effect of load bearing walls on residential and light

146
EFFECT OF LOAD BEARING WALLS ON RESIDENTIAL AND LIGHT COMMERCIAL SLABS-ON-GROUND CONSTRUCTED OVER EXPANSIVE SOIL by MOHAMMAD M. ISLAM, B.Sc. in C.E. A THESIS IN CIVIL ENGINEERING Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING Approved Accepted August, 1988

Upload: others

Post on 05-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

EFFECT OF LOAD BEARING WALLS ON RESIDENTIAL AND LIGHT

COMMERCIAL SLABS-ON-GROUND CONSTRUCTED

OVER EXPANSIVE SOIL

by

MOHAMMAD M. ISLAM, B.Sc. in C.E.

A THESIS

IN

CIVIL ENGINEERING

Submitted to the Graduate Faculty of Texas Tech University in

Partial Fulfillment of the Requirements for

the Degree of

MASTER OF SCIENCE

IN

CIVIL ENGINEERING

Approved

Accepted

August, 1988

„ . ACKNOWLEDGEMENTS

I wish to express my deep appreciation to Dr. Warren

K. Wray for his continuous help and guidance during the

course of this work. Special thanks are extended to

Dr. C.V.G. Vallabhan and Dr. Jimmy H. Smith for serving

as committee members and for offering valuable suggestions.

I would like to thank the Department of Civil Engineering

for financial assistance throughout the course of study.

Additionally, I would like to express my gratitude to

my parents for their support and encouragement.

11

CONTENTS

ACKNOWLEDGEMENTS 11

LIST OF TABLES v

LIST OF FIGURES vi

I. INTRODUCTION 1

II. PARAMETRIC STUDY 7

2.1 Introduction 7

2.2 Material Properties 8

2.3 Structural Properties 13

2.4 Model Used to Analyze the Problem 19

2.5 Accomplishment of the Study 20

III. ANALYSIS AND DISCUSSION OF THE RESULTS

FROM THE PARAMETRIC STUDY 23

3.1 Differential Deflection 23

3.2 Shear Force 32

3.3 Bending Moment 40

IV. DEVELOPMENT OF THE PREDICTION EQUATIONS 56

4.1 Introduction 56

4.2 Regression Analysis 56

4.3 Development of the Prediction

Equations 57 4.4 Validation of the Prediction Equation 64

4.5 Limitations of Using the Prediction Equations 72

4.6 Design Procedure Using the Regression Equation 74

1 1 1

V. CONCLUSIONS AND RECOMMENDATIONS 83

5.1 Conclusions 83

5.2 Recommendations 84

REFERENCES 8 5

APPENDICES

A. MAXIMUM BENDING MOMENT, SHEAR FORCE ANE DIFFERENTIAL DEFLECTION RESULTS FROM THE PARAMETRIC STUDY 88

B. PLOTS OF MAXIMUM DIFFERENTIAL DEFLECTION 100

C. PLOTS OF MAXIMUM SHEAR FORCES 107

D. PLOTS OF MAXIMUM BENDING MOMENTS 113

E. EXAMPLE PROBLEM 121

IV

LIST OF TABLES

2.1 VALUES OF PARAMETER USED IN THE PARAMETRIC STUDY 22

4.1 COMPARISON OF R^ VALUES FOR THE THREE LOADING CONDITIONS 60

4.2 COMPARISON OF MAXIMUM BENDING MOMENT RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN X-DIRECTION 76

4.3 COMPARISON OF MAXIMUM BENDING MOMENT RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN Y-DIRECTION 77

4.4 COMPARISON OF MAXIMUM SHEAR FORCE RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN X-DIRECTION 78

4.5 COMPARISON OF MAXIMUM SHEAR FORCE RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN Y-DIRECTION 79

4.6 COMPARISON OF MAXIMUM DIFFERENTIAL DEFLECTION RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN X-DIRECTION 80

4.7 COMPARISON OF MAXIMUM DIFFERENTIAL DEFLECTION RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN Y-DIRECTION 81

LIST OF FIGURES

1.1 DISTORTION MODES 2

1.2 KNOWN DESIGN METHODS FOR SLABS-ON-GROUND CWRAY, 19783 4

2.1 EFFECT OF MOUND EXPONENT, n, AND EDGE PENETRATION DISTANCE, e, ON THE SHAPE OF THE SWELLING SOIL PROFILE CAFTER WASHUSHEN (15)] 12

2.2 EXPONENTIAL PROFILE FOR CENTER HEAVE WITH FINITE ELEMENT GRIDES 14

2.3 COMBINATIONS OF PARTITION AND PERIMETER LOADS USED FOR THE PARAMETRIC STUDY 18

3.1 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD, FOR CENTER LIFT CONDITION (P =600 LB/FT, P. =1000 LB/FT) ^ 24 iX

3.2 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD,(P =600 LB/FT, P.=1000 LB/FT) FOR CENTER LIFT CONBITION 26

1

3.3 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD, FOR CENTER LIFT CONDITION (P =1000 LB/FT, SLAB SIZE 48 X 24 FT) ^^ 28

3.4 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 LB/FT, P. =1000 LB/FT), FOR CENTER LIFT ^ C0NDITI0i^(SLAB SIZE 48 X 24 FT) 30

3.5 TYPICAL RELATION BETWEEN EDGE MOISTURE VARIATION DISTANCE AND RELATIVE DEFLECTION FOR CENTER LIFT CONDITION 31

3.6 CONTOUR LINES SHOWING RELATIVE DEFLECTION OF THE SLAB SURFACE WHEN PARTITION LOADS ARE PLACED ALONG X-DIRECTION WITH PERIMETER LOAD, FOR CENTER LIFT CONDITION 33

3.7 CONTOUR LINES SHOWING RELATIVE DEFLECTION OF THE SLAB SURFACE WHEN PARTITION LOADS ARE PLACED ALONG Y-DIRECTION WITH PERIMETER LOAD, FOR CENTER LIFT CONDITION 34

VI

3.8 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P =600 LB/FT, P =1000 LB/FT) ^ 35 IX

3.9 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P = 1000 LB/FT, SLAB SIZE 48 x 24 FT) ^^ 37

3.10 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION (P =600 LB/FT, P. =1000 LB/FT) LOAD FOR CENTER LIFT C6SDITI0N (SLAB SIZE 48 x 24 FT) 39

3.11 TYPICAL VARIATION OF MOMENT ALONG THE LONGITUDINAL AND TRANSVERSE AXES WHEN PARTITION LOAD IS PLACED ALONG X-AXIS WITH PERIMETER LOAD 4 1

3.12 TYPICAL VARIATION OF MOMENT ALONG THE LONGITUDINAL AND TRANSVERSEe AXES WHEN PARTITION LOAD IS PLACED ALONG Y-AXIS WITH PERIMETER LOAD 42

3.13 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P = 1000 LB/FT, SLAB SIZE 48 x 24 FT) ^^ 44

3.14 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P =600 LB/FT, P. =1000 LB/FT) ^ 46 IX

3.15 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 LB/FT, P =1000 LB/FT) FOR CENTER LIFT^CONDITION (^CAB SIZE 48 X 24 FT) 48

3.16 TYPICAL VARIATION OF MOMENT ALONG X-DIRECTION WITH AN INCREASE IN SLAB LENGTH, WHEN PARTITION LOADS ARE PLACED ALONG X-DIRECTION WITH PERIMETER LOAD 49

3.17 TYPICAL VARIATION OF MOMENT ALONG X-DIRECTION WITH AN INCREASE IN SLAB LENGTH, WHEN PARTITION LOADS ARE PLACED ALONG X-DIRECTION WITH PERIMETER LOAD 50

V 1 1

3.18 TYPICAL DISTRIBUTION OF BENDING MOMENT IN THE LONG DIRECTION OVER THE SURFACE OF THE SLAB WHEN PARTITION LOADS ARE PLACED IN THE X-DIRECTION FOR CENTER LIFT CONDITION 52

3.19 TYPICAL DISTRIBUTION OF BENDING MOMENT IN THE SHORT DIRECTION OVER THE SURFACE OF THE SLAB WHEN PARTITION LOADS ARE PLACED IN THE X-DIRECTION FOR CENTER LIFT CONDITION 53

3.20 TYPICAL DISTRIBUTION OF BENDING MOMENT IN THE LONG DIRECTION OVER THE SURFACE OF THE SLAB WHEN PARTITION LOADS ARE PLACED IN THE Y-DIRECTION FOR CENTER LIFT CONDITION 54

3.21 TYPICAL DISTRIBUTION OF BENDING MOMENT IN THE SHORT DIRECTION OVER THE SURFACE OF THE SLAB WHEN PARTITION LOADS ARE PLACED IN THE Y-DIRECTION FOR CENTER LIFT CONDITION 55

4.1 COMPARISON BETWEEN COMPUTER ANALYSIS AND REGRESSION EQUATION FOR MAXIMUM DIFFERENTIAL DEFLECTION IN X-DIRECTION 66

4.2 COMPARISON BETWEEN COMPUTER ANALYSIS AND REGRESSION EQUATION FOR MAXIMUM DIFFERENTIAL DEFLECTION IN Y-DIRECTION 67

4.3 COMPARISON BETWEEN COMPUTER ANALYSIS AND REGRESSION EQUATION FOR MAXIMUM BENDING MOMENT IN X-DIRECTION 68

4.4 COMPARISON BETWEEN COMPUTER ANALYSIS AND REGRESSION EQUATION FOR MAXIMUM BENDING MOMENT IN Y-DIRECTION 69

4.5 COMPARISON BETWEEN COMPUTER ANALYSIS AND REGRESSION EQUATION FOR MAXIMUM SHEAR FORCES IN X-DIRECTION 70

4.6 COMPARISON BETWEEN COMPUTER ANALYSIS AND REGRESSION EQUATION FOR MAXIMUM SHEAR FORCES IN Y-DIRECTION 7 1

B.1 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION (Y-DIRECTION) LOAD, FOR CENTER LIFT CONDITION (P =600 LB/FT, P =1000 LB/FT) ^ 101

V 1 1 1

B.2 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION (Y-DIRECTION) LOAD, FOR CENTER LIFT CONDITION (P =1000 LB/FT, SLAB SIZE 48 X 24 FT) ^^ 103

B.3 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 LB/FT, P. =1000 LB/FT), FOR CENTER LIFT ^ C0NDITI0ft^(SLAB SIZE 48 X 24 FT) 105

B.4 TYPICAL RELATION BETWEEN SLAB LENGTH AND RELATIVE DEFLECTION OF SLAB SURFACE FOR CENTER LIFT CONDITION 106

C.1 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION (Y-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P =600 LB/FT, P. =1000 LB/FT) P 108

C.2 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P = 1000 LB/FT, SLAB SIZE 48 x 24 FT) ^ 110

C.3 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 lb/ft, P. =1000 LB/FT) FOR CENTER LIFT^CONDITION (iilAB SIZE 48 X 24 FT) 112

D.1 TYPICAL VARIATION OF MOMENT ALONG THE LONGITUDINAL AND TRANSVERSE AXES WHEN PARTITION LOAD IS PLACED ALONG X-AXIS WITHOUT PERIMETER LOAD 114

D.2 TYPICAL VARIATION OF MOMENT ALONG THE LONGITUDINAL AND TRANSVERSE AXES WHEN PARTITION LOAD IS PLACED ALONG Y-AXIS WITHOUT PERIMETER LOAD 115

D.3 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION (Y-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P = 1000 LB/FT, SLAB SIZE 48 x 24 FT) ^^ 116

D.4 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION (Y-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P =600 LB/FT, P =1000 LB/FT) ^ 118 ly

IX

D.5 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 LB/FT, P: =1000 LB/FT) FOR CENTER LIFT^CONDITION (SLAB SIZE 48 x 24 FT) 120

CHAPTER I

INTRODUCTION

One of the major causes of damage to structures,

particularly light buildings and pavements, is expansive

soil. It has been estimated that annual damages due to

shrinking and swelling of soils average $9 billion and is

the second most likely natural disaster to cause economic

loss (insect damage ranks first) CJanis et al., 19833.

A potentially expansive soil becomes a problem when the

moisture content v a n e s within the soil profile. Due to

these variations, the ground surface moves upwards (swells)

as the soil moisture content increases and the ground

surface recedes (shrinks) as the soil moisture content

decreases. Two modes of heaving distortion are commonly

identified PTI, 1980. When the soil heaves beneath the

interior of the slab, it is often called center lift or

doming. When the soil heaves around the slab perimeter,

this condition is often referred to as edge lift or dishing.

These distortion modes are depicted in Fig. 1.1. During the

swelling, the soil will often generate high pressures which

can lift heavy objects unless they are restrained, e.g., 3

feet of expansive soil can generate enough pressure to lift

a 37-ton truck 2 in. CJanis, 19833. As a result of soil

movements and pressures, structures can suffer considerable

damages. Krohn and Slosson C19803 estimated that expansive

(a). CENTER LIFT

• • • • • • • • '^• .»i . Jt*ty*' l i f c i ' ' • •-*• ''-• -''• > ' ' "ii •

FIGURE i.i DISTORTION MODES

soil-related foundation damages in U.S.A totaled $900

million in 1979. Since expansive soil can cause

considerable damage to a structure, it is important to

understand the behavior of structures on slab foundations

constructed over expansive soil.

Prior to 1930, wood frame structures supported on piers

and beam foundations were common. Since the structures were

more flexible than brick or concrete, the movements in the

building caused by the shrinking or swelling soil were not

noticed as a problem. As brick exteriors and concrete

slabs-on-ground became more widely used, the structures

became more brittle and the movements in the soil caused

considerable damage in the structures. It is believed that

many problems caused by swelling were erroneously diagnosed

as being due to settlement during this time.

The use of concrete slab-on-ground foundation became

quite common in the early 1950's, with the design

established by trial-and-error and experience CPTI, 19803.

