effect of palm fiber on photo and thermo-degradation...

8
Kasetsart J. (Nat. Sci.) 48 : 908 - 915 (2014) 1 Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thanland. 2 Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF), CNRS UMR 6296, BP 10448, F-63000, France. 3 Clermont Université, ENSCCF, BP10448, F-63000, Clermont-Ferrand, France. * Corresponding author, e-mail: [email protected] Received date : 05/11/13 Accepted date : 01/09/14 INTRODUCTION Cellulose fiber based composites have been applied commercially in the construction and automotive industries (Mohanty et al ., 2000). Durability to outdoor environments for these cellulose fiber-based composites was of concern, especially to solar light. Attention has mainly focused on the photo-degradation of wood-polyethylene (PE) submitted to natural and Effect of Palm Fiber on Photo and Thermo-Degradation of Polyethylene Composites Wirasak Smitthipong 1 , Rungsima Chollakup 1,2, *, Wuttinan Kongtad 1 and Florence Delor-Jestin 2,3 ABSTRACT Polyethylene/palm fiber composites (PEP) were prepared by blending low density polyethylene (PE) and palm fibers (diameter < 1 mm) in a twin-screw extruder. Thin films of PEP at 0–30% fiber weight were either exposed to accelerated artificial photo-ageing (λ > 300 nm, 60 °C) or to thermo-oxidation at 100 °C in an aerated oven. Infrared (IR) spectra after photo-oxidation showed that the incorporation of fibers in PE increased its degradation rate with the formation of carbonyl and vinyl groups. A decrease was observed in the aromatic C=C absorption IR peaks of the lignin structure in the PEP composites. This indicated that the lignin structure in the fibers was photo-oxidized and produced radical species for oxidation. Crystallinity change of the PEP composites, analyzed using differential scanning calorimetry, tended to increase upon photo- and thermo-ageing. This effect could be explained by chain scissions involved in the oxidation process, as the shorter chains of PE would have a higher mobility, allowing the reorganization of the PE matrix. Compared to thermo-degradation, the amount of vinyl groups remained constant indicating no reaction of the ketones in a Norrish type II process. The higher thermo-oxidation rate in PEP composites may be a result of radical species of cellulose and hemicellulose degradation in palm fibers. Keywords: polyethylene (PE), palm fiber, photo-degradation artificial weathering (Stark and Matuana, 2004; Stark, 2006; Ndiaye et al., 2008; Taib et al., 2010). These studies on wood flour or cellulose-fiber- reinforced PE have focused either on changes in the surface chemistry with IR spectroscopy or on mechanical properties. Most studies found that the fiber inclusion accelerated the oxidation rate upon ultraviolet (UV) to visible light exposure (Stark and Matuana, 2004; Stark, 2006; Ndiaye et al., 2008). Stark and Mutuana (2004) found

Upload: buinguyet

Post on 15-Sep-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Kasetsart J. (Nat. Sci.) 48 : 908 - 915 (2014)

1 Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thanland.

2 Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF), CNRS UMR 6296, BP 10448, F-63000, France.

3 Clermont Université, ENSCCF, BP10448, F-63000, Clermont-Ferrand, France.* Corresponding author, e-mail: [email protected]

Received date : 05/11/13 Accepted date : 01/09/14

IntroductIon

Cellulosefiber based composites havebeen applied commercially in the constructionand automotive industries (Mohanty et al., 2000).Durability to outdoor environments forthese cellulose fiber-based compositeswas ofconcern, especially to solar light. Attention has mainly focused on the photo-degradation ofwood-polyethylene(PE)submittedtonaturaland

Effect of Palm Fiber on Photo and thermo-degradation of Polyethylene composites

Wirasak Smitthipong1, rungsima chollakup1,2,*, Wuttinan Kongtad1 and Florence delor-Jestin2,3

