effect of nitro gen source on growth response to salinity...

6
growth Effect of nitro gen source on response to salinity stress wheat In maIze and By O. A. M. LEWIS *, E. O. LEJ DI AND S. H. LIPS P lant A daptatioll Research Ullit, Th e Ja co b Blausteill Institut e for D ese rt R ese ar ch, Ben C llrion U lli'L'er sity 01 the Nege'L', S ed e Boq er Campus, Isra el 8-1993 " l ' :\1 :\ 1 t\ H Y ' rh e e fleel 0 1' HmnlOnium 'lIld nitra te nutri t io n on mai zc and \\"h c at g r o\Vn hy d ro [) onie all) ' a nd sa linit y st re sse d II ' <I S 8ssesse d from men s ur eme nt s of gro\\"th rat e and gas exchan ge. In both maize and wheat the H mmonium- g r o \\"n p lant s lI'ere mu ch more sc ns itin' 10 s, Jlinit y toxi ci ty than nitTate-gro\\"n plant s parti c ularly \\"h en ex p ose d to 6 () - RO sal initv, Shoot gr()\nh \\"as r eta rd ed to ¡¡ far g reat er ex ten t than root g ro \\"th in sa linit \'- st r cssed [)Ian ts 0 1' borh \\"h e at ' Ind mai ze \\'ith e ith er nirrogen so ur ce, There \\"as n o s ig nili ca nt decrease of phot os\' n theti c rate in s alinit y-s tr essed planl's 01' e ith er s pe eies fed nitral t' or alllmonium, exee pt in s eH'rch' \\"ilt e d [)I an ts of both s pe cies fed nitrare 0 1' ammoniu1l1 e l( the high es t (X O s alinit\ , co nc entnnion , Th e s ame \\"a s tTu e 1' 0 1' s tomaral co ndu ctan ee , transpiration rale 3nd tran sp i ratio n ratio (\\'a ter use e Hi cien cv), In nitnll' e- fe d ",h ca t, mi sing th e ea lcium co n cc nrrari on from 2 t'o 12 nHI in the [)rese n ee of 6 () sa linit y [)rodu eecl nn II "c, in cr ease in g ro\\ ,th, Thi s eHect is nsc rib e cl to illlprn\ 'e d nitrat e u[)tak e due lO c alciulll [)rote ct ion of the nitrat e tran s port er and \Va s not el'ident in ammonium- g ro\\'n ",h e at, P oss ible rea so ns for the dillere ntial cHects of amlll o niulll ancl nitral' e nutr i¡i o n ar e c1iscussccl, I-"':' ey words: Sa lini ty t()xic ity , nitrate nutritiun, anll110tÚUIll nutriti o J1, c a1ciulll nutri tiun, phot osy nth es is. Illai ze. \\ 'hea!. I NT HO D lIC TI ON Two major e tlec ts h ave be en id entified as th e probable c au ses 01' sa linit y toxi ci ty in va riou s plant s: th e iuni c e lfec t and th e us motic effect. Th e ioni c e fi' ec ts inc lud e int e rfe ren ce with nitrog en uptake, dis locat ion 01' nitro ge n assim il a tion and pr otein asse lllbly, int e rfe ren ce \Vith the tran s port 01' esse nti al ion s w ithin th e pl a nt and a lowering of net photo- synt h et ic rat es in the affec ted plant s, Th c oSll1otic e flects are assoc iated wirh lack of ce ll wall exrension a nd ce 11ul ar e xpan sion lead in g to cessa tion of g ro"'th, A range 01' upiniuns e xi st as ro whi ch uf thc se facto rs is chieA y operat ive in th e ma nifes tation 01' s alinit y tox ic it y in v arious plant s pe cies, Raw so n (1 986), for exa mp1e, re port s a sa linit y- indu ce d d ec rease III ph otosynt h et ic r ate in wh ea t a nd barl ey , wh il e water u se e Hi cien cy is onl y mar gina 11y a fFec te d, Downton ( 1 977) al so re port s a d ec r ease 01' photos y nth etic rate in s alinit y-s tr esse d g rap e vin es with an acculllu lati on 01' intermediat es 01' the gl yco ly ti c pathway , T e rr y & " But <ln y Dcp <lrlm enl , U ni\ ' ersill' ofC"pc To\\'n, H. unclcbo sc h, 77 00, Suulh Arríe", \"' aldron ( 1986 ) , how evc r, obsen'ed no etfect on the r at e 0 1' phot osy nth es is in su ga rb ee t 01' sa linit ), leve ls 0 1' up to 250 m ;V1 in the fee din g medium, the toxi cit), e f-Tec ts being brou g ht about b y sa linit y- indu ced c han ges in leal' wat er sta tu s whi ch co uld be alm os t comp lete ly oA'set by increa ses in relati,'e hUlllidit y, HuHak er & Rains (1986) r epo rt an incr ease d activit y 01' th e nitrat e tr ans port er by th e a ddition 0 1' calci um to sa l inity-str esse d barl ey, this increasing th e rat e 01' nitrate ass imil at ion and seedl ing gr o\\,th in th ese plant s, Helal & lVIenge l (1979) re pon an imprm'e- Ill e n t 01' growt h and nitro gc n utili za tion in yo un g, salinized barl ey plant s by the addition of potassiulll to th e sa lin e nutri e nt Ill e dium, Te rlllaat & lVIunn s ( 1986) hm 'e sh own that both osmot ic and ionic effects are operat ive in sa linit y toxi city indu ct ion in barl ey, wh ea t a nd clove r, th e ionic e tTec ts being asc rib ed to a p oss ib1e d ec r ease in th e r at e o f transport to th e s hoot of an esse nti al nutri e nt, In the work to be describ ed here furth er fa cto rs whi ch co uld be ill\'o h-ed in the r es ponse 01' plants ro sa linit y stress ha ve be en itw est iga ted: th e et r ect 0 1' rh e foml in whi ch nitro ge n is fed to th e plant