Various design procedures have evolved over the succeeding

years for slab-on-ground foundations in residential and

light commercial buildings CBRAB, 1968; Eraser & Wardle,

1975; Lytton, 1973; Walsh, 19743. Fig. 1.2 shows the

available design procedures for slabs-on-ground over

expansive soil CWray, 19783. According to Wray, of all the

procedures listed in Fig. 1.2, "only BRAB, Lytton, Walsh

and Eraser and Wardie's procedures appears to be based

DESIGN METHOD DATE INTRODUCED

Rigby & Dekena 1951

Salas & Serratosa 1957

Dawson 1959

Building Research Advisory

Board (BRAB) 1968

City of Knox 1968

Lytton 1966-1973

City of Oakieigh 1971

Fargher 1973

Walsh 1974-1975

Eraser & Wardle 1975

Swinburn 1980

FIGURE 1.2 KNOWN DESIGN METHODS FOR SLABS-ON-GROUND [WRAY, 19783

on rational procedure and can be applied for general use."

A brief description of all the procedures is presented in

CWray, 19783. Wray, in 1978-1980, presented an analysis

that subsequently became known as the Post-Tensioning

Institute (PTI) method CPTI, 19803 for designing slabs-on-

ground. Most of the above procedures have been developed

for specific application or for certain types of problems.

Whenever a slab-on-ground is constructed for a

residential or light commercial building, the load is

usually transferred to the slab through load bearing walls

or columns at the perimeter of the slab. If a load-bearing

partition wall is supported on the slab, then a stiffening

beam is usually provided in the foundation directly under

the load or, if the load is very heavy, a separate

foundation is provided. None of the present methods of slab

design (presented above) take into consideration any kind of

line load (load bearing wail) or point load (column load) on

the interior of the slab without a stiffening beam or a

special foundation under the load. Wray [19783 studied the

behavior pattern of slabs for different perimeter loads

using different differential soil swell and edge moisture

var la tion distance. There has not been any general

com prehensive study reported in the technical literature of

the behavior of a slab constructed over expansive soils

supporting interior partition or column loads.

This study is aimed at observing how a slab constructed

over expansive soil behaves under a combination of interior

line loads (partition loads) and perimeter line loads only.

Point load (column load) is not considered in this study.

This study was designed to accomplish a parametric

investigation by taking into consideration the parameters

which influence the bending moment, shear force and

deflection occurring in the slab as a result of these loads.

From the results of the parametric study, some empirical

equations were developed from which the maximum service

moment, shear force and differential deflection of the slab

under service conditions can be predicted which then can be

applied in the design of the slab.

The next chapter describes the parameters which are

used for this study and their influence on the behavior and

performance of a slab-on-ground constructed over expansive

soil. Discussion and analysis of the results from the

parametric study are presented in Chapter III. In Chapter

IV the prediction equations are developed and discussed, and

finally conclusions and recommendations regarding further

study are discussed in Chapter V.

CHAPTER II

PARAMETRIC STUDY

2.1 Introduction

There are eight major design parameters which need to

be considered for slab-on-ground design problems, of which

three of them are soil properties? swelling mode, edge

moisture variation distance and differential soil movement.

The other five are structural properties? slab length, beam

spacing, beam depth, beam width and loading. The structural

and material parameters which are considered for this study

can be broadly classified into the following two categories?

1. Material properties,

a. Modulus of elasticity of concrete,

b. Poisson's ratio of concrete,

c. Modulus of elasticity of soil,

d. Poisson's ratio of soil,

e. Edge moisture variation distance,

f. Differential soil movement.

2. Structural properties,

a. Slab length,

b. Slab width,

c. Slab thickness,

d. Beam spacing,

e. Beam depth,

f. Loadings.

8

In this study four material properties modulus of

elasticity and Poisson's ratio of both soil and concrete are

kept constant. The properties which are used for this study

are discussed briefly.

2.2 Material Properties

2.2.1 Modulus of elastic ity of concrete. The value of

the modulus is one of the parameters which is kept constant.

The American Concrete Institute (ACI) code [Building Code

Requirements for Reinforced Concrete, ACI 318-833 gives the

following formula to estimate the modulus of elasticity for

normal weight concrete.

(2. 1 ) E =57000 ^f^~' , psi c *' c

f ' = compressive strength of concrete c

For general construction, f ' is taken conservatively as

2500 psi. Using this value in Eq. (2.1) yields a value of

E of 2,850,000 psi. Concrete is sensitive to creep and c

shrinkage. Although shrinkage occurs in the early part of

the life of concrete and is independent of the load. Creep,

on the other hand, is the property of the material by which

it continues to deform over a considerable period in

response to constant stress or load. The average long term

creep modulus of elasticity for concrete is taken as E /2

CWray, 19783. In this study a value of 1.5 X 10 psi for

E IS considered, because this value was used to develop c

the PTI equations.

2.2.2 Poisson 's ratio of concrete. Poisson's ratio is

defined as the ratio of the lateral strain to longitudinal

strain of the material. The typical range of Poisson's

ratio of concrete is 0.15 to 0.20 [Pierce, 19683. A value

of 0.15 is used in this study.

2* 2.3 Poisson's ratio of the soil. The range of the

Poisson's ratio of the soil is from .15 to .50 [Terzaghi and

Peck, 19483. For saturated soils it approaches 0.5 and as

soil becomes drier it reduces. For partially saturated soil

the value of the Poisson's ratio would be between 0.15 to

0.5. Because in this study the condition of the soil will

be a partially saturated soil and the magnitude of soil

deflections are not highly sensitive to changes to Poisson's

ratio [Gunalan, 19863, a value of 0.4 is assumed and held

constant in this study.

2.2.4 Modulus of elasticity of soi1. The modulus of

elasticity of soil is defined as the ratio of stress

variation to strain variation. The range of E varies

widely? 50 psi to 2,000,000 psi [Bowles, 1968; Gunalan,

19863.A value of 1500 psi is choosen for this study, because

this number was used by Wray, 1978 to develop the PTI

equat ions.

2.2.5 Edge moisture varlation distance (e ). It is

defined as the distance measured inward from the edge of the

slab over which the moisture content varies CPTI, 19803.

10

The magnitude of the moisture content variation largely

depends on the climate. The edge moisture variation

distance is one of the most difficult parameters to estimate

CWray, 19783. Different investigators have reported

different values of e . According to deBruijn (1975) and

Washushen (1977), the edge moisture variation distance

ranges between 2 to 5 ft. Presently, the methods of

estimating e can be broadly categorized in three ways?

(a) Experience? This method depends upon accurate

local information and upon the experience of the local

engineer. Since the climate varies from place to place, the

experience usually cannot be transferred.

(b) Estimated e from climatic patterns? This method m *^

is the most flexible method for estimating the e • Wray m

(1978) and PTI (1980) suggested that e can be approximated m

from a relationship between Thornthwaite Moisture Index and

edge moisture variation distance. The Building Research

Advisory Board (1968) has a method to estimate e from a ^ m

correlation of plasticity index and a climatic rating.

(c) Estimated with soil swelling experiments [Holland,

et al., 19803? This is an empirical method of determining

e from free and confined swelling tests, performed in an m

oedometer.

According to Wray (1978), if the range of the expected

e is considered to be between 2 to 8 ft, then most design m

11

situations will be included. On the above basis, three

values of e 2, 5 and 8 ft were considered in this study, m '

2.2.6 Differential soi1 movement (y ). If the soil L ^

beneath the slab swells uniformly, there would not be any

distortion in the slab and, consequently none in the

supported superstructure. Distortion in the slab occurs

when the soil swells non-uniformly or differentially. Thus,

the differential soil movement is more important than the

total movement of the soil. The differential movement of

the soil depends on the soil profile (stratigraphy), the

type and amount of clay in the soil, the rate of the

moisture evaporation, the depth of the seasonal movement of

moisture, the affinity of the soils for water, as well as

the climatic pattern. The shape of the swelling mound can

be expressed in terms of e and y by a simple exponential ^ m m

equation CLytton, et al., 19713,

n y = cx (2-2)

where y = an offset below the high point of the

mound.

X = the horizontal distance from the high

point.

c = a constant.

n = an exponent.

The value of the mound exponent m varies between 2 and

8 with the mound high point occurring a distance e^ inward

from the edge of the slab CWray, 19783. From Fig. 2.1, it

13

EDGE PENETRATION DISTANCE, e

Long Dimension f t ;

4 8 i : 16 20

Short Dimension ft

y = cx

FIGURE 2.1 EFFECT OF MOUND EXPONENT, n, AND EDGE PENETRATION DISTANCE, e, ON THE SHAPE OF THE SWELLING SOIL PROFILE CAFTER WASHUSHEN (15) 3

13

can be seen that a mound exponent of n=2 will produce the

least support beneath the slab, increasing values of n will

increase the support of the slab. A mound exponent of n=3

will be expected to produce a conservative value of shear,

moment and differential deflection in most cases. If the

value of n is to be considered 3 and the values of e and v m ' m

are known then the gap between the slab and the soil can be

calculated as shown in Fig. 2.2? n y =cx m

Cx = e 3 m

c=y /(e ) m m

n

n

if?

and?

then?

o^* Y;=<(y /(e )")(x ) 1 mm 1

If the range of the differential swell is selected

between 1 and 4 in., then most cases of slab-on-ground

design will be included CWray, 19783. Thus, lower bound of

1 in. and an upper bound of 4 in. is selected for this

parametric study.

2.3 Structural Properties

2.3.1 Slab length and slab width. Slab length and

slab width are usually fixed by the owner or by the

functional requirements. For residential or light

commercial buildings the slab lengths usually used are in

the range of 24 to 100 ft. For this study, three slab

lengths of 48, 72 and 96 ft slab were considered. Two slab

widths of 24 and 40 ft were considered.

14

4.

FIGURE 2.2 EXPONENTIAL PROFILE FOR CENTER HEAVE WITH FINITE ELEMENT GRIDES

15

2.3.2 Slab thickness. Four inches is the minimum slab

thickness usually used for residential structures or light

commercial buildings. In this study a constant slab

thickness of 4 in. is considered.

2.3.3 Beam depth. The depth of stiffening beams is

one of the major factors and a principal design variable in

the structural design of slabs. Increasing beam depths will

increase the bending stiffness of a given slab section and

reduce the amount of differential deflection the slab will

experience under a given set of conditions. So, the beam

depths depends on the required stiffness to limit

deflection. In some geographical areas, the minimum beam

depth is governed by the frost depth of the region, i.e.,

the beam depth must extend below the frost line to firm

bearing. For this parametric study, beam depths of 18 and

30 in. are considered.

2.3.4 Beam width. The beam widths used in practice

typically range between 8 and 12 in. A width of less then 8

in. IS difficult to excavate due to equipment limitations.

In most cases the width is seldom greater then 12 in. except

when the soil has low bearing capacity or high shear

stresses exist in the foundation. For this parametric

study, a constant beam width of 10 in. is considered.

2.3.5 Beam spacing. The spacing of beams in practice

varies between 10 to 20 ft on center. Some additional beams

may be required to be placed where there is concentration of

16

heavy loads. Increasing the number of beams will increase

the stiffness of the slab. For this study the spacing of

the stiffening beams in the longitudinal directions were 12

ft on center, but in the transverse direction it was either

12 ft on center (24 ft width slab) or 20 ft on center (40 ft

width slab).

2.3.6 Loading. Present construction practices for

residential structures do not typically include load bearing

interior walls. Instead, all roof loads are transferred to

the slab or foundation through the perimeter walls. Thus,

in contemporary construction of slabs-on-ground, the

perimeter of the slab experiences the greatest portion of

the superstructure loading. But, especially in custom-built

houses or apartment buildings, interior load-bearing walls

do occur. Because no procedure for evaluating the result of

these line loads presently exists, this study is mainly

concer ned about the effect of interior wall loadings in

combination with the perimeter loadings. The number of

combinations of partition and perimeter loadings used for

this study are grouped into four cases?

1. Case A. Partition load in the x-direction

with perimeter load.

2. Case B. Partition load in the y-direction

with perimeter load.

17

3. Case C. Partition load in the y-direction

without perimeter load.

4. Case D. Partition load in the x-direction

without perimeter load.

The above combination of loadings are shown in Fig. 2.3.

Perimeter wall loads for a light structure and a heavy

two-story masonry structure might typically be found to be

600 lb/ft and 1500 lb/ft, respectively CWray, 19783. For

this study the minimum and maximum values of perimeter

loading used were also 600 lb/ft and 1500 lb/ft. For

interior wall loadings, a minimum value of 100 lb/ft, an

intermediate value of 1000 lb/ft, and a maximum value of

3000 lb/ft were considered.

In addition to the perimeter and partition loads, the

weight of the concrete slab and some additional interior

loading are also considered. The weight of the concrete

slab is calculated by the volume of the concrete in the slab

multiplied by the unit weight of the concrete which was

taken as 145 pcf. Additional loading due to plumbing and

mechanical systems, appliances and household furnishing are

also considered. However, for all these loadings, it is

difficult to know their magnitude and location. According

to the American National Standard Building Code requirements

for minimum design loads in the building and other

structures, a minimum uniformly distributed live loading of

40 psf applied over the entire slab is recommended for

18

Y

K<. <. ^^VVVV .VVVVVV-\ \

\ \

" >^^^>=«»=x>«*M^^

f Perimeter Load

A^^^^^^^VV<.^V^^^^v

^

t ^kk^^^^Vk^^^kkk^^ks^ ' ^ ' s^^^^k .kV^k '^ ' ^^Tr^ t\ Partition

Load

1. Case A, partition load in the x-direcrion with perimeter load.

NX^^V^V's^VVVVvVVV^VVV-sV^'s-s^VV-sVVs^^-W \

! L « \k\'\'\\\\\\^^^\\VVV^VVVVVVVV\\V\VVVV'b

2. Case B, partition load in tiie y-direction with perimeter load.

3. Case C, partition load in the y-direction without perimeter load.

v\\\^^\^^N\\\^\v^^^\\N^^^\\^^v\^^^^^

4. Case D, partition load in the x-direction without perimeter load.

riGUFE 2.3 COMBINATIONS OF PARTITION AND PERIMETER LOADS USED FOR THE PARAMETRIC STUDY

19

private apartments and dwellings. This 40 psf uniformly

distributed loading was also included in the computer model

used in this study.

2.4 Model Used to Analyze the Problem

This study was accomplished by employing a finite

element computer program to analyze plates resting on a

semi-infinite elastic half-space. The original computer

program was written by Huang (Jan, 1974). Huang

incorporated a scheme which makes use of the symmetry of the

slab Huang (May, 1974). The program was developed to

calculate stresses and total deflections occurring in

concrete pavements and was used to analyze pavement

thicknesses of constant section. Also, this computer code

considers situations where there is full contact between

slab and the supporting soil at all times, initially full-

contact but subsequent non-contact conditions, or initial

gaps between the slab and subgrade but full contact may

never occur. Huang (Jan, 1974) compared the results from

the computer program with field experimental measurements.