AbStrAct

Polyethylene/palmfibercomposites(PEP)werepreparedbyblendinglowdensitypolyethylene(PE)andpalmfibers(diameter<1mm)inatwin-screwextruder.ThinfilmsofPEPat0–30%fiberweightwereeitherexposedtoacceleratedartificialphoto-ageing(λ>300nm,60°C)ortothermo-oxidationat100°Cinanaeratedoven.Infrared(IR)spectraafterphoto-oxidationshowedthattheincorporationoffibersinPEincreaseditsdegradationratewiththeformationofcarbonylandvinylgroups.AdecreasewasobservedinthearomaticC=CabsorptionIRpeaksoftheligninstructureinthePEPcomposites.Thisindicatedthattheligninstructureinthefiberswasphoto-oxidizedandproducedradicalspeciesforoxidation.CrystallinitychangeofthePEPcomposites,analyzedusingdifferentialscanningcalorimetry,tendedtoincreaseuponphoto-andthermo-ageing.Thiseffectcouldbeexplainedbychainscissionsinvolvedintheoxidationprocess,astheshorterchainsofPEwouldhaveahighermobility,allowingthereorganizationofthePEmatrix.Comparedtothermo-degradation,theamountofvinylgroupsremainedconstantindicatingnoreactionoftheketonesinaNorrishtypeIIprocess.Thehigherthermo-oxidationrateinPEPcompositesmaybearesultofradicalspeciesofcelluloseandhemicellulosedegradationinpalmfibers.Keywords:polyethylene(PE),palmfiber,photo-degradation

artificialweathering (Stark andMatuana, 2004;Stark,2006;Ndiayeet al.,2008;Taibet al., 2010). These studies onwoodflour or cellulose-fiber-reinforcedPEhavefocusedeitheronchangesinthesurfacechemistrywithIRspectroscopyoronmechanical properties.Most studies found thatthefiberinclusionacceleratedtheoxidationrateuponultraviolet (UV) to visible light exposure(StarkandMatuana,2004;Stark,2006;Ndiayeet al., 2008). Stark andMutuana (2004) found

Kasetsart J. (Nat. Sci.) 48(6) 909

that the carbonyl index of thewoodflour/highdensitypolyethylene(HDPE)washigherthanthatoftheHDPE.ThiswasexplainedbythefactthatlignininwoodflourisverysensitivetoUVlightdegradation (George et al., 2005). Inthecurrentstudy,bleachedpalmfiberfromwastes generated from oil production inThailandwerechosentoreinforcethePEmatrix.Theobjectiveofthisworkwastoinvestigatetheeffectofsmallfiberparticleinclusion(1mmsize)onthechemicalstructureandcrystallinityofthesecellulose fiber-reinforced PE composites afterexposuretoacceleratedphoto-andthermo-ageing.Photo-ageingconditioningwasperformedunderUV-lightirradiationat60°C.Thermo-oxidationused an aerated oven at 100 °C.The chemicalmodificationsofthecompositeswereinvestigatedusinginfraredspectroscopy.Differentialscanningcalorimetry(DSC)wasusedtoanalyzethechangein the crystallinity during photo- and thermo-oxidation.

MAtErIALS And MEtHodS

Materials composite preparation Palmfruitbunchesfromanoilproductionfactorywereusedasthesourceofthepalmfibers.Palm fiberswere extracted from agriculturalwastes according toChollakup et al., (2013). Briefly,palmfruitbunchesweretreatedwith25%NaOHonaweightbasis(aliquorratioofNaOHtofiberof15:1)at100°Cfor3hr.Then,thealkalinetreatedcoirfiberswerebleachedat100°Cfor2hrusing30%hydrogenperoxideataliquorratioofsolutiontofiberof30:1. Fiberswere ground into powder andpassed through a 20-mesh sieve using a rotor mill (Pulverisette14;Fritsch;Idar-Oberstein,Germany)ataspeedof16,000revolutionsperminute(rpm).Polyethylene (DowLDPE 320E, PE),with adensityof0.925g.cm-3andameltflowindexof1.0gper10min,wassuppliedbytheDowChemicalCompany (Edegem,Belgium).The palmfibers

at5-20%byfibervolumewereblendedwithPEgranulesinatwin-screwextruder(HaakeMinilab;ThermoScientific;Karlsruhe,Germany) at 170°Cwitharollerspeedof90rpmfor10min.Thentheextrudateswerecutintopalettesandpressedat150°Cfor1minunderapressureof20MPa.Compositefilmswereobtainedwithathicknessof90-130μm. composite ageing IrradiationwascarriedoutinaSEPAP12/24unit.This toolhadbeendesigned for thestudyofpolymerphoto-degradation inartificialageing conditions corresponding to medium acceleratedconditions(Lemaireet al., 1981). For theseexperiments,thetemperatureatthesurfaceofthesampleswasfixedat60°C.Lowtemperaturethermo-oxidationexperimentswerecarriedoutinaventilatedovenat100°C.Analytical method Infrared and ultraviolet spectroscopy Infrared spectra were recorded intransmissionmodewith aNicolet 760-FTIRspectrophotometer (Thermo Fisher ScientificCo.;Waltham,MA,USA)withOMNICsoftware(version 8.3; Thermo Fisher Scientific Co.;Waltham,MA,USA). Spectrawere obtainedusing 32 scans and a 4 cm-1 resolution. To avoid differencesduetofilmthicknessandPEcontents,the normalized absorbance (∆Inormalised) wasreportedaccordingtoEquation1(Morlat-Theriaset al., 2008): ∆

