaBRSTtypesymmetry.

    complexaction,fluctuationsofnoisesaredamped.

  • • KMSconditionplusPTimplyaZ2 symmetryonW:

    LocalKMScondition:Z2symmetry

    Non-equilibriumfluctuation-dissipationrelations

    AlltheconstraintsfromentropycurrentconditionandlinearOnsagerrelations

    NewconstraintsonequationsofmotionfromnonlinearOnsagerrelations.

    supersymmetry

  • Summary1.Hydrodynamicswithclassicalstatisticalfluctuations

    isdescribedbyasupersymmetric quantum fieldtheory

    2.Hydrodynamicswithquantumfluctuationsalsoincorporated

    isdescribedbya“quantum-deformed”(supersymmetric)quantumfieldtheory.

  • Example:nonlinearstochasticdiffusion

    Considerthetheoryforasingleconservedcurrent,wheretherelevantphysicsisdiffusion.

    Dynamicalvariables: (or)

    Roughly,:standarddiffusionmode,:thenoise.

    Ifignoringinteractionsofnoise

    AvariationofKardar-Parisi-Zhang equation

  • Applications

    transports,

    Longtimetail,

    dynamicalaspectsofphasetransitions,

    non-equilibriumstates,

    turbulence

    …...........

  • Holographicdualityand

    non-equilibriumsystems

  • HolographicdualityMaldacena; Gubser, Klebanov,Polyakov;Witten

  • Extradimension:geometrization ofrenormalizationgroupflow!

    shortdistance(UV)

    longdistance(IR)

  • Aprototypeexample

    N =4Super-Yang-Millstheoryin(3+1)dimensionswithgaugegroupSU(N)

    Maldacena (1997)

    Astringtheoryin5-dimensionalanti-deSitter spacetime

    anti-deSitter(AdS):homogeneousspacetimewithnegativecosmologicalconstant.

    scaleinvariantArelativeofQCD

    Classicalgravitylimit(Einsteingravityplusmatterfields)

    StronglycoupledandlargeN limit

    =

    =Manyexamplesindifferentspacetime dimensions known.

    Previously impossibleproblems instronglycoupled systemscannowbemappedtosolvable problemsclassicalgravity!

  • Anti-deSitter(AdS)spacetime

    t

    Boundary

    AdS spacetime isalikeafinitesizebox,confinedbygravitationalpotential

  • Dictionary

    BulkBoundarystates states/geometries

    operators fields

    • Spin, charge • Spin, charge• dimension • mass

    • metric

    • Gaugefield

    Partitionfunction Partitionfunction

    Correlationfunctions Scatteringamplitudes

    …..... ….....

  • ThermalstateThermalstate Schwarzschild

    blackhole

    Macroscopicbehaviordictatedbyblackholegeometry

    Finitechargedensitystate

    Chargedblackhole

  • Powerofholographicdualitystrongcouplinglimit Classicalgravity

    1. Greatlyreducesthenumberofdegreesoffreedom

    Quantummany-body classicalfew-body

    Cantrackrealtimeevolution

    2.highlyquantummechanical,strongcouplingphenomenaoftenfollowsfromsimplegeometricpictureorgravitationaldynamics

    3.Geometrization ofRG:likeamagnifyingglasshelpingunderstandphysicsateveryscale

  • Microscopicdescription

    Infrared?

    Boundary

    zIRgeometry

    IRfixedpointGapped

    Finitetemperature

    IRscalinggeometryIRgeometryendsatfiniteproperdistance

    Blackholehorizon

    IRphysics

  • Holographyandnon-equilibriumphysics

    Holographicdualityalreadyledtomanynewinsightsintonon-equilibriumphysics

    Near-equilibrium: transports

    Farfrom-equilibrium: Quantumturbulence

    Manyothertopics:

    Relaxation:quasi-normalmodes

    Quantumquenches

    Thermalization:unreasonableeffectivenessofhydro….......

    Non-equilibriumsteadystates

  • Dissipation

  • Shearviscosityfromgravity

    BHσ :absorptioncrosssectionofgravitons byablackhole.

    Fieldtheory:slightlydeformthemetricofspacetime.

    Gravitypicture:

    Kovtun,Policastro,Son,Starinets

  • Transports

    DCelectricconductivity,thermalconductivitiesandbulkviscosityallcapturedbygeometriesatthehorizon.

    DCconductivity Blake,TongGauntlett,Donos,…....“anti-Matthiessen's rule”

  • QuantumTurbulenceIrregular,chaoticmotionofsuperfluidvortices

    Feynman1955Viven,1957

    Mauer andTabeling,1997

    e.g.Kolomogorov scaling

    Someoutstandingquestions:

    DoestheobservedKolomogorov scalinghasaclassicalorigin?

    anenergycascadeanddirectionofthecascade?Especially2+1d

    Dissipationmechanism?

    “Quasi-classical”quantumturbulenceSmith,Donnelly,Goldenfeld,Viven,1993……….

    Holographicduality(firstprinciplecalculation)canprovidedefiniteanswerstothesequestions Chesler,HL,Adams,Science341,368(2013)

  • HolographicSuperfluid

    Holographyrelatesasuperfluidin2+1dimensionstoclassicalelectrodynamics +chargescalar+gravity in3+1dimensions.

    boundary

    horizon

    Charge and scalar condensateT

  • Vortices in the superfluid (blue disks on top) extend to flux tubes --- holes in the screen.

    Holographicsuperfluidwithvortices

    2+1dimensionalboundary

    Energycanfallthroughtheseholesintotheblackhole.Vorticesthusallowdissipation.

  • InitialconditionsInitial data: periodic lattice of winding number n = ±6 vortices.

    We consider T ⇡ 0.6Tc Tc ⇡ 0.06µ

    Superfluid can dissipate into the normal component, but the effects on the normal component are neglected. (works for T not too low)

    Superfluid: 77% Normal: 23%

  • KineticEnergySpectrumScalingwithkChesler, HL, Adams

    k�53 k�3

    Scalingrange: Averagevortexspacing

    Indicatesquantumeffectssignificant!

  • Energy can fall through these holes into the black hole.

    Dissipationscale:

    kdiss =2�

    vortex size

    Vortices: holes in the screen

    Vortex size ⇡ 1 kdiss ⇡ 2� > �+ ⇡ 3

    Direct energy cascade ! confirmedbydirectdriving

  • SummaryKolomogorov scaling

    Energydissipationthroughvortexannihilationsbyleakingthroughvortexcore

    Directcascadein(2+1)-dimensionincontrasttotheinversecascadeofordinaryfluidturbulence

    Mustbeofquantumorigin

  • ThankYou