Based on these comparisons, he showed that the deflections

predicted by the program compared reasonably well with the

field results.

Wray (1978) modified the original program for analyzing

stiffened slab-on-ground foundations supported on expansive

SOI 1. The program was modified to permit the analysis of a

20

slab with stiffening beams as well as a slab of uniform

thickness. The program was also modified to calculate shear

forces. The program with the above features was named slab2

by Wray (1978).

2.5 Accomplishment of the Study

The study was conducted in three phases; (1) analysis

with partition or interior loads onlyj (2) analysis with

both perimeter and partition load in the x-directionj (3)

analysis with both perimeter load and partition load in the

y-direction. The following assumptions were made for the

study 5

1. The slab is monolothic.

2. The loading was continuous and symmetrical.

3. The slab would not be exposed to severe weather

and there would be no significant temperature differential

across the thickness.

4. The longest dimension of the slab was always

taken to be in the x-axis of the slab.

5. The slab was discretized into square

elements with an aspect ratio of 1.

With the above assumptions and the values of the

se lected parameters which have already been discussed, the

parame trie study was done in a systematic manner. For the

convenient reference, the selected parameters are summarized

21

in Table 2.1. The parametric study was accomplished by

varying the parameters listed in Table 2.1 one at a time in

a specific manner, thereby including all of the possible

combinations.

The parametric study included a total of 450 cases for

all of the conditions. The values of the several design

parameters (moments, shears, deflections) as calculated from

the computer code are included in the Appendix A. The

results of the analysis include bending moment, shear and

differential deflection over the distance (distance between

two nodes). These results are discussed in Chapter III.

22

Table 2.1. VALUES OF PARAMETER USED IN THE PARAMETERIC STUDY

Parameter Symbol Value Unit

Modulus of Elasticity of Concrete E 1,500,000 psi

c Poisson's Ratio of

V

Concrete C 0.15 a Modulus of Elasticity of Soil

Poisson's Ratio of Soil

Slab Length

Slab Width

Slab Thickness

Beam Spacing

Beam Depth

Edge Moisture Variation Distance e^ 2,5,8 in

Differential Soil

Movement Y^ It^ ^^

Perimeter Load P^ 600,1500 lb/ft

Partition Load P^ 100,1000,3000 lb/ft

a= dimenslonless

E s

V

S

L

W

h

S

d

1,500

0.40

48,72,96

24,40

4

12,20

18,30

ps

a

ft

ft

1 n

ft

1 n

CHAPTER III

ANALYSIS AND DISCUSSION OF THE RESULTS

FROM THE PARAMETRIC STUDY

The results of the parametric study include

deflections, bending moments and shear forces. The data

obtained from the parametric study are described briefly

below :

3.1 Differential Deflection

The deflection at each finite element node were

determined by the computer program and, then, the maximum

differential deflection was calculated from the individual

deflections. Data obtained m the analysis are shown in

Appendix A. The differential data is plotted as a function

of edae penetration e and slab length which are shown in ^ m

Figs. 3.1 to 3.5, and in Appendix B. The following general

observations can be made from the figures mentioned above.

1. There is little increase in differential deflection

for e =0 to 2 ft, for different slab length Fig. 3.1. m

2. There is slight increase in differential deflection

when partition loads are placed in y-direction Fig. 3.2.

3. Differential deflection increases with the increase

in perimeter load Fig. 3.3.

23

24

Ci

B

I ><;

EDCC PEHCTPA03H (FT|

(a) DIFFERENTIAL SOIL MOVEMENT (v ) = 1 ,n m A 1 n .

ui

3

1.9

i.a -

1.7 -

1.B -

1.5 -

1.4 -15 -1.3 -

1.1 H 1

D.g

D.B H

Q.7

D.B -

0.5 -

0.4 -

0.3 -

D.3

D.I H

0

d '= 18'

aAQ ft slab + 72 ft slab o 96 ft slab

CDCE PFHnPAn:>H . : [ T |

(b) DIFFERENTIAL SOIL MOVEMENT (y ) = 4 in.

r GURE 3.1 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD, FOR CENTER LIFT CONDITION (P =600 LB/FT, P =1000 LB/FT)

P IX

25

z z D

! b a =!

Ui

^ 5 s 3 2

^ 2

3

1.9

1.B

1.7 1.6

1.5

1.4 1.S

1.3

1.1

1

o.g D.B

D.7 OB

D.S

0.4

D.a 0.3

0.1

0

CODE PEHCTR>^.1>:>N (fX}

< C ) . DIFFERENTIAL SOIL MOVEMENT (y ) in

i n *

z D

[b

^

EOCE PEMETP.-.TVOH . : F T |

( d ) . DIFFERENTIAL SOIL MOVEMENT ( y ) = 4 m

i n (

FIGURE 3.1 CONTINUED

26

a

s -I

i ui

SLifi LEHCTH ( r r i

(a). DIFFERENTIAL SOIL MOVEMENT

D

n fi

e UI

I

SLifl UEHCTH \ r ( ;

( b ) . DIFFERENTIAL SOIL MOVEMENT (y ) m

= 4

FIGURE 3 . 2 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD, (P =600 LB/FT, P =1000 LB/FT) FOR CENTER LIPT CONDITION ^

27

D

I C I

UJ

1 9 -

1.B -

1.? -

1.B -

1.5 -

1 . 4

1.3 H

1.3 -

1.1 H

1

D.g

D.B

0.7

D B H

O.S

D.4 -

D.3 - -

0.3 i

01

0

d = 3 0 "

CH

a P. x - d i r e c t i o n + P^ Y - d i r e c t i o n

1 '

- • £ 1

4fl gB

5L-a lEHCTH \n\

( c ) . DIFFERENTIAL SOIL MOVEMENT (y ) 1 in.

z 2 n \-> ^ \h i " j

^ e lU

1 L j

zs s

1 9 -

I B -

1 7 -

I B -

1.5 -

1.4 -

1.3 -

1.3 -

1.1 -

1 -

0.9 -

n.B -

0.7 -OB -i

0.5 -

D.4 -

0.3 -

0.3 -r

n 1 -

d » 3 0 "

a P. x - d i r e c t i o n + P. v - d i r e c t i o n

1 '

. — 1

1

1

. • B — - ~ "

0 -\ 4B

( d ) .

— ,

DIFFERENTIAL SOIL MOVEMENT m

= 4 1 n«

g

FIGURE 3.^ CONTINUED

r-fc

"Z. D

\-> "^ i] C i

-4 <. e UJ

1.

u.

2 3* 2[

V _ £

2

19

I B

1.7

I B

15

1.4 1.3

1.3

1.1

1 0.9

D.B

0.7 06

OS

0.4

0.3

0.3 0.1

0

28

d = 18"

a P = 600 lb/ft PJ=1500 lb/ft

.- _—Q-

EOCE PEHETPATVOH - jT!

( a ) . DIFFERENTIAL SOIL MOVEMENT (y ) m

1 in.

\ o

g ui

i5

3

19

IB

1.7

IB

1.5

1.4

1.3

1.3

1.1

1

D.9

OB

0.7

OB

D.S

0.4

0.3

0.3

0.1

0

d = 18"

p = 600 pP=1500

lb/ft lb/ft

- - • i i

.—s"

:rz=S—-

EDCE PEHnB.'i.nC-H iFT;

(b). DIFFERENTIAL SOIL MOVEMENT (y ) m

= 4 in,

FIGURE 3.3 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD, FOR CENTER LIFT CONDITION (P =1000 LB/FT, SLAB SIZE 48 X 24 FT)

IX

29

- , , z D

f> ^ lb C I

-4

e LlJ

^ 5 3

5

' -i.

3

1 9

I B

1.7

1.6

1.5

1.4

1.3

1.3

1.1

1

0.9

OB

0.7

0.6

0 5

0.4

0 3

0.3

0.1

D

d = 30'

a P = 600 + P'' = 1500

P

lb/ft lb/ft

EJ-

EOCE PEHETPAnnH 'TT!

(c). DIFFERENTIAL SOIL MOVEMENT (y ) m

= 1 in.

_,— t^

z D

r, ^ lb C i

-4

E i j

\

" !!c

.rf_'

-

3

1.9

1.B

1.7

1.B

1 5

1.4

1.3

1.3

1.1

1 0 9

D.B

0.7 0.6

0.5

0.4

0.3

0.3

0 1

0

- d = 30"

P = 600 a + p'^slSOO

P

lb/ft lb/ft

=*---

EDCE PEHETPAnC-H i.FTI

<d). DIFFERENTIAL SOIL MOVEMENT (y ) m

= 4 1 n.

FIGURE 3.3 CONTINUED

30

D

r>

Ci

UJ

a

3

I.a H I B

1.7 -

I B -

1.5 -

1.4 -

1.3 -

1.3 -

1.1 -

1 -

O.g -

D.B

0.7

0.6 -

0.5 -

0.4

0.3 -

0.3 -

0.1

a d •». d

18" 3 0 "

— • J I

:?=—-

EDGE PEHnPAT>:>H tyVt

(a). DIFFERENTIAL SOIL MOVEMENT (y ) m

i n .

i Ci

in

I

EDCE PEHETPATK>H (fV,

( b ) . DIFFERENTIAL SOIL MOVEMENT ( y ) m

= 4 i n .

FIGURE 3 . 4 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD-(P =600 LB/FT, P =1000 LB/FT), FOR CENTER LIFT CONDITION (^CAB SIZE 48 X 24 FT)

31

a>

. *J <*•

'T fU

II

3

. V <•-

(VJ «-• II

C/1

. c •M

T

II

E >

4J '•-\ n ^~i

o o >0

II

a. a.

*j

<*-\ n —<

o o o II

Ou

Z H o u. H-t t-H

H J < •-• CC K LU < H > Z

U] LJ U X D K H O U) U. t-H

o z z: o >-» UJ H o u a u U J

u. Z UJ UJ Q UJ •z UJ H > UJ ^ CQ H

< Z J a UJ - . K r-< Q J Z UJ < K

UJ J U < z u < •-• H a, en •^-i »-i

•r- n

Z o hH

H HH

Q Z O u

I

in

I

(S3HDNI) N 0 I 1 0 3 1 J 3 a 3 A I l V 1 3 d

32

4. Differential deflection increases with the increase

in edge moisture variation distance Fig. 3.1.

5. The differential deflection reduces as the beam

depth increases Fig. 3.4.

6. The total deflection of the slab increases with the

increase in e Fig 3.5. m ^

The differential deflection does not always increase

with increasing e • For small y , large e and large m m m

perimeter and partition loads, the edge of the slab was

discovered to bend down until it came into contact with the

subgrade. Thus, for large values of e , there is little m

oppurtunity for the deflection to increase because the soil

is helping to support the edge of the slab.

The distribution of deflection on the surface of the

slab is shown in the Figs. 3.6 to 3.7. The maximum

deflection of the slab occurs near the edge of the slab

irrespective of the position of the partition load. Fig.

B.4, shows the typical relationship between slab length and

deflection of the slab under perimeter and partition load.

3.2 Shear Force

The shear force data obtained from the analyses are

shown in Appendix A. The values of shear force are plotted

as a function of edge penetration distance in Figs. 3.8 to 3

10, and in Appendix C. From the figures and Appendices the

following observation can be made.

rxi

X

vy//.y''i / / /

!

:zz

* c

II

/

-p ^

CD

II £

(U

4J M-\ JD — <

O O 0

II a

cu

4-> *4-\ X3 -H

o o o

It

D,

33

c

-j_.L_j_iL_/2l^^:

-

.H

• o

II

J <; >

cx UJ H Z »-«

a D O H Z o u

0] A

XI

1 ^^

o z UJ O H

X J u. H < •H

-J U, Q O UJ CC

U UJ Z < H O J z t-. Q. UJ H U U UJ UJ cc cx -3 «3: o U- u. UJ en Q Q ..

< Q UJ o < > J o ^ J H Z < o cx J »-• UJ UJ H H cx (- UJ

o cx •-• z < cx •-• 0, UJ 2 Q,

o z Z UJ z en z H 2 •-.

en 3 UJ UJ

z u z »-' < O ' -J u, •-< 2:

cx H C cx : u •-• ::3 en uj H o cx •-< H 03 >-i G z < Q r: G ^ 1 3 u en X .

>0

n UJ cx => o

^

=J)

c

II

4-

II

O O

CL

34

4^ "4-\ J3

O O O «H

II

a,'

o z

UJ o Z J H <

u, o z o

Q UJ

u <

cu

U UJ UJ cx J < u, UJ en

u.

cx Ci]

Z UJ

u o U,

Q < o -1

cx

UI

Ul

cx UJ cx z

z O '

J Lu •-• Z

Q

UJ >

H <

UJ f-cx »-•

O CX z <

Q < O

z o

2 O z en

z UJ z 2

en UJ UJ

u < u, cx en

cx

o

z o u en

CD <:

u UJ cx »—( Q I

a z o u

UJ

cx

o

srxv-A

35

a.

X (/I

- -1

e -

d = 18"

• 48 ft slab + 72 ft slab « 96 ft slab

E D G E ! OC-MC-rTSATf /^M / P T ^ W W W. , W . . V-,. , w . . y. , J

<a). DIFFERENTIAL SOIL MOVEMENT <y ) = 1 i n *

Q .

CU <i UJ X C/I

9 -

5 -

4. -

3 -

d = 1 8 "

^ - r -o

• 4 8 f t s l a b + 7 2 f t s l a b o 9 6 f t s l a b

EDGE PENETRATION (FT)

( b ) . DIFFERENTIAL SOIL MOVEMENT (y ) = 4 ^ p .