∆I

IInormalized

ref= υ (1)

where∆Iνcorrespondstotheintensitydifferenceofthebandatanywavenumberfromaninitialtimeand Irefcorrespondstotheintensityofthereferencebandat720cm-1,attributedtoC-Hrocking(Pagèset al., 1996). In addition, UV spectroscopy using aUV-2101PC spectrophotometer (Shimadzu;Kyoto,Japan)wasusedtostudythechangeinUVabsorptionafterphotoandthermo-degradation. differential scanning calorimetry Themelting temperature and heat of

Kasetsart J. (Nat. Sci.) 48(6)910

fusionofthecompositesweredeterminedusingDSC (DSC822;Mettler; Toledo, OH,USA).Sampleswerefirstrunfrom25to200°Cat10°Cper min to remove any thermal history. Then, the sampleswerecooledtoroomtemperatureat10°Cpermintorecordthecrystallizationbehaviorbefore reheating to100°Cat20°Cpermin totracethemeltingbehavior.ThecrystallinityofthecompositeswascalculatedaccordingtoEquation2: χ(%) = ×100 0

H

Hf

f (2)

where∆H0f and ∆Hf

are the heat of fusion ofthe 100% crystalline polymer and composites,respectively.∆H0

f is 290 J.g-1forPE.

rESuLtS And dIScuSSIon

Figure 1 shows the IR spectra of thePEcompositesatdifferentfibercontentsbeforeageing.The IR spectra of the PE compositescontainadditionalabsorptionbandsat3000–3500cm-1 attributed to hydroxyl linkages (hydrogenbonds of cellulose, alcohols, hydroperoxides,andofwateramongothers),at1600–1800cm-1 attributedtoconjugatedC=Obondingofcelluloseand ligno-cellulose, and at 900–1300 cm-1 attributed toC-Ovibration (Bajeret al., 2007)comparedtothePEspectra.Theintensityoftheseadditionalbandsincreasednaturallywiththefiber

content(beforeageing).Figure2showstheUV-visiblespectraofthePEPfilmsbeforeageing.Thisfigure shows that cellulosefibers absorb in theUV/visibleregionat280nmandtheUVintensityincreaseswiththefibercontent.LigninisthemaincomponentofthechemicalcompositionoffiberwhichabsorbsrelativelystronglyintheUV/visibleregion(George,2005).Asshownintheresults,thelignincontentofthepalmfiberafterbleachingwas10.9%. As reported for PE (Lacoste andCarlsson, 1992) photo-ageing results in the formationofhydroxylgroups(broadabsorptioncentered at 3430 cm-1), of a carbonyl envelopecentered at 1712 cm-1 and a vinyl group (908 cm-1).Figure3showstheevolutioninthecarbonyldomain for the purePE andPEP composite at30%byweight. It is noteworthy that the sameevolutionswere analogous forPEP compositesand look like the one observed in a PE film(LacosteandCarlsson,1992).Forthesametimeofirradiation,photoproductquantitiesarealwayshigherforPEPthanforPE(Ndiayeet al., 2008). Howeverthecurrentstudyfoundonlyadecreasein the aromaticC=C absorption band at 1595and 1506 cm-1 of PEP composites, indicatinglignin structures as seen in Figure 3. Decreases in these peaks depended on the fiber contentin the composites.For ahigherfiber content, ahigher ratewasobtained (datanot shown).The

Figure 1 Infraredspectraofpolyethylene/palmfibercompositesat0–30%byweightoffibercontentsbeforeageing.

Figure 2 UV (ultraviolet)-visible spectraof polyethylene/palm fiber (PEP)composites at 0–30% byweight offibercontentbeforeageing(PE=Lowdensity polyethylene).