Upload: others

Post on 26-Apr-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Effect of nitro gen source on growth response to salinity ...digital.csic.es/bitstream/10261/86848/4/Effect of nitr.pdfEffect of nitro gen source on growth response to salinity stress

growth Effect of nitro gen source on response to salinity stress wheat

In maIze and

By O. A. M. LEWIS*, E. O. LEJ DI AND S. H. LIPS

P lant A daptatioll R esearch U llit , Th e Jacob Blausteill Institut e for D esert R esearch, Ben C llrion U lli'L'ersity 01 the Nege'L', S ede Boqer Campus, Israel 8-1993

" l ' :\1 :\ 1 t\ H Y

' rh e e fleel 0 1' HmnlOnium 'lIld nitra te nutri t io n on mai zc and \\"h cat g ro\Vn hyd ro [)o ni eall) ' a nd sa linity st ressed II'<I S

8ssessed fro m men surem ents of gro\\"th rate and gas exch a nge. In both m a ize and wheat the Hmmonium- g ro \\"n p lants lI'ere mu c h more scns itin' 10 s, Jlinit y toxi c ity than nitTate-gro\\"n plants parti c ularly \\"h e n ex p osed to

6 ()- RO m ~ 1 sa linitv, Shoot gr()\nh \\"as reta rd e d to ¡¡ far g reate r ex ten t than root g ro \\"th in sa linit\' - st rcssed [)Ian ts 0 1' b o rh \\"h eat 'Ind mai ze \\'ith e ith e r nirrogen so urce,

There \\"as no s ig nili ca nt decrease o f photos\' n theti c ra te in salinity-s tressed pl a nl's 01' e ith e r s pee ies fed nitral t' o r alllmonium, exee pt in seH'rch' \\"ilt ed [)I a n ts o f both s pec ies fed nitrare 0 1' ammoniu1l1 el( th e hi g h es t (XO 1ll ~ 1 )

s alinit\, concentnnion , The same \\"a s tTu e 1'0 1' s tomaral condu c ta nee , transpiration rale 3nd transp iration ratio

(\\'a te r use e Hi c ie ncv), In nitnll'e- fe d ",hca t, mi s in g th e ea lcium concc nrrari o n fro m 2 t'o 12 nHI in the [)resenee of 6 () m~1 sa linity [)rodueecl nn II " c, inc rease in g ro\\,th, Thi s eHect is nsc ribecl to illlprn\'ed nitrate u[)tak e due lO

c alciulll [)rotect ion o f th e nitrate tran sporte r and \Vas not e l'ident in ammonium- g ro\\'n ",heat, Poss ibl e reasons for t h e dille re ntial cHec ts o f amlll o niulll ancl nitral'e nutr i¡i o n are c1iscussccl,

I-"':' ey words: Salini ty t()xi city , nitrate nutritiun, anll110tÚUIll nutritio J1, c a1ciulll nutri tiun, photosy nth es is. Illai ze.

\\'hea!.

I NT H O D lIC TI ON

Two major e tlec ts h ave been id entified as th e probable causes 01' sa linit y toxi c ity in va riou s plants: th e iuni c e lfec t and th e usmotic effect. Th e ioni c e fi'ec ts inc lude inte rfe rence with nitrogen uptake, dis locat ion 01' nitrogen assim il a tion and pro te in asse lllbly, inte rfe ren ce \Vith the tran sport 01' essenti a l ion s within th e pl ant and a lowering of n et photo­synthet ic rates in the affec ted plants , Thc oSll1otic e flects are assoc iated wirh lack of ce ll wall exren s ion a nd ce11ul a r expans ion lead in g to cessa tion of g ro"'th, A range 01' upiniuns exist as ro whic h uf thcse facto rs i s chieA y operat ive in th e m anifes tation 01' salinity tox ic ity in various plant spec ies , Rawson (1 986), for

examp1e, reports a sa linity- indu ced d ec rease III

p hotosynth et ic rate in wh ea t and barl ey , wh il e wa te r u se e Hi c iency is onl y marg ina11y afFected, Downton ( 1977) al so reports a dec rease 01' photosynthe ti c rate in salinity-stressed g rapevines with an acculllu lation 01' intermediates 01' the g lyco lyti c pathway , T e rry &

" But <ln y Dcp<lrlm enl , U ni\'ersill' ofC"pc To\\'n, H.unclcbosch , 7700, Suulh Arríe",