FIGURE 3.8 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P =600 LB/FT, P =1000 LB/FT) ^ IX

36

«/ • C L

CE

X

10

9 _ d = 30"

p _

y -

p, _i

D 48 + 72 o 96

ft slab ft slab ft slab

T _

1 5E==

O -r -I 1 r -2 A. e

(c). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 in. tti

en Q.

o;

LU

C-f./^C- O C - M A T I / ^ M ('I

(d). DIFFERENTIAL SOIL MOVEMENT (y ) = 4 in. m

FIGURE 3.8 CONTINUED

37

tr

X 0-

a

X on

<3 _

H _

7 -

= 1 8 "

D P = 6 0 0 l b / f t + P ^ = 1 5 0 0 l b / f t

w - T -O

- T -2

-r-A.

^DGE PENETHATION ''FT'^

B

< a ) . DIFFERENTIAL SOIL MOVEMENT (y ) = i m .

10

D P = 6 0 0 l b / f t + P ? = 1 5 0 0 l b / f t

EDGE PENETTRATiON (FT )

( b ) . DIFFERENTIAL SOIL MOVEMENT (y ) = 4 i n . 01

-1

a

FIGURE 3.9 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P^^=1000 LB/FT, SLAB SIZE 48 X 24 FT)

t CL

2i

e -

6 -

d = 30"

D P = 600'lb/ft + Pp=1500 lb/ft

1 ^

2 -r— 4.

1 ^

B - I a

EDGE PENETFUXTION (FT)

( c ) . DIFFERENTIAL SOIL MOVEMENT (y ) = 1 m . m

'Si

a

UJ

erv/^c- O C M c—rca A-ri/^K i (FT)

(d). DIFFERENTIAL SOIL MOVEMENT (y ) = 4 in.

FIGURE 3.9 CONTINUED

39

Q.

UJ

a. iA

C/1 CL

^ -

UJ X C/l

e

7 -}

6

5 -

4. -

3 -

9 -

e -

7 -

6

5 -

4. -

3 -

2 -

1 -

tB

a d = 1 8 ' .•»-_d = 3 0 -

-r.i^c- PENETRATION 'FT)

( a ) . DIFFERENTIAL SOIL MOVEMENT (y ) = 1 i n . m

a d = 18 + d = 3 0

EDGE PENETRATION (FT)

( b ) . DIFFERENTIAL SOIL MOVEMENT (y ) = 4 i n .

FIGURE 3.10 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 LB/FT, P =1000 LB/FT) FOR CENTER LIFT^CONDITION (i^AB SIZE 48 X 24 FT)

40

1. Shear force does not vary with an increase in slab

length Fig. 3.8.

2. Shear force increases with an increase in perimeter

and partition load Fig. 3.9.

3. The shear force almost remains the same

irrespective of the direction of the partition or line load

( X or y direction) Appendix A.

4. Shear force increases with an increase in beam

depth Fig. 3.10.

3.3 Bending Moment

The magnitude of negative and positive moments shows a

similarity of variations along the longitudinal and

tranverse axes whether the loads consist of partition,

perimeter or a combination of both placed along the

transverse or longitudinal axes. Variation of the moments

along the longitudinal and transverse axes for a slab size

of 72 X 24 ft in Figs. 3.11 to 3.12, and also in Appendix D.

From these figures the following observation can be noted?

1. The moment profile along the longitudinal

and transverse axes differ considerably. When loads are

placed along the longitudinal axes, the maximum moment in

the longitudinal direction occurs near the edge of the

slab, whereas for transverse loading the maximum moment

occurs near the midpoint of the slab Fig. 3.11 and Fig.

3. 12.

B 41

03

. c

• H

«-«

II £

>'

V «•-

CVI

II E

OJ

-P <•-\ J3 —H

o o O

II

a CU

+J «*-\ XI - H

o o o II

•- a.

J < Q Z LJ •-• U Q < D J f- a. h-(

o cn Z t-i

c J Q <

u o I -J H

•"TT-

—« o o z •-• C t ->J I-" < • -

•-v »A«

H < z a. LJ ~, .

3 u: •rr "T"

• 7

U, 3 X

Ui Z X c < •—1

H Lu < X <— X X Lu <: > > J)

•^ — < < X

• .--s

< ..

- y

•-J r--^ -

1 — 1

' • V

fc—«

•- !— — < 2

cn »- X < 1

X

i- < <

IJj/SJI'1-iJ I I]ij..u»'J

H 42

y / / / / ^ .

r *

1 H : \ U c * -^ ^y/^yy^/y/// i ^ ^ H

: \ n .. 03 T - t

1 " 1

-A ^ V->

-p -p C 4 . ^ -

:~s ru II II -J 2

1

I t

1

1

1 J r 1

t 1

"

. ^

1

n

b

b

'

J ^ 7 ^ 7~f

E

— B - — " ——~"

-* ——««. ~ ~ — f i - — _

1 1 1 1 1

'iT' •+ C J -r- Oil ^i"l

' - ' - ' - O Cl

1 u/\

• p

CVJ

II E

01

___—

""—-__

1

-h

iD

:dn-

-p +*

£i n — —<

o o o o vO o

«-• II II

a -t a. a.

^ ^ . . - • • "

[ J — _ ^ _

—a . - - ^

.-•Q" ' , - B " '

P'

— - 4 3

• _--— • ....-t---

a ' ..A--"

-3- I . ' -- U "

,' '.

4,

--a. ' "-h...

- P "••-+-.. . .__

^ ' • + * - - .

[J] ____J::--- f - — T T - "

cn U-J

u -^ ! ''"'"' j

i ^ i a '

1

a. ! ' " & • - . 1

• " • • a - - . !

"""-Q i

_ — — a rk — . ^ Lp

1

1

1 1 1 1 i 1

CJ O (J -+ 'V OD ^ Ci

O O Cl Cl i~ ' <—

: 1 1 1 1

- ^ ' U f ' J jM'L^J

z u Q < D J t - QL t—1

o cn z •-• o

< LJ C Z J

z —• c G f- <: - ] ^ c <; H _j

t _

f- < a: z a. j j UJ ^ z z u: G JJ SI 21 Z »-i

2 ^ a. 'Xi G CD a.

4^^ ^ J ^

G < H >—< • — (

H W Z

-- a: cn a : CJJ • -< > X > 'S) <

Z 1 - : < >-< a: U H o — z >• Z -J .- < <

ai

.

m LJ a: D

o x

43

2. When partition loads are placed along the

transverse axes without perimeter load, the magnitude of the

transverse and longitudinal moments both peak near the

center of the slab (Fig. D.4).

3. From Figs. 3.12 and D.4 it can be concluded

that when perimeter loads are added along with partition

load, the magnitude of the negative bending moment increases

both in the longitudinal and transverse axes.

The maximum negative moment is plotted as a function of

edge moisture variation distance and the moment variation is

plotted with varying slab size which are shown in the Figs.

3.13 to 3.15, and also in Appendix D. From these figures

the following observations can be notedJ

4. The moment increases with increasing edge moisture

variation distance Fig. 3.13.

5. The moment does not vary with the increase in the

slab length Fig. 3.14.

6. The moment increases with the increase in perimeter

and partition load Fig. 3.13.

7. The moment increases with the increase in beam

depth Fig. 3.15.

8. Multi modal bending occurs in longer slabs

irrespective of the position (longitudinal or tranverse) of

the partiton load Figs. 3.16 and 3.17.

44

t

I

UJ

^

/'i

>

20

19

16

14. -

12 -

d = 18"

D P = 600 lb/ft + P^=1500 lb/ft

2 5

EDGE: PENETTRATION (FT)

8

(a). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 in, m

nn

i2

Cl' UI

>5

a P = 600 lb/ft 4- pP=1500 lb/ft

20 -I d = 18"

18

16

1J.

12

10

a

cr^nr OTKI t- I V J A T I / ^ ON (rr)

<b). DIFFERENTIAL SOIL MOVEMENT (y ) = 4 in. m

FIGURE 3.13 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD, FOR CENTER LIFT CONDITION (P.^=1000 LB/FT, SLAB SIZE 48 X 24 FT) IX

45

I

LLI

1^

>:;

22

2 0

IB

16

-4 d = 3 0 "

a P = 6 0 0 ' l b / f t + P = 1 5 0 0 l b / f t

P / •

EDGE PENETRATION (FT )

( c ) . DIFFERENTIAL SOIL MOVEMENT ( y „ ) = 1 i n ,

I

1x1

^ ZJ ^ ^

19

IB

d = 3 0 "

a p = 6 0 0 l b / f t + P ^ = 1 5 0 0 l b / f t

P

EDGE PE^JETRATION (FT )

( d ) . DIFFERENTIAL SOIL MOVEMENT (y ) = 4 i n . rti

FIGURE 3.13 CONTINUED

4 6

a

I

_>

LU

^ ^

n

LU

o

EDGE PENETRATION (FT^

< a ) . DIFFERENTIAL SOIL MOVEMENT ( y ) = 1 i n , m

1 g -I

16

14. -

12 -

10

a

5

A -I

d = 18"

a4a ft slab + 72 ft slab « 96 ft slab

p-nr; PENETRATION (FT^

<b). DIFFERENTIAL SOIL MOVEMENT (y ) = 4 in. m

FIGURE 3. 14 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION (X-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P =600 LB/FT P =1000 LB/FT) ^ IX

47

u.

Q.

LJ

ft

20-1 d

15 -

16

14 -4

12 -4

= 30"

D 48 ft slab * 72 ft slab o 96 ft slab

i2

UJ

o

(c). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 in. tn

EDGE PENETRATION <'FT"i

( d ) . DIFFERENTIAL SOIL MOVEMENT (y ) = 4 ^n. fti

FIGURE 3.14 CONTINUED

48

a T

ill

6

c2 t-,

LJ

•y.

o

LU

O

' -7

a d = 1 3 " 4- d = 3 0 "

e-r\/-;e" p'^^j ETRATION (FT^

(a). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 m .

EDGE PENETRATION (FT)

( b ) . D I F F E R E N T I A L S O I L MOVEMENT ( y ) = 4 i n . n)

FIGURE 3.15 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT )F PERIMETER AND PARTITION LOAD (P =600 LB/FT, P =1000 LB/FT) FOR CENTER ElFT C0NDITI0A^(SLAB SIZE 48 X 24 FT)

i 49

00

« "Do

•p ^ •

\ £i • H

o o >0

II Q.

QU

4J <•-\ n -^

o o o II

• - ^

CL

4 i <4-

CVI

II E

(U

c • - <

• H

11 E

>

4J «•-

OJ •-•

II

cn

4J «•-

^ lU

II

^

1—«

2

Z o • H

H u u V 1 — ^

• -«

Q 1

X

o '-r'

o -J <

I—• -r-

^ . £ .

o z J - l

o z o •-( H <: HH

K < >

J < u t-H

Qu >• (—,

U) a < < o o J

z o H-»

H t—t

H CC < CL

Z UJ Z 3

*. z H O z u -3

CQ < J 0)

z t-H

u cn < Ui cc u z t-t

z <

J

o: U] H u "^ 1 ^

ct; u Qu

Z H •—» 3

Z o t—«

H u u hH

Q 1

X

o ^-r'

O J <

a u u < J QU

U Q: <

. cn u a: O

iJJ . ' ' 'Sd l ; i -U ) lf'G^'^L4'J

/ J ^ / / 7 ?

/

^

'' >

<

" ^ ^ 1

/ft

A r J -D J3

CD

'• i •D

^

1

; ' • m» ^ * ^ ^ * * ^ , ^ , TA ^ ^ ^ ^ H . *

/

>/ ^ ^ ? />'

>

f

1

1

1 1 ) '

P i 1 1

'

1

' 1 — LH'-

• - J - - 1

. - - : ;-;->^'^' •_,^~'~''~~

\ - • -

^ n - ^ r :. i ^ .•-

— — T — 1 .

3 o 0 o cu

1 II II a H g

I. a. (u

- • • ; ' - •

,—-*

1

*"

1

• • ' . : - • •

. " ^ ' ^ • • ' ' • "

1 :

-^ ' i I t

4i *"

II II "

~——___

_-_.*-•

P.«"

/

~ jl

/ 1 •.' ( i -

f i I ^-t /^ 1 •t •

f. tir—-.rL_ i l •• ~ ~ ~ ~ " - -w 1 Ij' ! T 1 ] 1 ;_ 1 T 1 I I 1 'i * ( 1 .» - 1

1 - h ^ '^

1 i ' l

1 i 1 ••' 1 4 - M 1 1 y

1 -1

! P' i '.••' ••'

.>- j " '

" • '

1 t

i i

j ;

: - :•* • + ••:•

C Q :~

4^ * * •

>0

~ " " r "

f

•-

--+ -P «•-

OJ r

U-J

1

' *i <•-

QD ^

4->

Dl c <u

- H

£1 rfl

—« in

1

1 '

r- :

- '

•^

ION WIT

LOADS

R LOAD

H Z W U O H UJ HH UJ Ci: H s ^-t t-4 >-l a f- Q: 1 cx UJ

X < a,

1 ^ 1 Z Z f-, O UJ •-H 1 J Z 2 i < 2

z H . . O z z •-• UJ H f-s: CD u O Z UJ s u cc

J ^ U. Q O OQ 1

< X Z J o cn c •-• z H z o < t-H J

QC UJ < (S) a > <: UJ

UJ u ^ X < < U J U Z Du >-* t-t a. UJ > z Q; , ^ < <

^ • ^

»-4

« m

UJ : i ; =3 o - H

J '-1.

50

( I J / S d I H - l J ) 1N3W0W

51

A plan view of the moment distribution on the surface

of the slab is shown in Figs. 3.18 to 3.21. For (1)

partition load in the x-direction with perimeter load and

(2) for partition load in the y-direction with perimeter

loadf it is observed that the maximum long direction moment

occurs near the edge of the slab and the short direction

maximum moment occurs near the center of the slab^

irrespective of the position of the partition load.

A total of 450 cases were studied. From these problems

only the absolute maximum values of differential

deflection^ bending moment and shear force were used for

the regression analysis. The regression analysis is

discussed in Chapter IV.

52

H U. \ cn a. t-t

:/: 1

H U.

in .

(U

n

J < > OS UI l -z •-«

QE: D O H S w O iLi u >< ^

1 X

o z cc o o J u.

UJ z X o H Z •-•

U H Z X u •-• 2 UJ

cs H DD •-• Z < Q UJ J t r cn X o z: u UJ

X X O H H Z •-• Lu Z Q O •-< Z UJ UJ Q CQ (J U

< u u. u. < O C J .