Kasetsart J. (Nat. Sci.) 48(6) 911

disappearance of this peakwhichwas seen bythe negative absorbance values proved that theligninstructureinfiberwasdegradedandfurtheroxidizedtoformparaquinonechromospheresasdescribedbyMuasherandSain(2006).DecreasesintheIRspectraofcellulosefibersat1595and1506 cm-1 afterphoto-oxidationwasobservedonPE/coirfibercomposite(Chollakupet al., 2012) Anincreaseincarbonylgroupsformedduring photo-ageing in the PE and in PEP compositesisshowninFigure4whichindicatesthat the oxidation rate of the PEP compositesincreasedwiththefibercontent.Incontrast,theformation of vinyl groups resulting from thedecompositionofketonesaccordingtotheNorrishIIprocessisthesameforPEandPEPcomposites(datanotshown).Theformationofvinylgroupsindicated that photo-degradation occurred via

Norrish II reactions, resulting in chain scission (Kaci et al., 2000). Figure 5 shows that theabsorbanceintheUVdomain(lessthan300nm)ofthePEPcompositesincreaseswithageingtime.IncreasingUVabsorbanceresultedfromoxidationproducts upon photo-degradation. Thermo-degradation occurred over 200 hr due to the tolerance conditionswithinthepolymerbulkat100°C.Figure6showsthechanges in the carbonyl spectra of thePE andPEP composite during thermo-oxidation.Theoxidation rate after thermo-ageingwas higherthanthatafterphoto-ageing.Therewasnochange

Figure 3 Changes in the infrared spectra of:(a) Low density polyethylene; (b)Polyethylene/palmfibercompositesat30%byweightoffibercontentduringphoto-oxidation in theSEPAPdeviceatλ>300nmand60°C.

Figure 4 Absorbancechangesat1712cm-1 during photo-oxidationofpolyethylene/palmfiber(PEP)compositesasafunctionofageingtime.(OD=theopticaldensity;Verticalerrorbarsindicate±SD;PE=Lowdensitypolyethylene.)

Figure 5 UV (ultraviolet)-visible spectraof polyethylene/palm fiber (PEP)compositesat16%byweightoffibercontentduringphoto-oxidation.

Kasetsart J. (Nat. Sci.) 48(6)912

inthevinylgroupformation(at908cm-1)whichwasanindicationofmainscissionaccordingtoonly aNorrish I reaction (data not shown). Ifthe degradation proceeds according to a Norrish II reaction, carbonyl groups and terminal vinylgroupswould be produced aswas found uponphoto-ageing.IncreasingthefibercontentinthePEP composites produced a distinct increase in carbonylgroupformationasshowninFigure7.However,therewasnodecreaseinthearomaticC=Cabsorptionbandat1506cm-1whichindicatedthatthearomaticlignininthefibercomponentisthermallystable.Ahigheroxidationrateduringthethermo-oxidationofthePEcompositesmayhaveledtothedecreaseinthedegreeofpolymerizationofcelluloseorhemicelluloseat100°C(LeVan,1989). Figure8 shows thechange in theUV-

visiblespectraofthePEPcompositesat16%byweightduringthermo-oxidation.Theabsorbancein the UV domain (less than 300 nm) increased withageingtimeandespeciallywithabsorbanceat280nmwhichincreasedatahigherratethanthatofphoto-oxidation.ThisUVresultsupportedtheIRresultsofthePEcompositesduringthermo-ageing. In photo-ageing, the crystallinity degree ofallPEandPEPcompositeincreasedasshowninFigure 9a.An increasewas observed in thecrystallinity degreewhich tended to a plateauafter200hrexposure.Withprogressinthephoto-

Figure 6 Changesintheinfraredspectraat1712cm-1of:(a)Lowdensitypolyethylene;(b)Polyethylene/palmfibercompositesat 30% byweight of fiber contentduringthermo-oxidationintheovenat100°C.

Figure 7 Absorbancechangesat1712cm-1 during thermo-oxidation of polyethylene/palmfiber (PEP) composites and asa functionofageing time. (OD= theoptical density;Vertical error barsindicate ± SD; PE = Low densitypolyethylene.)

Figure 8 UV (ultraviolet)-visible spectraof polyethylene/palm fiber (PEP)compositesat16%byweightoffibercontentduringthermo-oxidation.