\"' aldron ( 1986) , h owevc r, obsen'ed no etfect on the rate 0 1' photosynthes is in s uga rbeet 01' sa linit ), leve ls 01' up to 250 m ;V1 in the feedin g medium, the toxi c it), e f-Tec ts b e ing brought about b y sa linity- induced changes in leal' wate r sta tu s which co uld b e alm os t completely oA'set by inc reases in relati,'e hUlllidity, HuHaker & Rains ( 1986) repo rt an in c reased activity 01' th e nitrate transporte r b y th e addition 0 1' ca lc ium to sa linity-stressed ba rl ey, this inc reas ing the rate 01' nitrate ass imilat ion and seedl ing g ro\\,th in these plants , H e la l & lVIenge l (1979) repon an imprm'e­Ill en t 01' growth and nitrogcn utili za tion in yo ung, sa lini zed barley plants b y the addition of potassiulll to th e sa line nutri ent Ill edium, T e rlllaat & lVIunn s ( 1986) hm'e shown that both osmot ic and ioni c effects are operative in sa linity toxi c ity induction in barl ey, wh ea t and c love r, th e ioni c e tTec ts be ing asc ribed to a poss ib1e d ec rease in th e rate o f transport to th e shoot of an essenti a l nutri ent,

In the work to b e described h ere furth e r fa cto rs which co uld b e ill\'o h-ed in th e response 01' p lants ro sa linity stress ha ve been itwest iga ted: th e etrect 0 1' rh e foml in which nitrogen is fed to th e plant

Page 2: Effect of nitro gen source on growth response to salinity ...digital.csic.es/bitstream/10261/86848/4/Effect of nitr.pdfEffect of nitro gen source on growth response to salinity stress

(am m o nium o r ni trate) and the p h otosyn th e ti c path way (C3 o r C4) w hi ch th e p lan t possesses. Th ese effects we re quant ifi ed b y th e m easurem en t o f g rowth rate, moisture eontent , root: sh oot rat io , photosynth et ie rate, transpirat ion rate, s tomata l

co ndu c tan ce and t ran spirat ion rat io (wate r use cf-lie ien ey) in the expe rim ental plants.

MATE !!I A L S ANO :vIET H O O S

G rlJzu / h CO l1diÚOIIS

Tri /iC/1111 aes /iVIIIII L. va r o Barkay an d Zea mays L . varo H aze ra were g ro wn to 31 and 2 1 d respect ive ly JI1 h yd ropon ic culture, after w h ich rh e p lanrs we re h a r"ested.

T h e ma lze p lanrs were ra ised 111 rhe open dur ing Jul y and August unde r eondi t ion s s uitab le fOI' plants possessing th e C4 path way. M idda y irra cli ance was c. 2500 l' E m "s 1 , miclda y temperatures Au ctuated between 2X an d 35 oC and ni g ht temperaru res did not fa ll be low 20 oC, Da ytime rc lat ive humidiry

va ri ed between 20 ancl 35 °o. Th e wheat p lants we re ra ised 111 a fib re-g lass-roofed g reenhouse during

Scptembe r an d October unde r conditions more s u ita h le ror pl an rs possessi ng th e C3 phorosynth eti c pathway. Midday temperarures 111 t he g reenho usc Hu c ru a ted between 25 an d 30 oC w ith nighr rem­penltures berween 7 and 14 oC. Daytime relat ive humidities we re between 25 and 35 (jo bur ni ght- time

humiditi es rose on occas ions to 85 "". M idda y irradia nce on the usuall )' c loud lcss days was measu red at between 700 and 750 l/ E m - t S- l.

¡;;xperilll ell/al de /ail

1 n the maize ex periments, e ig h t p lants were g rown in each of sixtee n 20 l p lasr ic conta ine rs with ho les d rill ed in th e lids to accommodate them . 'rhe plants we re g rown to 21 days on we ll -aerared Long Ash ro n growth med ia modified to co n ta in nitrate-onl y o r am­m o nium -on ly as the 4 mM ni rrogen souree (1I e", irr, 1966); rh e pH of th e solu rion s was m<l in ta in ed at between 7·0 and 7·9 . T ",o eontai n ers of e ight plants eaeh se rved as rhe non -sa line contro l fo r the nitrate­fed pl an ts and a furth e r two for rhe ammo n ium - fed p lan ts. T he othe r conta ine rs we re c1iv ided into 20, 50 and 80 mM NaCI treatments (2 conta ine rs each ) fo r ammonium-fed p lan ts and nitrate-fed plants. Th e p lan ts we re harvesred in pa irs afte r 21 days, div ided in to root and sh oot, and the fresh an d dry we igh t of eaeh p<l lr dete rmin ed . In the wh eat ex pe rim ents no n -sa li ne co n t ro ls ",e re as for th e malze expe r­iments but o nl y one sa lini ty leve l, 60 m M NaC I, was used. T hi s IS th e app rox im ate concentration of sa lini t y in the Negev aqu ife r , ",he re the major so lu te IS NaC I. Previous ex p e rimentation had shown thi s sa linir y leve l to he sati sfac tor y for the produ cti on of

stress symptom s in wheat w itho ut killing th e plants . The remaining conta ine rs "'e re di vid ecl in to 2, 6 and

...;

o

'" 1-

o 2 e o

..c :F.

o o ce

e o

c::

e e ~

..c <JO lJ ....

1..:...

;". 1-

el

N\OCO -In + + + Q'\ O" Q\ Q'\

O"M -t- '-D ':"':" 6&. 0-0-0-00

N ...oMf'.. MNÑ"':'" Q'\ Q'\ O" O"

r- r-¡ 00 cr-. oo ;- NO NÑÑÑ

, ....... M -t­...o I ~ C:1 N -- - ......