D Qu Z Z CD O o u •-• I-. OJ K H H X < •-• r> H Q CQ cn z •-• CC D O Q: u < u H > o cn o -J H t-t [i. Q Z Z •-•

O O J J t-« t-l < H H CC U U •"• UJ •-< UJ 1- H Q. X X Z > • • - • < UJ H Q CL U

00 .-• •

m UJ X r5 O

SDCV-A

S3

JZZZZL

/ ^ /r //'A

/ /

o o

I • p «•-

JQ

O o o w-t

II

QU

4J

m

lU

c

\ in a

•-<

I •p

Z U z o z

H X o X cn

UJ X H 2

Z X

H z u z o z o 2

< -J

cn w X

X o u. z o t—«

u LJ X • - ^

Q I

X

UJ X H

»-< u. z u. Q O z UJ u oa u

< u. X cn UJ X

Lu O

2 O »—•

D QQ f ' X X UJ

cn >

o • - •

Q Z O

J •-. < H U U X X > - H-,

u X

o

Q U U < -J X

UJ X <

< O -J

z o

z o

o u

u.

H X i-i UJ

X X < u X u

SDCV-A

54

f? / /

^ ^ -' > \^

y/x/j^//yy/y^

/

//////A

0

o o

X

o o o T-t II •H

X

•p

\ in a ••

I •p

• «*-+i C ^

X ^ Z UJ

II II z E E O

01 >. Z

c

X . - I

II

CU

II

cn

4J

<+.

cu X ru c^ UJ N I—t

cn CQ <

cn

CD z X o o J X

UJ X H Z

u Z X

<

cn

X X

H Z U z o z o z >-' X z Q O •-• z X u m u

<

z o »-( H u u X >-• Q I

>-u X

X o z o »-«

ffl •-< X X u

X X D cn

u X

(n > o z o

< H u u >-' X X X > . H-.

H Q

o cu •

X X

Q X u <

X

X X

<

cn Q < O 2 O

2 O

Q 2 a u E-X

X X H 2 X U

SDCy-A

55

yy^'/// /./

= ^ ^ g e e g g g ^

TZZT.

5"

/ \ i

4* +> M- «4-\ \ J3 J3 - ^ -H

O O O O >o o

.-• II 11

4 J (4-

X

II

a H 6 X X 01

• c

•H

T

II E

>•

\ in a

•- j £ 1

4J <•-x ^

H Z X z o z

H X

cn X

X 1

X

in

OJ

II

J < > X X H 2 >—t

X D

o H 2 O U

^«4

> ' i

<J 1 1

X O

RT

X

cn u X f -

z ("

f-2 X z o z o 2 »—( Q 2 X X

X

o 2 O »-« H D O »—< X h-cn !-• o J < u »—< X >« H

<-H

cu •

CO

X X "=> o

z X X 2

X < J cn X X H

X o X u < X X D cn X X H

X X > o z o t—•

H u X X t—>

Q

X o X

z o t—<

H U X X (—1

Q 1

>•

X X H

Z i—i

Q X U < J . X z Q X ^ X H < •H

Q cn z Q O < U o J H

X 2 ""< O -J >—< H X 1— LJ

f- H X 2 < X X u

SDCV-A

CHAPTER IV

DEVELOPMENT OF THE PREDICTION EQUATIONS

4.1 Introduction

After acquiring all the data from different problems^

the next step was to develop a prediction equations by which

maximum momentst maximum shear forces and maximum

differential deflections can be estimated for use in slab

design. To do thiSf regression analysis^ a statistical

technique for developing relationship between two or more

variables^ was used.

4.2 Regression Analysis

A non-linear regression analysis was accomplished

using the Hocking-Lamotte Leslie select regression analysis

CHocking et al.f 1967^ Lamotte et al.f 19701. The program

IS designed for variable selection in a least square

regression model. The program can read or generate a

variable pool of not more than 80 variables. Variables may

be read directly by a user-written subroutine named "Input."

A user may process several problems within a data set and

may analyse several data sets in one pass of the program.

Various output options are available to the user. The

result IS either a linear equation in the form,

y=a +a,X •a^x^*....^a X (4.1) ' o l l 2 2 1 1

or a logarithmic equation in the form,

56

y = o ^ ^ > 1 ( x ^ ) ^

57

(4. 2)

where y= dependent variable

x= independent variable

a= constant

b= regression coefficient or power

4.3 Development of the Prediction Equations

The regression analysis was carried out by using

the following parameters as independent variables and were

input in the dimensions shownJ

1. Slab length, L, ft

2. Beam spacing, S, ft

3. Beam depth, d, inches

4. Edge moisture variation distance, e , ft

^ m' 5. Differential soil movement, y , inches

m 6. Perimeter load, P , lbs/ft

P 7. Partition load x-direction, P , lbs/ft

IX

8. Partition load y-direction, P , lbs/ft

and the following design parameters, one by one, as

dependent variables. 1. Maximum differential deflection in x-direction,

\ , inches

2. "^pximum differential deflection in y-direction,

^ , inches

3. Maximum bending moment in x-direction, M^,

ft-kips/ft

58

4. Maximum bending moment in y-direction, M • y

ft-kips/ft

5. Maximum shear force in x-direction, V , kips/ft X

6. Maximum shear force in y-direction, V , kips/ft

The variables are read directly with the aid of input

subroutine. The magnitude of the variables ranged from 10 -3

to 10 . If a linear regression model is used, the

variables with smaller magnitudes will be suppressed by the

variables with larger magnitudes. In order to avoid this

problem the logarithmic regression model was used. In doing

this the values were first converted in terms of their

logarithms (base 10) by the Input subroutine before being

used in the regression analysis.

The regression analysis was done on a full model along

with optimal regression on all of the subset sizes. This

means that after regression on the full model the program

will eliminate variables one by one in a specific manner and

regress on the remaining variables. The results, along with

the correlation coefficient, were used to determine the best

model. It is observed in each instances that the regression

on the full model produced the best correlation coefficient.

As the number of variables decreases, the correlation

coefficient also decreases. Therefore, only the results of

the regression on the full model have been taken into

consideration.

59

Prediction equations for all the loading cases

together, i.e., Case A, Case B, Case C and Case D

(Fig. 2.3), were first developed. It was observed that the

equations developed were not of superior quality. In order

to get a better equation which can be used for slab design,

problems with Case C and Case D were excluded, equations

were developed with the remaining problems and it was

observed that the correlation coefficient improved

considerably. Again, equations with only Case C and Case D

were also developed. The correlation coefficent improved

slightly from the previous two cases. Table 4.1 shows a

comparison of the correlation coefficient between the three

conditions. Below the equations developed for the three

conditions are presented

4 , 3 , 1 , Epti^^iop---" ' o.« ^ ,-• ^ h ' - d i n ' " . s <? s A »

B, C a n d D C o m b i n e d .

M = 0.129 X .024 ^3 ,1.034

(4. 3)

M 0. 372

,,L,-"' <<..•"" <e„.'-'" 'P,'-'^" <P.,>-' = <P,^. . 106

.084 ,_ ..779 (4.4)

0. 133 <L)-°^^ <d>-^^^ (e ) - 3'' CP )-°' ^ (P ) - ^ ' ' (P ) - ' ^ ' ^ *" ' ~ m p IX lY

(y J- ' (S )-°3^ ' m X

(4.5)

60

Table 4.1. COMPARISON OF R^ VALUES FOR THE THREE LOADING CONDITIONS

Loading Condition

Design Parameter

Symbol Equation R No.

Case A Case B Case C Case D

Maximum moment in x-direction Maximum moment in y-direction Maximum shear x-direction Maximum shear y-direction Maximum differential deflection x-direction Maximum differential deflection y-direction

M

M in

in

y

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

0.69

0.61

0.65

0.62

0.63

0.62

Case A Case B

Maximum moment in x-d irection Maximum moment in y-direction Maximum shear x-direction Maximum shear y-direction Maximum differential deflection x-direction Maximum differential deflection y-direction

M

M

in

in

y A

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

0.83

0.78

0.77

0.72

0.74

0.73

Case C Case D

Maximum moment in x-direction Maximum moment in y-d irection Maximum shear in x-direction Maximum shear in y-direction Maximum differential deflection x-direction Maximum differential deflection y-direction

M

M

y

A,

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

0.87

0.79

0.93

0.87

0.81

0.82

61

<L)-^^2 ( , , , . 0 6 0 ^^ ^ 1 . 0 6 9 ^p , . 0 8 9 ^^ ^ .122 ^^ j . 109 Vy - 0 . 5 5 2 * ^ i f 'J^

< y „ ) ' ° * ^ <s , - " 0 m y

( 4 . 6 )

A z • 0 . 0 9 7

, ^ , . 3 1 1 , 5 , . 5 0 7 ^^ , 1 . 2 8 1 (y )•"*»* (P >•"*"• < P . _ ) - " ' <P ) - " ° 061 .^ . . 0 6 B P i x i y

( 4 . 7 )

( d ) 1 . 2 5 3

A y • 0 . 1 9 4 ( L ) - 2 2 B (S •>'3°^ ( . ) * - 2 S l <y , - 0 5 9 ^^ , . 0 6 4 ^^ , . 1 0 8 ^^ , . 1 0 i

= ? 1^ J^ ( 4 . 8 ) (d ) 1 . 1 1 3

4 . 3 . 2 E q u a t i o n s Deve loped w i t h L o a d i n g C a s e s A

and B

c i . ) - ° ' ^ ' c s >-^ ' ' ' ( d ) - ^ ' ' ' ' <. ) ^ - ^ ° ' <P > - « ' 2 <P ) - ' ° 2 <P. ) • ' ' ' " **•' X • p ** i y M . 0 . 0 0 0 2 9 —— i' . ( 4 . 9 )

< v _ > . 032

( L ) H • 1 . 6 0 9 .

y

. 2 4 5 _ . . 3 5 3 ( . ^ , 1 . 1 0 8 (Pp>-' '^° '^..''°^'' * ^ y ' . 0 7 5

( d ) ( 4 . 1 0 )

<y ) - °^ ' ' <s y^'**'* m Y

( L ) • 1 1 1 <s ) * ' ^ ^ ( d ) - ° ' ^ ( . ) - ' ' ^ * <p ) - ^ ' * (P ) ' ° ' ' ^ (P ) - ° ^ ' X " p * * * y

V • • 3 . 5 — X

y_> . 0 5 4

( 4 . 11)

V « 0 . 4 0 7 , . , - ' = ° . d , - " ^ . . „ ' - ° " cp„r^^^ . p . . . . - " ^ ' ^ v '

. 0 7 5

( 4 . 1 2 )

6 2

( D - ^ ^ * ^ <* ) 1 - 3 1 3 (y ) . 0 5 7 ^p , . 8 0 7 ^p ^ . 1 0 2 . : C 2 ~ P I X R)

A^ = 0. i y

0 7 7

X

( 4 . 1 3 )

A « 0.00029.

( L ) - ^ " ^ (e ) 1 ' 3 1 ^ (y , - 0 6 1 j p . 8 2 6 . 1 0 5 . 1 0 6 _ . . 6 4 2 ™ » P i x i y <S ) '

y

( d ) 1.388 (4.14)

C and D

4.3.3 Equations Developed with Loading Cases

< L , ' 0 5 S <s , - ^ 2 2 ^ ^ , . 3 7 2 ^^ , 1 . 1 3 7 ^p , . 1 6 8 ^p , . 1 6 8

0.02B95 ^ = iJ^ il ( 4 . 1 5 )

*VJ . 0 8 7

M.. « 1 . 6 0 3

'(S ) - ' ' ^ ^ < . ) ^ - ° " <p , - 1 7 9 ^p , . 1 4 0 y m IX l y

( 4 . 1 6 )

V = 0 . 1 0 6

' m

(4.17)

< = / • ' " < % > ' • " ' < ^ , ' • " ' ' ^ v ' - " ° •^™'-°" 0 . 2 7 1 —

( L ) - " ' ^ < d ) - ^ ^ ° ( 4 . 1 8 )

A - • 4 1 . 11-m IX 1Y

L ) * ^ ^ ^ <S ) • 3 6 5 , , , ^ - ' 0 . < y ^ > - 0 ^ ^

( 4 . 1 9 )

<e ^''^^ <P

A. , " 0 . 0 5 7 4

, . 0 9 9 , p , . 8 6 7 ^3 , 2 . 1 0 4

I X i V ^

^ ^ , 1 . 6 . 8 ( y , - ^ 0 ^ ( L ) . i O l ( 4 . 2 0 )

where

63

L

S

e m

m P = P

P. = IX

P. =

ly

M = X

= length of the slab, ft

= spacing of the beam in x-direction, ft

= spacing of the beam in y-direetionf ft

= thickness of the beam, inch

= edge moisture variation distance, ft

= differential soil movement, inch

perimeter load, lbs/ft

partition load in x-direction, lbs/ft

partition load in y-direction, lbs/ft

maximum moment in x-direction, ft-kips/ft

M = maximum moment in y-direction, ft-kips/ft

V = X

maximum shear in x-direction, kips/ft

V = maximum shear in y-direction, kips/ft

^x = maximum differential deflection in x-direction.

inch

Ay = maximum differential deflection in y-direction,

inch

x-direction corresponds to the long dimension (length)

of the rectangular slab

y-direction corresponds to the short dimension of the

rectangular slab

All the equations developed are in terms of the

independent parameters discussed in Chapter II. The

equations developed without loading Case C and Case D (Fig.

64

2.3), provides better correlation coefficients expressed as

2 "R ," compared to the combined loading Cases A, B, C and D,

which measures how well the regression model fits the data.

2 Values of R , near zero are expected for completely random

data, whereas a value near 1.0 would imply all data to fall

on the curve of the best fit. The equations developed

without loading Case C and D are only discussed below.

The importance of a parameter in an equation is

measured by the magnitude of its regression coefficient or

its exponent. For example, in Eq. (4.9), the most

significant variable is e and the least significant m ^

variable seems to be y , due to the exponent of the ' m' ^

variables. Although exponents with a magnitude less then

0.1 can usually be considered insignificant and the variable

can be deleted from the equation, these variables have been

purposely included in all equations so that the user will be

knowledgeable of all the variables have been considered and

included in the design analysis. The position of the

variable (whether it is in the numerator or denominator)

relates whether it will increase or decrease the magnitude

of the design parameters corresponding to the increase or

decrease in its magnitude.