Kasetsart J. (Nat. Sci.) 48(6) 913

oxidationprocess,thenumberofchainscissionsincreasedwithareductioninthemolecularsize,whichallowedtherearrangementoftheseshortermolecular chains according to thewell knownchemi-crystallizationprocess(Wunderlich,1976).This resulted in an increase in the crystallinity degreeforthePEPcomposites. With thermo-ageing, no change incrystallinity ofPEwas found (Figure 9b).Thecrystallinity degree of the PEP compositesproduced similar results to photo-ageing. The longer the ageing time, the higher the crystallinity degree obtained for the PEP composites.Anincreasedcrystallinitydegreewasobservedonlyintheinitialageingtime(100–200hr).Thelongerthe ageing time, the more constant the crystallinity degree of the PE composites became. It washypothesized as described in the photo-ageingabove that themolecule segmentswith bulkyand randomly distributed chemical groups cannotfit into thecrystal lattice.This results inaninterruptionofthechemi-crystallization(StarkandMatuana, 2004). Furthermore, that rearrangement of the shorter PEmolecule should induce theformationofthechemi-crystallinityasexplainedinthe photo-degradation part and result in an increase inthecrystallinityofthepurePE.However,thecrystallinitychangewasnotfoundinthepurePE

due to this thermo-ageing condition accelerating further the degradationmechanism in the PEpolymer.The chemi-crystallinity of the shortermoleculesinthePEPcompositeswasstillbeingformed.Inthermalageing,thermalannealingcanalsoinfluencetheevolutionofcrystallinitywhichwasnotpossibleduringphoto-ageing.Theeffectofthepresenceoffiberwasmainlysignificantfortheevolutionofcrystallinityduringeachtypeofageing.TheinfluenceofsmallchainsinthePEPcompositeswasunderlinedwithspectralanalysisandcouldbeoneexplanationforthecrystallinityincrease. Figure 10a presents only Young’s modulusofthePEandPEPcompositeat5%byweightafterphoto-oxidation.ItcanbeobservedthattheYoung’smodulusofthepurePEincreasedsubstantiallywhen ageing time increased.TheYoung’smodulus of thePEPcomposite tendedtoincrease.Theformationofcarbonylandvinylgroups in the PE indicated main-chain scission, as the shorter chains from the photo-oxidationproducts of the PE have a higher mobilitywith rearrangement tomake the PEmolecularchains more crystalline (Stark and Matuana, 2004).Therefore, theYoung’smodulus of thepurePE increased.However, fiber inclusion inthePEmatrix preventedUVabsorptionofPE,

Figure 9 Crystallinitydegreeofthelowdensitypolyethylene(PE)andpolyethylene/palmfiber(PEP)compositesat8%byweightafter:(a)Photo-ageing;(b)Thermo-ageing.(Verticalerrorbarsindicate±SD.)

Kasetsart J. (Nat. Sci.) 48(6)914

Figure 10 Young’smodulusofthelowdensitypolyethylene(PE)andpolyethylene/palmfiber(PEP)compositesat8%byweightAfter:(a)Photo-ageing;(b)Thermo-ageing.(Verticalerrorbarsindicate±SD.)

consequently, shorter chains of PEwere lesscommoninthePEPcompositewhichmadeitlesscrystalline compared to the PE. Thus, increasing Young’smodulus of the PEP composite afterradiationwaslessinfluentialcomparedtothePE.After thermo-oxidation, the values ofYoung’smodulusofthepurePEandthePEPcomposite(Figure 10b) tended to increasewith increasedageing time.Thiswould describe the previousresults after photo-degradation.However, therewasnochangeinYoung’smodulusforanyofthePEP composites.

concLuSIon

Thepalmfibercontent incorporatedinthePEmatrixresultedinchangesinthefunctionalgroups and crystallinity of thePEP compositesafter photo- and thermo-ageing. Lignin in thefiberswas sensible toUV absorbancewhichproduced radical species and initiated the chain scissionofpolymersuponphoto-oxidation.Uponthermo-oxidation, cellulose and hemicellulosewere themain components producing radicalspeciestoincreasethepolymeroxidation.Chemi-crystallizationalsoproducedhighercrystallizationafterageing.ThisresultsofthisstudysuggesttheadditionofUV stabilizer inPEPcomposites toprevent photo- and thermo-degradation.

AcKnoWLEdgEMEntS

This workwas supported byKAPI,Kasetsart University, Bangkok, Thailand and Institut de Chimie de Clermont-Ferrand (ICCF), LeCentre national de la recherche scientifique(CNRS). Universite Blaise Pascal, Clermont-Ferrand, France.