("')('.1_ M --- o 6666 +1+1+1+1 .,j- NOoo

7. ::~~::

...00 11") N 00 N ...... M Ñ 4- In o +1+1+1+1 00 \.O , ........ .­...0.- "'i" r ..... ~-t-oo ...:... MMNN

00 1 ........ 000 r-I MMM

6666 +1+1+1+1 -Q'\~­O-Q'\M

+~MM

00 ;- ,.,0 M 0"'1 , ....... \O -1- In In M +1+1+1+1 11) 11"') 00 "" I r) 11) M \.O 00..0"':"'0-. l(j I r) Ir) M

0000 M Ir) C()

- r---. '-DN ...o In In + 0-0-0-0-

00 1- -(""'") ':"':" 6&. o- o- o- 00

'0 '0 '? '0 MMN _

0-0-0-0-

C"'I - ..o I r) o-. -t- ("'\1 ('.1

r..INr..I r..1

000000 -- -0-6666

:/. :1 j;1 ,-;;1 ;tI ('.1 Q'\ 00 ...o

,-. ':"666 E :!.

1- I r) I r) 00 MO"NN M ":""'1 "':­+1+1+1+1 N , ...... M 11"')

6'":'"'la..~ MN_ ..-

N

+ O'Moo \O I-- -t-Ñ "':"' ''';'N

+1+1+1+1 00,........0....0 ?~Ñ? Mf"-..N-r ;-N

0"1"0--t N - 11")

6666 +1+1+1+1 '+\00000 I'NO-~MMr..1

"'0-0 MMM...o 00 1;" ..:.. M +1+1+1+1 I r¡ -t- 0"....0 MOool,Q M 6 ":" In r ..... I r) + N

0000 M Ir) 00

¿ :.-Ó

..c <JO

.~

e ro <ti

E

+1 1-.¡;; o.

..c u ro <ti

'O <JO <JO

'" E -o <ti e

.D

E o U

<1J bII ce 1-<ti ;.. ce <1J

-E -o e ce <JO 1-

ro o. e

Page 3: Effect of nitro gen source on growth response to salinity ...digital.csic.es/bitstream/10261/86848/4/Effect of nitr.pdfEffect of nitro gen source on growth response to salinity stress

12 m :\'1 C a treatme nts (2 co ntaine rs each) fo r salinit y

s tressed nitl'a te -fed a nd ammonium-fed pl ants , Th e p la nts w e re h a rves ted afte r 3 1 d ays and trea ted as in the m a ize e xpe l' im ents , 1 n a ll th e a bo \'e ex pe riments NaCI was add ed to th e nutri e nt solu t io n s unl\' aftcr

th e plants w e re 7 d ay s o ld an d th e n in 20111\1 p e r day i n c re m e nts ,

G a s exclwlIge o llalysis

Net ph o tllsynthe ti c rate (p,,) and tran spiration a l

w ate r lo ss (7~, ) we re d e te rmin ed hy th e use of a P arkin son' s lea f c hmnbe r li nk ed 1'0 an AD C L C A

infrare d g as an a lyse r (A nal yt ica l D eve lopme nt C or­p uration , Hodd esdon , Eng la nd) , Dcte rmination s

\",e re m a d e on fiv e sep a rate plants b e long in g to each t r eatm e nt and th e results fo r each trea tm ent

ave raged , F o r mai ze pl a nts, gas exchange d e te r ­rnin a ti o n s \Ve re made an ho ur be fo re midda y al' an i rradi an ce 0 1' 250ü ¡t1-;: m ~ S- I, a tempe rature 0 1' 35 oC

a nd an ambi e nt relati\'e humidity 0 1' 30 !l ", For

\", h ea t pl ants , t h ese d e te rmin ati o ns we re m ad e at an irradi an ce 0 1' 700 I I E m-~ s 1, a tempe rature 0 1' 28 oC

a nd a n ambi e nt re lat ive humidi ty 01' 35 "" , Stol11i1ta l conduc ta n ce (e,) to wa te r vap o ur was calculated

f rom th ese fi g ures us ing Parkin so n 's fo rmulae (AD C LCA in s tru c ti on manual, 1986), and trans piration r a ti o (TR) was ca lcu la ted b y di\'iding T, by p", G as exchange d e terl11in ati o n s we re mad e on cl ear days 1

0 1' 2 days b efore th e date 01' h a lTes t ,

RE SU LT S

T h e resp ecti ve g ro \Vth res p o nse 01' nitra te- and a ml11 oniul11-fed mai ze p lants to salinit y stress can be

o b se r ve d in th e datn rccO l'ded in Tab le 1, Fro m th ese data it is obv iou s th a t nitrate -fed p la nts a re fa r m o re

salt-to le rant than th e ir ammonium-fed counte rpa rts und e r th e ex perimenta l conditions, vVh e reas nitra te ­

fe d plants sho w ed no redu ction in dry mass and only

a s li ght reducti o ll in fres h l11 ass up 1' 0 th e 50111\1 sal inity leve l, th e effect 0 1' salini t ~ , o n th e fresh a nd dry m ass 01' ammonium-fed pl an ts e \'e n a t a cOll centration 01' 20 1ll ~ 1 was \'e ry m a rk ed nnd

becam e in c reas ing ly so with in c reas ing sa lini ty, \V hil e a ll th e nitra te -fed p la nts w e re still g ro \\' ing

\'i goro u s ly at th e ílO m\'1 sa lini ty le ve l, m any o f t he alllmoniull1-fcd p la nts \I'e re sho \l'ing s ig ns o f se\'e re wilt and sOlll e lI'e re actu a ll y d y in g , Th e contras t 01' th e salinity res po nse of th e pl:lI1ts fed rh e t\l 'O

nitrog en sources is am p lified b~' th e fa e t th a t unde r non- salin e condition s th e allllll o niul11 - fed pl an ts

w et'e pe rcep t ibly large r t h an th e nitrate- red plants , a fenture alread y n o te d b y lVI urph~' (1 984- ),