4.4 Validation of the Prediction Equation

The reliability of the finite element program Slab2 was

es tablished by Huang (Jan, 1974) which was discussed in the

65

section 2.1. The results obtained by Huang using the

computer program compared reasonably well with the

experimental results. Therefore, it can be concluded that

the results used in this analysis using the data obtained

from slab2 program are also acceptably reliable and the

equations developed by using these data should be reliable,

too. However, as a check on the equations ability to

reproduce the data (moment, shear, differential deflection)

used in their formulation, the results obtained from the

equations were checked against the actual computer problem

res ults. The comparisons are plotted in Figs. 4.1 to 4.6.

As can be seen from these figures, the points plot

reasonably well about a i:i line, indicating that the

predicted numbers from the equations are very close or equal

to the actual numbers generated by the computer model.

Furthermore, a linear least square analysis was done using

the data generated from the computer model and from the

equations. The straight line generated from these equations

are also plotted in Figs. 4.1 to 4.6 as "Regression Line."

The generated line typically plot below the i:i line, which

implies that the the values generated from the equations

gives a slightly higher (conservative) value except at very

small numbers.

66

\ ^ ~

\ \ \ \

\ ' ^

\ ' >

\ \ ^ \ r* \ ' ^ ^ ^

"4 % V \ V

\ ^ \ \

D

\ •

H

<l

1 1 1 1 1 j

ii> 'iJ - i - r.J r.J c r.j r.j r j r.j ^

\ \

D \

\

\

1 i i j

.—

\ q ITD

\ \ D n \ V

D D off"

• " ^ ^ ^ n '-' r- l lX,L-HA 5-. Q j ^ - ' ^ ^ O p I I

DO ' W S T L

LJ-- D

i i i i - t z\ — n:. . — . — 1.."

f i j l [

D 1

1 1

'^. '^ .y

r

a

^ ^

s? f l j A

n 1

r.J c>

~ r.j

^ r j

- r.J

r.J ~" "

6

^ 1 ^,

1 i ' ;

1

o HH

cn

o: G s u o

1-Q U

< -J Lu

^ ^ cn UJ

c cn O >- -J

J <

0 < r - ^ UJ n OS CC ^ UJ UJ 3 H U.

I l l '^ "

O c u r

.2 =i W UJ — CO W X

2 ?S ^ 03 a: 0) o r

Q: s u. o

cn r H •- o u OS •- UJ < 1 - K CL < i-i Z D Q C O 1 U UJ X

ft

UJ cx o t-t

u.

( U I ) S I S X | D U V Jd jH^ ' -U^O

67

r j

r-j

- r.J

-t

2 O 1-4 cn cn r UJ •-• o: c r UJ o a »-•

Q U Z UJ < - J

u. cn UJ ^ Q cn J < < •-• 2 I -< Z

UJ Q: Q: UJ UJ

UJ-^_

r.j

,_

u.' C>

c 0

^-f

C7 3

c

slo

CO 0)

C7> IP

cn

H U. D U. a. I-I Z Q O u r

EE

N

XIM

IJ

2 < 1- Z U 03 o:

o r z u. o o ^ cn r H «-• O CJ cr »- UJ < h- X Q. < >-• Z =5 Q O O 1 u u >.

rvj

UJ

o

( U I ) S I S X I D U V j s ; n d u j 0 3

68

z o r ^ o tn •-• cn H u u Q : UJ o K UJ •-•

n -t-* u—

\ CO CL — Jid

1 ^4—

c o

O '3 CM C

3 cr Ld

C 0 CO CO 0) l_

C7» 0) Q:

Q: Q 1

Q X Z < z cn HH H

cn z >• UJ J z < o z z < o cr z UJ «-i

H Q D Z CL UJ Z CQ O U Z

^ z z u — Ui X 2 < H Z u OQ CC

o Z U. o (/) z -1 o tr H-i < c z o

<

o u u

m

ui

(X

O

(;^/scdi>j—:^;) sisXjDuy js:^ndujo3

69

CO

I

c o o 3 cr

U c o CO CO

0)

Q) '- or

Z '

o := •-I o cn •-• UJ u CX.UJ o X Ui •-. OS Q

I D >• z < z cn »-» cn >-< z <

a Ui

D 0. z o u z UJ UJ 2 I -UJ ffi • z o cn t-< OS < a. z o

H z u z o z o z o z UJ 03

z D Z »-i

X < z OS

o u. z o •-»

<

o u u

X

o

o in n o CO

<N O CM

ID lO O

(:ij/sdi>|—:^i) sisXjDuv J94ndujon

7 0

C

- OQ

_

(/) D-

c o

3 cr u c 2 to CO 0) I—

c

cr

z o tn cn UJ OS o UJ u OS UJ

z o

I X

Q z <

tn •-. z cn >• -J < z <

u u OS a u.

X UJ OS H D 0 . z o u

< u z tn

z Z

X < z

z u UJ 2 H U ffl OS

o z u. o til z H^ o X «-• < H Ou < z n o o CJ UJ

in

UJ t£

O

( i d / S d l > l ) SIsXjDUV JSinduJOO

71

O a > 0 Q h - < £ > i D ' ^ f O C M ( M < r - < r - ^ - - ' - T - ^ ^

I

o I I I I T I

O) oo r (o CO -^

Li. u'

(/) CL

o <

Z) o

o (/) (/) LU

(J> u

z o cn cn z u o OS •-•

UJ u X UJ

cc Q ^ Z Q < I

>-tn tn >• <

UJ u cr < o u.

OS UJ cr H

5 u

< u z tn

z D Z

X < z

z UJ u 2 H U ffl cr

G z u. o cn »-i

cr < CL 5 ; O

z o >-<

<

o U UJ

UJ

cr O

(J j /Sdl>i) SISA.nVNV dBindl^OO

72

4.5 Limitations of Using the Prediction Equations

The equations were developed under a defined set

of conditions and certain assumptions and considerations.

Therefore, the limitations imposed by these equations should

be fully understood before using them. The limitations are

listed below:

1. The partition loads are placed along the centerline

of the slab.

2. The partition loads in the longitudinal and

transverse direction are not placed on the slab ""

simultaneously.

3. The equations have been developed using parameters

over a range of magnitudes typically encountered in

residential or light commercial buildings. Therefore, the

equations will predict reliable values for the parameters

ranges shown in Table 2.1.

4. Concentrated column loads were not used in the

analyses.

5. The equations developed were only for centerlift

cond it ions.

6. Input values of all the parameters must be in

consistent units. Substituting parameters into equations in

any other units will produce incorrect results. Unit

conversion must be done after using the equations.

73

7. The equations can be used only when there is a

partition load, either in x or y direction, with the

perimeter load.

8. If there is no partition load in x or y direction,

then a factor of 0.01 should be used. Because during the

formation of the prediction equations, the zero partition

load was considered as 0.01, for the ease of forming the

equations.

The logarithmic model in Eq. (4.2) was used for the

formation of the equations, which is described in Section

4.2. If partition load is considered 0.0, then logarithmic

model cannot be used, because logarithm of a 0.0 is

infinite. So, instead of using partition load as 0.0 a

small number of 0.01 is used.

A factor of safety is not incorporated in these

equations, but conservative parameter values were used while

developing them. For example, a soil modulus of 1500 psi is

used which is a very low value and will only occur if the

soil is very wet. Furthermore, from the least square

analysis of the data points resulting from the comparison

between computer analysis and the regression equation, it is

observed that the equation gives a conservative value

(higher or more severe design value) compared to the

individual problem result obtained from the computer

ana lysis.

74

4.6 Design Procedure Using the Regression Equations

The equations developed for predicting moments, shear

forces and differential deflections from loading Cases A and

B gives reasonably reliable results, compared to computer

analysis Figs. 4.1 to 4.6. One of the purposes of this

study was to enhance the equations developed by the Post-

Tensioning Institute (without any perimeter loads), by the

equations developed in this study, for designing slabs with

perimeter loads.

The Post Tensioning Institute design method does not

take into consideration any kind of line or partition load

inside the slab. According to PTI (1980), if partition load

is placed inside the slab, and if the tensile stress,

f^= 2.35 P/(t^'^^) -f t p

where

(4.21)

P = partition load in lb/ft

t = slab thickness in inch

f = minimum compressive stress in concrete due to P

prestressing (usually 50 psi)

exceeds the allowable tensile stress ^ -^'^y/^' f ^hen a

thicker slab section should be provided under the loaded

area or a s tiffening beam should be placed directly beneath

the concentrated load.

Problems with partition loads for center lift

conditions were solved, with the PTI equations and also with

75

the equations developed in this study. The partition loads

were assumed to be in the range of 1-1.5 times the perimeter

load. The example problems were first solved using the PTI

design procedure. According to the PTI (1980), additional

beams were placed under the line loads. After getting the

results from the PTI procedure, the same parameters (slab

length, slab width, beam depth, beam spacing) were used in

the equations developed with line loads for calculating

moments, shear forces and differential deflections (Eqns.

4.8 through 4.14). The results obtained from 44 different

problems with partition loads both in the x and y direction

are tabulated in Tables 4.2 to 4.7.

It is observed that the equations developed with

partition loads ususally yield higher values for x-moments

if the partition load is placed in the x-direction and y-

moment if the partition load is placed in the y-direction

and also higher values for shears but lower values for

differential deflection. Except, the moment equations gives

lower values for higher soil differential movement. Since

the equations developed in this study takes into account the

magnitude of the partition load, these equations should be

used for designing a slab with partition loads. The

equations are developed by a rational procedure, there are

some limitations in using these equations which are

explained in Section 4.6.

TABLE 4.2 COMPARISON OF MAXIMUM BENDING MOMENT RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED' IN X-DIRECTION.

76

ZlfiiB SIZE

in)

m Yn, PERIMETER PARTITION M

LOAD LOAD

M

{FT-KIPS/FT) (FT-KIPS/FT) PTI NEW PTI fSW

(D ' IN) (LBS/FT) ".BS/FT) EGH.IATIONS EQUATIONS EQUATIONS EQiJATr"S

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

48 X 24

48 X 24

2 2

5 5

8 8

5 5

2 2

5 5

8 8

5 5

8 8

3 3

3 3

4 4

4 4

4 4

2 2

2 2

840 840

840 840

840 840

840 840

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1000

1000

840 1260

840 1260

840 1260

840 1260

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1000

1500

1.9 1.9

6.8 6.8

6.6 6.6

8.7 8.7

2.7 2.7

8.2 8.2

8.3 8.3

10.8

10.8

26.4

26.4

4.4 4.4

4.3 4.3

2.0 2.1

6.0 6.2

9.9 10.4

5.9 5.9

2.8 2.9

7.6 8.1

14.3

14.9

7.5 7.9

15.1

16.1

4.0 4.1

3.8 4.0

1.9 1.9

7.2 7.2

7.3 7.3

9.1 9.1

2.7 2.7

8.6 8.6

9.1 9.1

11.3

11.3

29.1

29.1

4.5 4.5

4.4 4.4

1.8 1.9

5.4 5.6

9.1 9.5

4.8 5.1

2.1 2.2

5.8 6.0

10.6

10.9

5.8 6.0

11.5 11.9

2.9 3.0

4.9 5.1

77

TABLE 4.3 COMPARISON OF MAXIMUM BENDING MOMENT RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN Y-DIRECTION.

SLAB e^

SIZE

(FT! (FT)

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

48 X 24

48 X 24

2

2

5

5

8

8

5

5

2

2

5

5

8

8

5

5

8

8

3

3

3

3

(IN)

4

4

4

4

4

4

2

2

2

2

PERIMETER PARTITION

LOAD LCiAD

(L3S/FT) (LBS/FT)

840

840

840

840

840

840

. 840

840

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1000

1000

840

1260

840

1260

840

1260

840

1260

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1000

1500

M M^ X y

(FT-KIPS/FT) (R-KIPS/FT)

PTI NEW PTI NEW

EQUATIONS EQUATIONS EQUATIftw EQ^ATIOf.S

2.1

2.1

6.6

6.6

6.4

6.4

8.6

8.6

2.4

2.4

7.3

7.3

7.2

7.2

8.2

8.2

21.4

21.4

4.4

4.4

4.3

4.3

2.1

2.2

5.9

6.2

9.9

10.3

5.6 5.9

2.6

2.8

7.3

7.6

13.1

13.7

7.0

7.2

13.4

13.9

4.0

4.2

3.9

4.1

2.1

2.1

6.9

6.9

7.0

7.0

9.0 9.0

2.4

2.4

7.6

7.6

7.8

7.8

8.6

8.6

23.6

23.6

4.5

4.5

4.4

4.4

4.2 4.4

11.7

12.1

19.7 20.4

10.3 10.7

5.4

5.5

14.8

15.2

26.6

27.0

13.2

13.5

24.9

25.7

7.9

8.2

4.2

4.3

TABLE 4.4 COMPARISON OF MAXIMUM SHEAR FORCE RESULTS BETWEEN THE PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN X-DIRECTION.

78

SLAB

SIZE

(FT)

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

48 X 24

48 X 24

e m

(FT)

2

2

5

5

8

8

5

5

2

2

5

5

8

8

5

5

8

8

3

3

3

3

(IN)

4

4

4

4

4

4

2

2

2

2

PERIMETER PARTITION

LOAD LOAD

(LBS/FT) (LBS/FT)

840

840

840

840

840

840

840

840

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1000

1000

840

1260

840

1260

840

1260

840

1260

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1000

1500

(Lfi/SQIN)

PTI NEW

EQUATIOr^ EQUATIONS

18.0

18.0

25.0

25.0

39.0

39.0

32.0

32.0

22.0

22.0

52.0

52.0

47.0

47.0

43.0

43.0-

38.0

38.0

40.0

40.0

40.0

40.0

24.0

25.0

51.2

74.0

80.9

84.1

47.5

49.3

28.4

29.5

69.5

129.0

89.9

93.9

69.4

72.1

72.6

75.4

47.9

49.7

46.0

48.6

(LB/SQIN))

PTI NEW

EQUATIONS EQUATIONS

32.0

32.0

45.0

45.0

71.0

71.0

48.0

48.0

31.0

31.0

74.0

72.2

65.0

65.0

52.0

52.0

52.0

52.0

53.0

53.0

45.0

45.0

31.0

32.0

58.0

60.0

86.8

90.0

51.4

53.2

18.5

19.2

40.4

41.8

49.1

50.9

40.4

41.8

39.4

40.9

29.1

30.1

43.0

44.9

TABLE 4.5 o2^.^,'^^^^°^ 0^ MAXIMUM SHEAR FORCE RESULTS BETWEEN THE PTI DESIGN METHOD e t r i" DEVELOPED EQUATIONS 111 THIS ^l ^ I ^^^^ PARTITION LOADS ARE PLACED IN Y-DIRECTION.