LItErAturE cItEd

Bajer,K.,H.Kaczmarek, J.Dzwonkowski,A.StasiekandD.Oldak.2007.PhotochemicalandthermalstabilityofdegradablePE/paperwaste composites obtainedby extrusion.J. Appl. Polym. Sci.103:2197–2206.

Chollakup,R.,W.Smitthipong,W.KongtudandR. Tantatherdtam. 2013. Polyethylene green composites reinforced by cellulose fibers(coirandpalmfibers):effectoffibersurfacepreparationandfibercontent.J. Adhes. Sci. technol.27:1290–1300.

Chollakup, R., F. Delor-Jestin, A. Rivaton, S. Therias and J.L.Gardette. 2012. Influenceof coir fiber on stability of polyethylenecomposites exposed to photo and thermo-ageing, p. 131. In Abstract book of 7th International conference on Materials Science and technology. June 7-8, 2012.SwissotelLeConcorde,Bangkok,Thailand.

Kasetsart J. (Nat. Sci.) 48(6) 915

George, B., E. Suttie, E., A. Merlin and X. Deglise. 2005.Photodegradationandphotostabilisationofwood-thestateoftheart.Polym. degrad. Stab.88:268–274.

Kaci, M., T. Sadoun. and S. Cimmino. 2000. HALS stabilization ofLDPEfilmsused inagricultural applications. Macromol. Mater. Eng.278:36–42.

Lacoste, J. andD.J.Carlsson. 1992.Gamma-,photo-, and thermally-initiatedoxidationoflinearlowdensitypolyethylene:Aquantitativecomparisonofoxidationproducts.J. Polym. Sci. Part A: Polym. chem.30:493–500.

Lemaire,J.,R.ArnaudandJ.L.Gardette.1981.Le vieillissement des polymeres: principesd'etude du photovieillissement. rev. gen. caoutch. Plast. 613:87–92.[inFrench]

Levan, S.L. 1989.concise Encyclopedia of Wood & Wood-based Materials. 1st ed., PergamonPress. Elmsford,NY,USA. pp.271–273.

Mohanty, A.K., M. Misra and G. Hinrichsen. 2000.Biofibers,biodegradablepolymersandbiocomposites:An overview.Macromol. Mater. Eng.276-277:1–24.

Morlat-Therias,S.,E.Fanton,J.L.Gardette,N.T.Dintcheva,F.P.LaMantiaandV.Malatesta.2008.Photochemicalstabilizationoflinearlow-density polyethylene/clay nanocomposites: Towards durable nanocomposites.Polym. degrad. Stab.93:1776–1780.

Muasher,M.andM.Sain.2006.Theefficacyofphotostabilizersonthecolorchangeofwoodfilled plastic composites.Polym. degrad. Stab. 91(5):1156–1165.

Ndiaye,D., L.M.Matuana, S.Morlat-Therias,L.Vidal,A.TidjaniandJ.L.Gardette.2008.Durabilityofwoodpolymercomposites:Part1. Influenceofwoodon thephotochemicalproperties. compos. Sci. technol. 68: 2779–2784.

Pagès,P.,F.Carrasco, J.SurinaandX.Colom.1996. FTIR and DSC study of HDPEstructural changes and mechanical properties variationwhenexposedtoweatheringagingduringCanadianwinter.J. Appl. Polym. Sci. 60:153–159.

Stark,N.M. 2006. Effect ofweathering cycleandmanufacturingmethodonperformanceofwoodflourandhigh-densitypolyethylenecomposites. J. Appl. Polym. Sci. 100: 3131–3140.

Stark,N.M. andL.M.Matuana. 2004. Surfacechemistry and mechanical property changes of wood-flour/high-density-polyethylenecomposites after acceleratedweathering.J. Appl. Polym. Sci.94:2263–2273.

Taib,R.M.,N.S.A.Zauzi,Z.A.M.IshakandH.D.Rozman. 2010.Effects of photo-stabilizerson the properties of recycled high-densitypolyethylene (HDPE)/wood flour (WF)composites exposed to naturalweathering.Malaysian Polym. J.5:193–203.

Wunderlich,B.1976.Macromolecular Physics. Vol. 2: crystal nucleation, growth, Annealing.AcademicPress.NewYork,NY,USA. 461 pp.