An inspec tion 0 1' th e shoot: roo t ra tio s reeo rd ed in Table 1 sh o \Vs that in plants red b o th nitrogen sou rces th e sa 1 i n i t y e A'ee t on g rOll'th was m o re

noti cea ble in th e s hoo ts rhan 111 th e roots , A

relllarkablc feature of th e non -sa linity-stressed

plants in (hi s ex pe rim cnt \I'as rha t ('he rres h \I 'e ig hr shoo t: roo t nlti os in the <lmlll o niulll fcd pl a nts \Ve r lO s lll a ll e r than those 0 1' t h e nitra te-fed pl a n ts, Thus th e

re tarding effec t 01' allll1lolliulll nutriti o n on roo t g rOl\'th o b se l'l'ed in C3 plan ts su ch as b a rl ey an d

\I 'h eat (Le wi s & C h adwi c k , 1984-; L e \l'is, F ulto n & Von Ze le wski, 1987) \I 'as no t appa re n t in thi s C"¡' plant, Th e re \I'as al so a s li g ht d ec rease in th e Ill o is ture conte nt 0 1' both <Ill1lll o niul11 and nirnHe red p lants \\'ith inc reas in g salinity ,

Ne t photos ~ ' nth e ri c rate sho \l'ed no s i ,~nifl cant res po n se to sa linity s tress except rol' the se \'e re ll' wilted <1 lllmonium red l1lai ze plants exposed 1'0

80 n1\'1 Na Cl (Tabl e 2), In thi s case it is d o ubtful \\'h e th e r reduced ph o tosy nth es is was du e 1'0 rhe io ni c effec t 0 1' rh e sa linit\, 0 1' rhe nutri e nt so lution , as \I 'ate r

s tress had a p parentll' a lread\' eau sed pl a nt cnlhpse and él co nside ra bl e d ec rease in s to l1lata l eondu c tance ,

Stol1latal condu c tance showed n s li g hr d ec lin e \I' it h inc reas in g sa linity, in s pite 0 1' \I'hi ch t ran spirati o n

rate s ho\l'ed som e inc rease (Tablc 2) , Th e excepti o ns

Table 2. R espollse of ne/ ph% sy llllte/ic raf e, /rallspira/io ll raf e, s/ ollla/al co lldl/I'/a//ce allrl /rallsp i ra/io// r atio

(-lOa/el' uliliz a/ioll eifi ci e//cy) oJ /l/aize plall/s lo difIerl' 1l1 sllli// i ly u il/ cl' //Iralio // s, ,1I(, (/SIIl" ' III l' ll l s (/ r t' "lr mc lI ± s t a nda rd rle7.' i a /ioll froJ/l /lt e /l/ea 11 ,

NaCI conc, (mM)

o 50 SO

o 50 80

Net photosynth eti c rate (pm o ] m " s- ')

25,95 ± 1,90 27-5 1±3 '2 1 24'64 ± I'SI

28' 11 ±3 '75 2S '39 ± O'83 15,62 ± 10'45

Transpirari on rate (mmol m 's ' )

Stomatal Condu ctan ce (to 1-1 ,,0 molecul es ) (mm o-I m " s ' )

N itrare-fed plants

8'0.J. ± 0 52 376±32 9'1 7± O'19 33 7 ±39 9,44 ± O'.J.3 302 ± 39

Allll1lonium-fed pl ants

9'.J.2± 049 I002± 046 7'24± 2,58

420 ±83 373± 45 190 ± f 19

rrra n s rir~lti on

rati o

(mol I-I ,O/ mol Ca,)

309 333 383

335 353 .J.64

IVl eas urelllents IVere Illade al' an irradi ance of 2500 IIE 111 "s " a tcmperature of 3-' oC and an ambient relati ve hUlllidity 01' 30 ";, (n o read ings of pl ants grolVing in 30 m ~ 1 sa line solutions \\' er" made),

Page 4: Effect of nitro gen source on growth response to salinity ...digital.csic.es/bitstream/10261/86848/4/Effect of nitr.pdfEffect of nitro gen source on growth response to salinity stress

o o ....

o o

.g E o o ....

o o

.<: [fI

o o

o::

o o

.<: [fI

<J> ;,.... Vl

.... '" O E

.<: <J> <J> <J> .., '"

c.:: E

:§ <J> <J>

'" E o o

o::

:§ <J> <J> ro E o o

.<: [fI

t:. O

.<: <J> .., ....

u...

;.... ....

O

.<: <J> .., ....

u...

;.... ....