79

SLAB

SIZE

(FT)

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

48 X 24.

48 X 24

e m

(FT)

2 2

5 5

8

8

5 5

2 2

5 5

8 8

5 5

8 8

3 3

3 3

y„, PERIMETER PARTITION LOAD

(IN) (LBS/R)

1 840

1 840

1 840

1 840

1 840

1 840

4 840

4 840

1 1040

1 1040

1 1040

1 1040

1 1040

1 1040

4 1040

4 1040

4 1040

4 1040

2 1040

2 1040

2 1000

2 1000

LOAD

(LBS/FT)

840 1260

840 1260

840 1260

840 1260

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1000

1500

V X

(LB/SQIN

PTI )

^U EQUATIONS EQUATIONS

27.0

27.0

65.0

65.0

50.0

50.0

54.0

54.0

25.0

25.0

58.0

58.0

67.0

67.0

72.0

72.0

62.0

62.0

40.0

40.0

42.0

42.0

30.0

30.7

72.0

75.2

114.9

118.3

67.4

69.7

34.4

35.5

84.0

87.0

94.0

97.4

65.0

67.9

60.7

62.0

49.2 50.9

48.0

49.0

V y

(LB/SQIN PTI

)

NEW 'EQUATIONS EQUATIONS

23.0

23.0

54.0

54.0

43.0

43.0

39.0

39.0

24.0

24.0

59.0

59.0

69.0

69.0

62.0

62.0

50.0

50.0

37.0

37.0

52.0

52.0

48.5

50.5

106.4

109.6

158.9

163.9

94.0 96.9

57.9

59.7

126.7

130.6

133.0

137.4

93.0

96.2

81.2

84.0

77.0 79.4

45.0

46.7

TABLE 4.6 COMPARISON OF MAXIMUM DIFFERENTIAL DEFLECTION RESULTS BETWEEN PTI DESIGN METHOD AND THE DEVELOPED EQUATIONS IN THIS STUDY, WHEN PARTITION LOADS ARE PLACED IN X-DIRECTION.

80

SLAB SIZE

(FT)

® m ^ m PERIMETER PARTITION m A.

LOAD LOAD A, >I —'y

(INCH) (INCH) PTI NEW PTI NEW

(R) (IN) (LBS/R) (LBS/R) EQUATIONS EQUATIONS EQUATIONS EQUATIONS

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

48 X 24

48 X 24

2 2

5 5

8 8

5 5

2 2

5 5

8 8

5 5

8 8

3 3

3 3

4 4

4 4

4 4

2 2

2 2

840 840

840 840

840 840

840 840

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1040

1000

1000

840 1260

840 1260

840 1260

840 1260

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1040

1560

1000

1500

0.115

0.115

0.260

0.260

0.790

0.790

0.350

0.350

0.120

0.120

0.420

0.420

0.470

0.470

0.520

0.520

0.350

0.350

0.330

0.330

0.340

0.340

0.130

0.136

0.452

0.434

0.804

0.838

0.469

0.489

0.116

0.120

0.385

0.401

0.713

0.743

0.416

0.434

0.772

0.805

0.213

0.205

0.211

0.220

0.160

0.160

0.390

0.390

0.720

0.720

0.520

0.520

0.133

0.130

0.430

0.430

0.480

0.480

0.530

0.530

0.300

0.300

0.340

0.340

0.280

0.280

0.093

0.097

0.323

0.310

0.575

0.600

0.337

0..52

0.115

0.120

0.385

0.402

0.714

0.745

0.419

0.437

0.777

0.811

0.214

0.205

0.214

0.224

81

TABLE 4.7 DEFrErrfnM o^ ^^^^^^^ DIFFERENTIAL DEFLECTION RESULTS BETWEEN PTI DESIGN ?HlfSTunv '"' ^VELOPED EQUATION^?' PL^rrn TS :. "^^ PARTITION LOADS ARE PLACED IN X-DIRECTION.

SLAB

SIZE

(R)

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

40 X 38

42 X 24 42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

42 X 24

48 X 24

48 X 24

e m

(R)

2 2

5 5

8 8

5 5

2 2

5 5

8 8

5 5

8 8

3 3

3 3

Ym

(IN)

4 4

4 4

4 4

2 2

2 2

PERIMETER PARTITION

LOAD

(LBS/R)

840 840

840 840

840 840

840 840

1040 1040

1040

1040

1040 1040

1040

1040

1040

1040

1040

1040

1000

1000

LOAD

(LBS/FT)

840 1260

840 1260

840 1260

840 1260

1040 1560

1040

1560

1040 1560

1040

1560

1040

1560

1040

1560

1000

1500

A, (INCH

PTI )

NEVI

\ (INCH)

PTI NEW EQUATIONS EQUAi.QNS EQUATIO?^ EQUATIONS

0.160 0.160

0.520

0.520

0.890

0.890

0.670

0.670

0.170 0.170

0.550

0.550

0.750

0.750

0.730

0.730

0.740

0.740

0.330

0.330

0.360

0.360

0.108

0.113

0.360

0.375

0.667

0.695

0.389

0.356

0.143 0.149

0.476

0.496

0.813

0.920

0.515 0.537

0.772

0.806

0.205

0.213

0.251

0.270

0.120 0.120

0.390

0.390

0.670

0.670

0.500

0.500

0.120 0.120

0.390

0.390

0.520 0.520

0.520

0.520

0.480

0.480

0.230 0.230

0.280

0.280

0.091

0.095

0.304

0.318

0.565 0.589

0.331

0.321

0.113 0.118

0.377

0.394

0.701

0.731

0.411

0.429

0.592 0.618

0.156 0.163

0.231

o.:40

82

A design example by the PTI and the new developed

equations, illustrating the procedure .s included in

Appendix E. A computer program written by Abdallah (1987)

was used to solve the problems by the PTI procedure.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The purpose of this study was to study the behavior of

slabs-on-ground constructed over expansive soil subjected to

both perimeter and partition loads, and to subsequently

accomplish a parametric study whose result would be some

prediction equations. From the study the following

conclusions can be drawn?

1. Addition of the partition load increases the momemt

and shear force in a slab except, for higher differential

soil movement.

2. The prediction equations developed can be used

easily to estimate moment, shear force and differential

deflection of a slab for center lift conditions, which can

be compared to the allowable values.

3. The equations are not developed for a specific

problem. These equations can be used for a wide range of

parameters. These can also be used to design a reinforced

or a post-tensioned floor slab for a residential or a light

commercial slab-on-ground.

The purpose of the study was accomplished by developing

prediction equations, which are simple, easy to use and

above all takes into account the magnitude of the partition

83

84

load. Furthermore, all of the principal parameters can be

used in these equations which are needed to design a slab

foundation for a residential or a light commercial building.

5.2 Recommendations

The recommendations for further work and improving

these equations can be listed as follows:

1. Further parametric study should be done with column

or point loads in combination with partition loads.

2. The position of the partition load should be

included in these equations, in-order to make the equations

more flexible.

3. Equations for edge lift conditions should be

developed using the parameters used in this study.

4. Design aids or nomographs can be developed using

the equations in this study for quick references.

REFERENCES

1. Abdallah, Hazzah A., "Development of an Interactive Computer Program for Design of Post-Tensioned Slab-on-Ground Foundations Constructed over Expansive Soil Using Micro Computer," a Report Submitted to the Graduate Faculty of Texas Tech University, in partial fulfillment of the requirements for the Degree of Masters of Science in Civil Engineering, May, 1987.

2. Bowles, J. E., Foundation Analysis and Design, Mcgraw-Hill Book Co., New York, 1968.

3. Building Code Requirements for Reinforced Concrete (ACI 318-83), PP. 318-29.

4. Building Research Advisory Board, "National Research Council Criterea for Selection and Design of Residential Slabs-on-Ground," U.S. National Academy of Sciences publication 1571, Washington, D.C., 1968.

5. deBruijn, C M . A . , "Annual Redistribution of Soil Moisture Suction and Soil Moisture Density Beneath two Different Surface Covers and Associated Heaves at the Onderstepoort Test Site near Pretoria," Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, A Symposium in print, Butterworths, Australia, 1975, PP. 122-134.

6. Frazer, B. E. and Wardle, L. J., "The Analysis of Stiffened Raft Foundations on Expansive Soil," Proceedings, Symposium on Recent Developments of the Analysis of Soil Behavior and Their Application to Geotechnical Structures, University of South Wales, Kensington, N.S.W., Australia, July, 1975, PP. 89-98.

7. Gunalan, Kancheepuran M., "Analysis of Industrial Floor Slabs-on-Ground for Design Purposes, " Dissertation Presented to Texas Tech University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy, December 1986.

85

86

8. Janis L. Fenner, Deborah J. Hamberg, and John D. Nelson "Building on Expansive Soils," The Geotechnical Engineering Program, Civil Engineering Department Colorado State University, Fort Collins, Colorado 1983.

9. Krohn, James P. and Slosson, James E., "Assessment of Expansive Soils in the U.S.," Proceedings, 4th International Conference on Expansive Soils, Vol. 1, Denver Colorado U.S.A., 1980, PP. 596-608.

10. Hocking, R. R. and Leslie, R. N., "Selection of the Best Subset in Regression Analysis," Technometrics, Vol. 9, 1967, PP. 531-540.

11. Holland, John E. and Lawrence, Charles E., "Seasonal Heave of Australian Clay Soils," Proceedings 4th International Conference on Expansive Soils , Vol. 1, Denver, Colorado, U.S.A, 1980, PP. 302-321.

12. Huang, Y. H.,"Finite Element Analysis of Rigid Elements with Partial Subgrade Contact," Proceedings 53rd Annual Meeting of the Highway Research Board, Washington, D.C., January 21-25, 1974, PP. 39-54.

13. Huang, Y. H., "Finite Element Analysis of Slabs on Elastic Solid," Transportation Engineering Journal, ASCE, Vol. 100, No. TE2, May 1974, PP. 403-410.

14. Lambe, T. W. and Whitman, R. V., Soil Mechanics, SI version, 2nd edition, John Wiley and Sons., New York, 1980.

15. Lamotte, L. R. and Hocking, R. R., "Computational Efficiency in the Selection of Regression Variables," Technometrics, Vol. 12, 1970, PP. 83-93.

16. Lytton, R. L., "Design Criteria for Residential Slabs Grillage Rafts on Reactive Clays," Report for the Australian Commonwealth Scientific and Industrial Research Organization Division of Applied Geomechanics.

17. Lytton, Robert L. and Meyer, Kirby T., "Stiffened Mats on Expansive Clay," Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM 7, Proc. Paper 8265, July 1971, PP. 999-1019.

87

18. Pierce, David M. , "A Numerical Method of Analyzing Prestressed Concrete Members Containing Unbonded Tendons," Dissertation presented to the University of Texas at Austin, Texas, in 1968 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

19. Post-Tensioning Institute, "Design & Construction of Post-Tensioned Slabs-on-Ground," Post-Tensioning Institute, 1980.

20. Terzaghi, K. and Peck, R. B., Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc., New York, 1948.

21. Walsh, P.E., "The Design of Residential Slab-on-Ground" Division of Building Research Technical Paper-5, Commonwealth Scientific and Industrial Research Organization, Highelt, Victoria (Australia), 1974.

22. Ward, W. H., "Soil Movement and Weather," Proceedings, 3rd International Conference on Soil Mechanics & Foundation Engineering Switzerland, 1953, PP. 477-482.

23. Washushen, J. A., "The Behavior of Experimental Raft Slabs on Expansive Clay Soils in the Melbourne Area," Masters Thesis presented to Victoria Institute of Colleges, at Hawthorne, Victoria, Australia, in 1977 in partial fulfillment of the requirements for the Degree of Master of Engineering (Civil).

24. Wray, W. K., "Development of a Design Procedure for Residential and Light Commercial Slabs-on-Ground Constructed Over Expansive Soils," Dissertation Presented to Texas A & M University at College Station, Texas, in partial fulfillment of requirements for the Degree of Doctor of Philosophy, December 1978.

APPENDIX A

MAXIMUM BENDING MOMENT, SHEAR FORCE AND

DIFFERENTIAL DEFLECTION RESULTS FROM

THE PARAMETRIC STUDY

88

L !FT)

S IFT)

d (in)

• P rib/fl)

P ix (lb/ft»

• l y nb/ft)

e m

(R) M, H.