O

7.

~~~-:-MMMM O' O' O' O'

...oO".--::t-00 In In -t-00 00 00 00

tn ........ (""') O" 6&.&-00 C" 00 00 00

-t Q'\ M l­O' . (') ..,o M

ÑÑNÑ

M.- - N 0000 0000 + 1+1+1+1 ...o M -t 1-

0000

;::: ....ooo -t" o E N N - M

0000 :::s +1+1+1+1 E ~~:'::¡!:f: ro ÑNr..I N o.. -o .1: ~ --t- In t"') In t,";l 0000 !:: 6666 7. +1 +1 +1 +1

, ........ M 1""" O -T MM-t" 0000

O"NO"r"1 MM - M 0000 +1+1+1+1 M -t ,........ , ....... .-. M -t In 4- N r..1 ""

-.o \Q C'"') ...o 0000 0000 +1+1+1+1 "'1" \.0 - ...0 \Q -t I r) I r)

0000

00 -...o....oM...o 0000 + 1+1+1+1 M l r) I n I r) ........ -t , ....... O -.o 4- + In

0000 -o -o -o

M ........ I n ("""J

-t- MNM O' O' O' O'

+ 00'0' r:'" + M r..1 00 00 00 00

........ -0\ N 600,, 1'':'" Q'\ 00 00 00

I r) -t ("'<.1 I n

........ -to-.\.O MMr..I M

('.1 .- ('1 N 0000 oooe +1+1+1+1 M C7' N Q'\ -0-0

/. 0000

, E :l

00 M ...o I r)

c: 0000 O 0000 E +1 + 1 +1 +1 E

.-r: In - In M -t M M M

0000

I f)M-N 11') N -t M

0000 + 1-1-1 + 1+1 1'-+00 + 1(') Q\ _ 0\

('~ ..:... r..1 ...:...

Q'\ -t 00 , ....... 0000 0000 + 1+1+1+1 1- 0...0 f"..1 In -t -t -t 0000

+ 1'-0000 00 M ...o I r)

0000 +1+1+1+1 00 , ...... Q'\ Q'\ 1-,..., , ....... "" I Í¡MM~

0000 -0-0-0

c: > Ó

.<: <J>

<J>

c: '" .., E

E o

J:

+ 1 .... .@ o.

.<: u

'" .., 4-o <J> <J>

'" E -o .., c:

:.o E o u -o .., bIl

'" .... .., ;...

'" .., -5 -o c: '" r.: '" o. c:

-o ~ <J>

~ .... '" .<:

to thi s were th e 80 111 M sa linity-s tressed a l11l11 o niul11-

red p la n ts whi ch sho wed seve re re ta rdat io n 0 1' sto l11 ata l condu c tan ce and tra n spirat io n ra teo TR sho\Ved an in c rease w ith sa li n ity concen t ratio n ( i. e. a d ecrease in wate r- use e Hi c ie ncy) in hoth a l11l11 o niul11-a nd ni t rate- red pl ants, es pec ia ll y in th e SO 111 :\1 sa lini ty-s tressed al11l11 o niul11 - reJ p lants.

In th e ex pe ril11 enta ti o n \Vith wh ea t p lan ts o nl y (m e salinity leve l was used (60 111 M l\: aC I) . Th e calciul11 leve l wa s vHri ed he tween 2 111:\1 (approximate ly th e no rl11 al leve l found in L o n g As hton nu t ri ent so lu­t ions) a nd 12 111:\1 in o rd e r to obse rve ",hether th e b ene fic ia l cflec t 0 1' Ca un th e g ruwth u r salini tv st ressed ni t rate g ru wn b a rl ey planrs (1lu fla ke r & Ra in s, 1(86) eould a lso be fo un d in sa lini ty-st ressed

ni t rate and a111 111 0 niu111 -grown wh ea t. Th ese results a re rep o r ted in T abl es 2 and 4. I t ",as no t p oss ibl e to

in ves ti gate thi s ea lciu111 d fee t in salini ty-s tres;;ed 111 a ize plants b eca u se u f th e earl y e nd 0 1' t h e gro",ing sea son .

Th e fr esh and dry mass data reeo rded in Tabl e 3

sho w that und e r non-sa li n e eo nd irio n s, nitra te ­g rown wheat p la n ts \\T re large r than am111 0 niUIll­g ruw n plants, a rea ture co n t rast ing ",ith th e results rep o rted above fo r m a ize pla n ts . Like ma ize, h O\\'­

eve r , th e am l11 o n i1l111-g row n wh eat plan!s s howecl a g rea te r se ns it iv ity to sa lt s tress th a n di d the nitra te g rown p lants (42 7..'S. 33 "lO fresh mass g ro wth re ta rdati o n ) . ,},h e s hoot: rou t ra ti os in bo th <I m­moniul11- anJ nitra te-fed p la n ts dropped p e reeptibh' in response to sa li nity, indi ca ting that shoot g rO\\'th was l11 0 re sc ve rcl y af-ree ted by salinit y rhan root g row th .

In a l11111 onium - fed plants rhe Ic\T I 0 1' ealcillm in th e feedin g 111 edi a produ ced no s ig nifl ca nt efleet o n th e g rowth rate 0 1' t he sa lini ty-s tressed p lants (T abl e 3). 1 n ni t rate- fed pl a n ts , however , pl ants p rov ided \V ith hi gh e r eo ncentrat io ns 0 1' ealc ium in th e ir feedin g 111 ed ia s ho wed d ec reased sens it iv ity to s<1l­ini ty, th e fresh mass o f sal ine -st resse cl p lan ts g ro",in g in 12 111M C a b e ing 11 "" greate r than th use gro",in g in 2 111M C a . Th ese d a ta se r ve l"O suppon th e e vid c nee of HuA'a ke r & Raill s ( 19R6) th at ealc ium se n 'es as a pro teetant 1'01' th e ni t ra te tra nspo rter in th e prese nce o f sa lini ty , lead in g to g rea te r produ c t iv it y in salinit v­stressed pl a n ts.

Th e gas exchange d a ta sho wn in T a b le + do not indica te an y pe rcept ib le e A'ect of sa linit v n I' ca lci ll lll co neentrat io n u n th e ra te o f ne t ph<Hosy nth es is in ammo nillm - 0 1' ni t ra te-fed wh eat plan!s. Th e re does no t appear ro be an y s tat is ti call y signili eant effee t 0 1' calciulll u r sa li n ity leve l on s tolllara l eondu e tanee, tran spiratio n rate 0 1' TR in wh eal' p lants unde r th e ex pe rim enta l eonJitions.

IlI ~CllSS I ()N

Th e 111 0s t s ig nifi ca n t flndin gs 0 1' th e ex pe ril11 en tat io ll re po rted above are tha t in bo th h ydro po ni ea lh'

Page 5: Effect of nitro gen source on growth response to salinity ...digital.csic.es/bitstream/10261/86848/4/Effect of nitr.pdfEffect of nitro gen source on growth response to salinity stress

Table 4. Respollse of lIe / ph%sYII/ltetic ro/e, Irallspira/ioll ro/e, s/o/ll a/al cOlldllc/allce alld /rallspira/ioll ra/io (wa ter u/iliza /ioll efficiellcy) of w hea/ p/allls /0 differell/ cOllcen/ra/ioIlS alld eOlllbilla/iollS of C a alld NaC/

Ca conc. (mM)

NaCJ con c . (mM)

Net photosynth ct ic rate

Transpiration rate

Stomata l conducta nce (to ¡--l.,O molecul es ) (mmo-I m 2 S- I)

' 1 'ranspi ration ratio

(/,mo l m 's ') (mmo l m - ' S ') (m o l H,O j mol CO,)

N itrate-fed plallts

2 2 6

] 2

()

60 60 60

8'5 1 ± O'50 R32 ± 1 73 9·29 ± ()'9 2 8·75± 1· IO

5'8 1 ±ü'46 5·-1-6± 1·11 6'97±O-1-9 7,25 ± O'61

280 ± 29·3 2 17 ± 6,H 285 ± 16, 1 298 ± 35 ·6

683 656 75 0 832

Ammonium-fed plants

2 2 6

12

o 60 60 60

875 ± 1 26 7·9 1 ± 1· 2-1-8'2X ± O'72 7'59 ± 0'53

H9 ± ()'81 6,3 2 ± 1· 53 6·38±O·56 6·0-1- ± O·6-1-

330 ± -1-8·R 226±73 1 268 ± 277 237±39'2

856 799 770 796

l\ 'leasurements "'ere made at a n irrad ian ce of 70() /' E m 's " a tempe raturc of 26- 28 oC and an amb ient re l ati\'t~ humidity of 35 "".

g rown m a ize a nd \\'heat, ammonium-fed plants s h o\V

a co n s ide rably g reate r se n s iti\ ' ity to sa linit~ , than do

nitrate-fcd p lants , an eHect that is lik e ly to b e

e nhan ced und e r fle ld conditions , The ca u se 01' t hi s

e ffect is not imm ediate ly appa re nt but could possib ly

be ascribed to o n e 01' the fol lowing factors,

(a) 1n \Vheat and maize, nitrate ass imil atio n takes

p lace primaril y in the shoot and amlllonium ass imi­

lat ion in the roor. As the roots are in imlll ed iate

contact \Vith the sa lin e containing nutri ent medium

it is possib le that nitrogen assimi lat ion 111 am­rnonium-fed p lants is dis located by ionic eA'ects

w hi ch \Vould not intcrfere with leaf-based nitrogcn ass imilation,

(b) In nitra te-fed p la nts a mal ate- nitrate shuttl e is

operative b e t\-veen s hoot a nd root (Ben-Zioni, Vaadia

& Lips, 1970), The abse n ce of this shuttle in

ammonium -fed plants co uld bring about ion trans­

locato r y prob lems which are exace rbated bv the uptake of NaC! .

(e) The ass imilation 01' th e bu lk 01' nutri e nt

n itroge n III the roots of ammoniulll-fed plants

necessitates the diversion of large quantities 01' carbon to thc root to pro\' ide th e carbon ske leton s 01' the products 01' nitrogen assimilation . It is possible

that this carbon metabolism is inhibited b v the

presen ce of high conccntrations 0 1' sodium and c h loridc ions in the mot,

Th e results 01' this expe rim c nta tion a lso indicare

that in maize and wh eat, inhibition of photosynthl:s is

is not one of the manifestations of sa linity toxicity except as a secondary e/lect in already h eav'i ly

damaged p lants . S uppress ion of nitrate uptake or

assim ilation which ca n be partIy reli e \'ed by the

presence of hi g h co n centration s of calc iulll does appear to be a contributory factor to sa linit y toxicity

in wheat, Our co n c lus ion s a re that oSll1otic factors r esultin g in cu rtaillll ent of ce ll g rowth and eventua l

leaf wilt \\,e t'e the prime cause of sa linity toxi c it\" in

th e ex p e rim enta l plants, but further research on th e

water statu s of sa li nity st t'essed \\'heat and Illaize

plants und e r' th e abo\'e conditions is necessary to confirm this v ie \\',

A C " NO \V L "De E\\ ENT S

O. A,. 1\1. Lc\\·is is gratefu l to 1"i1e Ben-Curion U ni \·ersit\· of the ~ege\' and to the Founuati"n for Hesea rc h

De\'c lopment (eS I R) for thci r 11n'1I1 c i01I ass islancc' in thi s project.

HEFLiHEN C ES

flEN-/' IONI, A., \· .-\ .-\I) IA, Y. So: LII", S. 11. (1(!lO), Corrl'iatinns b et\\'ccn nitT ~II:L' redu cl" io n, protcin s\'nthe sis alld 111:II¡¡t t.:.' ;.J CC UIlHI ­

lation. P/¡ysi% g ill PIIII//rlrilll/ 23, 1'03') 10+7.

J)O\\" NTON , \V. J. S. ( 1977). Photosvnlhesis in salt- stressed grape­"¡Iles . . -lustra¡¡(ln ]011,.110/ (~r Planl PI¡ysin/ogy 4, I S3 I ()~.

1 f¡ ':I. .-\l .. 11. \1. So: \I EN(; I-:I., K. ( 19 74). " ilrogen JI1l'1aholi s l11 of yOll llg b:lrley p lants as aA'ectcd b~ ' !\.f:IC I s;l linjt ~ · :lnd porassiunl. ellll//III/r! Soil SI, +S7 +(, 2 .

II E\\TIT , E. J. ( 1966). SI/I/d (//,,1 WII/a ('''////1'1' !lI l' /llOds //s l'd i// /il l' S /lIdy nI Planl .VI/tri/ion. 'T'l'c hnical C Olnn1L1TÚ catio!1 :\lo. 22 (rc\'ised), C 0I111l10!l\\'ca lrh l1ureau 01' Ilorticulrllral i1nd PI;ln­tation Crops, Eas t :VlalJing, COl11l11ol1\\"ealth :\ g ri c u ltur:11 Bureaux. fo'arnhal11 n.o~ ' al. Englalld,

1-ILTFA"I·:n, R. C. So: R .-\l NS , D. "V. ( 1986). N lISIO ':f/ici"lI ty liS i'z{llltnted by S assimi/a/ioll in har/e.\' (',\"!>()sed /n salilli/I', 111 : SIII! l/lid Plall/ Inlerar/ion 'W /IIt Snlilli/\', Kearnc\' FOllnd ,;rioll Fin.'­Y ear Repon 19RO 1485 ( EcI. hy .i LL"lL'\' ), ;)1'.3.1 3R. Di\' is iol1 nI' .-\gri cll lturc anJ :\atlll':d Rcsoun:cs, L1Ili\'crsit\, 01' Cal iforlli: I, J3erk e Jev. .

I, E\\"IS, (J .. -\. \1. So: C IIAII\\ 'W", :-i . ( 19R.1) . ...\11 ,e,,, il1\"estigatiol1

into Ilitr()gen ~l ss inlila tinn in h yd rollollica ll y-gro\\'1l h:lrle~' ( H ord('1I111 7'1I!gare l ., C\' , C liIlJlL'r) in rl' sponse lo nitrat l'. ,lInnH)J1iutll <llld tllixl'd nitra re and anllllOlúuln llutrit"ioll, ¡V(ln'

¡Jilyll/logisl 95, üJS 6+r,.

LE"''', O. A. :'1 1.. FL·I.TO N, 13. So: \ ' t1 N ZELE\\"Si;l, .-\ . A. A. ( 19H 7). Dif-rcrcnrial disrributioll 0 1' c:Jrbo ll in respo nse lo niIT, ¡te. al11lTIOniul11 and nitratc + anlnloniulll nutritioll in \\'h ea t , In : ¡I/o.-gol/ir N i/rogell ¡1lNoholisl/I (EcI. by \\'. R. L' lIri e h. P . J. Aparicio, 1'. J. S\Tett So: F . C astillo). pp . 2+0 2+-' . :-iprin¡.:er­\"erlag, I.lcrlil1.

Page 6: Effect of nitro gen source on growth response to salinity ...digital.csic.es/bitstream/10261/86848/4/Effect of nitr.pdfEffect of nitro gen source on growth response to salinity stress

;VlnIPIIY, A. T . (19X+I . .4 "N sI/Id.\' uf lile cJ.feds uf I/ilrall' ,

(llJ'UlInnilllll ond I/ilra l(' plus al1UIlO''¡U11I /11111';';011 ;1/ Zca :V1ays L. !\!I.Se. 'Th cs is, l Tni\'crs it y of C<lpC 'To\\'n .

Rt\ WSO N , H . IVI. (19X6 l. Gas e"change and g ro\\'th in \\'h ea t "mi burley grnwn in salt . Auslra!i(lll JOIII'lIflI (~r Planl Pltysi%/-{y 13, +75 +89.

TEHMAAT , A. & \l1l ' NNs, R . ( 1 'J¡)G). Ust'S (JI' co ncc ntr"ted nlacrol1utTicnt su lu tion {"o scpar:ltc OSI11oti c fr0l11 ~<ll' I- spcc il -i c

erIee ts on plant grO\\'th . .4l1slra!i1/1I ]II/I/'II(I! uf P!I/III Pilysiu!o¡.;y 13, SO'J 522.

TEnH\', !\l. & \Vt\I.IJH O:-; , L. J. ( I'JH6). Salinity respon ses 01' crop plants in te rms (JI' kar expans ion and pho\'(IS)'nth cs is. 1 n: Soi! (llId Planl In/ f'fllr/;oll wi,1t Sa/ini,.\', Kc arney Foundatioll Fi \'c­Yca r Repun 191>0 1<)1>5 (ElI. b y J. Lctcy), pp . 11 - 17, ])i"isinn nI' Ag ri culture ancl l'\atura l Resources , U ni"crs it )' nI' Ca liforni a, I3nkclcy.