(IN) (FT-KIPS/FT)fFT-KIPS/FT)(KIP/FT) (KIP/FT)

DATA FROn LOADING CASE A

8 9

A

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48

72 72 72

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18

600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00

600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00

1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00

1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00

600.00 600.00 600.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2

. 5 8

2 5 8 2 5 8 2 5 8

2 5 8

4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

1 I 1

1.114 3.700 5.775 1.105 3.686 6.741 1.154 3.649

11.010

1.114 3.116 8.033 1.105 3.279 7.969 1.153

11.970 8.227

2.407 8.049

11.719 5.430 8.063

11.606 14.604 13.467 11.356

2.407 9.519

10.522 2.398

13.269 10.647 2.395

13.237 22.395

1.111 3.699 5.697

1.261 4.294 7.023 1.272 4.289 7.426 3.937 4.267

12.463

1.261 3.663

10.384 1.272 3.581

10.040 3.937

13.523 9.231

2.957 15.117 13.502 15.531 15.136 13.435 15.556 15.148 13.240

2.957 15.707 13.373 2.954

15.348 13.047 2.943

15.284 15.981

1.279

4.402 7.200

0.557 1.658 2.359 0.552 1.634 2.579 0.577 1.578 4.106

0.557 1.355 3.458 0.552 1.418 3.384 0.577 6.540 3.248

1.204 4.024 4.238 2.716 4.031 4.222 7.302 5.543 4.174

1.204

6.026 3.292 1.199 6.722 3.222 1.198 6.671 9.074

0.556

1.658 2.370

0.630 1.636 2.353 0.635 1.630 2.621 0.878 1.610 4.188

0.630 1.426 3.527 0.635 1.450 3.478 0.878 6.560 3.355

1.397 6.035 4.298 7.764 6.055 4.316 7.777 6.082 4.361

1.397

6.563 3.469 1.403 6.694 3.413 1.415 6.679 8.471

0.640

1.631 2.351

0.052 0.323 0.927 0.038 0.256 0.556 0.142 0.966 0.894

0.052 0.323 0.927 0.038 0.256 0.556 0.142 0.966 0.894

0.124

0.929 1.027 0.140 0.340 0.640 0.874 0.883 0.864

0.171

1.124 1.266 0.130 1.212 1.230 0.085 1.087 1.976

0.090

0.J03 0.538

90

L (FT)

72 72 72 72 72 72

72 72 72 72 72 72 72 72 72

72 72 72 72 72 72 72 72 72

72 72 72 72 72 72 72 72 72

96 96 96 96 96 96 96 96 96

96 96

96 96

s (FT)

12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

, 12

12

12 12

d

(in)

18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18

18 18

•"p (lb/ft)

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

Pix

(lb/ t»

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.oo"

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

Piy

(lb/ft)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

e m

(FT)

2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5

8

2

Ym

(IN)

4 4 4 4 4 4 4 4 4

1 1 1 1 1 I 1 1 1

4 4 4 4 4 4 4 4 4

1 1 1 1 1 1 1 1 1

4 4

4 4

Mx «y V X

(FT-KIPS/FT)(FT-KIPS/FT)(KIP/FT)

1.102

3.685

7.724

1.153

13.134

10.993

1.111

3.113

8.038

1.101

3.275

7.977

1.153

11.969

8.228

5.409

8.059

11.896

5.434

13.791

11.558

14.615

13.492

11.342

2.404

13.280

10.524

2.394

13.267

10.649

2.392

13.238

14.731

1.110

3.698

6.802

1.100

3.684

7.146

3.020

13.137

11.033

1.110

3.111

8.035

1.100

1.281

4.387

8.227

3.996

14.468

12.491

1.278

3.652

10.783

1.280

3.565

10.415

3.994

13.881

9.554

15.483

15.115

13.568

15.527

15.132

13.478

15.578

15.169

13.261

3.009

15.812

13.626

2.996

15.717

lO* ilvJ J

3.209

15.684

27.287

1.278

4.412

7.495

1.279

4.393

12.709

5.534

14.461

12.48'j

1.278

3.644

10.887

1.279

0.551

1.634

3.427

0.577

5.434

4.104

0.556

1.354

3.460

0.551

1.417

3.390

0.577

6.539

3.250

2.705

4.030

4.243

2.717

5.618

4.220

7.307

5.549

4.174

1.202

6.746

3.293

1.196

6.722

3.224

1.196

6.671

8.693

0.556

1.657

2.573

0.550

1.633-

3.058

2.375

5.435

4.230

C.556

1.352

3.455

0.550

*y (KIP/FT)

0.641

1.625

3.644

0.880

5.885

4.192

0.638

1.422

3.515

0.640

1.445

3.463

0.880

6.559

3.340

7.741

6.041

4.325

7.763

6.058

4.343

7.789

6.098

4.384

1.424

6.694

3.452

1.426

6.686

3.402

1.427

6.671

9.344

0.638

1.631

2.615

0.640

1.624

4.135

0.886

5.385

4.:86

0.638

1.420

3.L12

0. .-40

A (IN)

0.126

0.241

0.794

0.051

0.816

0.334

0.077

0.308

0.889

0.195

0.255

0.178

0.067

0.537

0.761

0.895

0.983

0.757

0.060

0.960

0.969

0.752

0.814

0.845

0.156

1.228

1.226

0.119

1.153

1.165

0.101

1.059

1.821

0.040

0.300

0.718

0.070

0.244

0.836

0.1-.:

o..:5

0.813

O.C^b

0.301

0.905

0.087

91

L JFT)

96

96 96 96

96

96 96 96 96 96 96 96 96 96

96 96 96 96 96 96 96 96 96

48 48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48 48

48 48 48

S (FT)

12

12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 •

12 12 12 12 12 12

12 12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12 12

12 12

• 12

d (in)

18

18 18 18 IB

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18.

30 30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30 30

30 30 30

Pp (lb/ft)

600.00

600.00

600.00

600.00

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

Pix (lb/ft)

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

Piy (ib/n)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

e m

(R)

5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 8 2 8 5 8 2 8 5 8

2 8 5 8 2 8 2 8 2 8

2 8 5

y . (i»i)

1 1 1 1 4 4 4 4

4 4 1 1 1 1 1 I 4 4

4 4 4

"x M„ V X

(FT-KIPS/FT) (FT-KIPS/FT)(h'IP/FT)

3.272

7.973

1.153

11.966

8.223

5.416

8.069

11.794

5.441

13.794

11.627

14.618

13.494

11.383

2.402

13.278

10.520

2.393

13.265

13.706

2.390

13.234

14.735

1.121

8.260

1.176

7.810

4.170

17.990

1.120

11.620

3.830

11.410

2.530

11.160

6.180

19.940

2.440

18.610

19.110

17.600

2.480

14.630

2.440

14.430

17.400

3.556

10.514

4.025

13.913

9.645

15.485

15.112

13.566

15.529

15.129

13.473

15.574

15.164

13.253

3.012

15.854

13.744

2.995

15.761

15.554 .

3.238

15.722

27.317

1.487

12.890

1.420

11.520

4.870

12.890

1.487

17.230

4.480

15.650

5.950

13.546

9.710

17.410

3.540

27.300

23.470

24.300

4.810

21.770

3.530

20.190

23.2C0

1.415

3.385

0.577

6.536

3.246

2.708

4.034

4.247

2.720

5.623

4.226

7.309

5.550

4.180

1.201

6.743

3.287

1.196

6.719

4.962

1.195

6.667

8.693

0.560

2.918

0.582

2.849

1.812

4.991

0.560

4.342

1.429

4.259

0.644

4.074

2.190

5.310

1.184

5.450

8.660

5.320

1.160

4.460

1.184

4.325

7.876

^ (KIP/FT)

1.442

3.460

0.881

6.551

3.335

7.742

6.041

4.326

7.765

6.059

4.344

7.787

6.097

4.381

1.426

6.692

3.449

1.426

6.686

5.226

1.427

6.671

9.337

0.661

3.348

0.666

3.246

1.876

4.254

0.661

4.824

1.495

4.686

1.106

4.374

2.560

4.653

1.426

6.331

9.719

6.215

1.423

5.158

1.426

5.120

8.592

A iW

0.260

0.126

0.935

0.715

0.135

• 0.780

0.920

1.030

0.753

0.969

1.100

0.844

0.870

0.890

0.207

1.245

1.220

0.178

1.163

1.573

0.153

1.062

1.769

0.042

0.316

0.043

0.606

0.062

0.280

0.067

0.455

0.115

0.437

0.107

0.404

0.217

0.735

0.056

0.657

0.574

0.570

0.090

0.5^8

0.055

0.5^0

0.604

92

L

<n)

148 '96 96 96 96 96 96

96 96 96 96 96 96 96 96 96

96 96 96 96 96 96 96 96 96

48 48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48 48 48 48

S (FT)

12 12 12 12 12 12 12

12. 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

20 20

- 20

20 20 20 20 20 20 20

20 20 20 20 20 20 20 20 20 20 20 20

d (in)

30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30 30 30 30

Pp (lb/ft)

1500.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

Pix (lb/ft)

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

Piy (ib/n)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

ro • '• (FT) (IN

8 4

2 • 1

8 1

5 1

8 1

5 1

8 1

2 4

8 4

5 4

8 ^

2 4

8 ^ 5 1 8 ] 2 1

8 2 1 8 2 i

8 ' 2 i

8 ' 5 i

8

2 8 5 8 2 5 2 8 5 8

2 5 2 8 5 8 2 8 2 5 5 8

"x «y V X

) (FT-KIPS/FT)(FT-KFPS/FT)(KIP/FT)

34.500

1.117

8.370

4.540

7.930

18.340

17.440

1.170

\ 11.620

3.272

\ 11.430

\ 2.150

[ 11.190

6.240

i 19.350

22.050

I 18.840

i 19.290

I 17.910

\ 2.504

\ 14.640

\ 2.640

\ 14.450

\ 13.230

4 33.940

I 1.450

1 8.410

1 4.670

1 8.330

1 1.210

1 4.490

4 1.450

4 12.020

4 3.680

4 12.050

4 1.200

4 17.690

I 2.470

1 19.320

I 19.460

1 18.980

1 19.370

1 18.510

4 2.480

4 18.590

4 18.480

22.800

1.498

13.380

6.178

11.990

22.920

23.390

1.498

18.110

3.557

16.530

6.270

14.340

9.976

9.320

10.440

27.730

23.490

25.110

4.737

22.670

3.645

21.040

15.720

26.130

1.560

9.030

5.160

9.020

1.310

5.240

1.560

12.870

4.040

12.830

8.361

8.190

3.040

20.320

20.350

20.410

20.690

20.590

3.050

19.620

19.660

11.386

0.558

2.932

1.926

2.864

6.724

5.266

0.558

4.438

1.415

4.268

1.134

4.343

0.787

5.500

9.358

5.459

8.698 5.354

1.162

4.414

1.186

4.328

6.667

11.269

0.553

2.890

1.894

2.857

0.686

1.805

0.553

1.402

4.139

4.139

0.686

1.342

1.193

5.557

7.067

5.530

8.758

5.464

1.193

7.961

7.913

*y (KIP/FT)

To.006 0.689

3.306

2.059

3.203

7.744

5.982

0.689

4.810

1.442.

4.664

1.134

4.343

2.534

6.529

5.219

6.467

9.761

'6.312

1.487

5.137

1.493

5.533

6.671

11.140 •

0.608

2.910

1.964

2.918

1.211

1.981

0.608

4.214

1.460

4.214

1.211

6.269

1.327

5.550

9.161

5.569

9.157

5.573

1.327

8.000

8.009

A ilH)

1.370

0.038

0.257

0.122

0.232

0.491

0.488 •

0.092

0.408

0.258

0.371

0.198

0.317

0.180

0.637

0.601

0.593

0.501

0.506

0.132

0.534

0.141

0.490

1.060

1.300

0.043

0.479

0.153

0.428 0.2C9

0.226

0.040

0.793

0.117

0.685

0.050

0.569

0.063

1.005

0.875

0.^55

0.730

0.S49

0.069

1.036

o.r- j

93

L !FT)

S (FT)

d (in)

Pp (lb/ft)

DATA FROH LIDADING CASE B

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48

72 72 72 72 72 72 72

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

Pix (lb/ft)

. 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Pxy (lb/ft)

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

% • V. (R) (IW)

2 1 5 1 8 1 2 1 5 1 8 1 2 1 5 1 8 1

2 4 5 4 8 4 2 i 5 4

8 ^

2 4

5 *

8 <

2 1

5 1

8 2 1

5 8 2 5 8

2 ^

5 8 '

2 5 8 2 5 8

2 5 8 2 5 8 2

«x "y V X

(FT-KIPS/FT) (R-KIPS/R) (KIP/FT)

1.223

3.872

5.991

1.528

3.903

6.055

3.996

3.972

7.189

1.221

3.410

8.407

i 1.528

3.409

\ 8.494

[ 3.996

\ 3.684

\ 8.687

i 2.682 8.194

i . 12.105

2.673

I 8.210 [ 12.204

I 5.647

1 14.467

I 12.425

\ 2.681

I 13.705

\ 11.368

4 2.673 4 13.737

4 11.403

4 4.238

4 13.806

4 11.481

1 1.128

1 3.815

1 5.053

1 .1.437

1 3.818

1 6.903

1 3.909

1.236

4.095

6.813

1.211

4.095

6.739

1.268

4.093

7.414

1.228

3.619

10.268

1.211

3.625

10.308

1.268

3.638

10.394

2.733

14.975

13.283

2.713

14.924 13.184

15.417

14.671

13.022

2.733

14.983

13.094

2.713

14.956

13.119

2.668

14.892

13.177

1.465

4.281

7.075

1.458

4.278

7.549

1.442

0.611 1.667

2.412

0.607

1.680

2.423

• 0.820

1.710

2.629

0.611

1.411

3.482 0.607

. 1.409

3.504

0.820

1.405

3.553

1.340 4.097

4.264

1.337

4.105

33.592

2.820

5.801

4.288

1.340

6.812

3.336 1.337

6.826

3.358

1.22;-] 6.856

3.407

0.564

1.672

2.346

0.563

1.672

2.476

0.815

\ (KIP/FT)

0.618

1.646

2.366

0.606

1.644

2.365

0.635

1.638

2.639

0.614

1.466

3.551

0.606

1.454 ,.

3.540

0.635

1.426

3.520

1.364

5.988

4.264

1.351

5.972

4.252

7.708

5.888 4.244

1.363

6.728

3.520

1.351

6.726

3.509

1.330

6.715

3.487

0.732

1.633

2.351

0.728

1.633

2.76?

o.;2i

A (IW)

0.048 0.319

0.570

0.160

0.303

0.539

0.060

0.288

0.687

0.055

0.315

0.805

0.073

0.430

0.808

0.136 0.267

0.850

0.104

0.953

1.053

0.174

0.908

1.026

0.781

0.995

0.975

0.195

1.292

1.324

0.179

1.253

1.130

0.153

1.211

1.220

0.063

0.320

0.4^4

0.094

0.309

0.731 0.166

94

L (FT)

96

96 96 96 96 96 96 96 96 96

96 96 96 96 96 96 96 96 96

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 96 96 96

S (FT)

12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

d (in)

18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30

Pp

(lb/ft)

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

600.00

600.00

600.00

Pix (ib/n)

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Piy (lb/ft)

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

100.00

1000.00

1000.00

1000.00

3000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00 100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00 1000.00

3000.00

3000.00

100.00

100.00

1000.00

1000.00

3000.00

3000.00

100.00

100.00

1000.00

e ffl

(R)

8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 8 2 8 5 8 2 8 5

8 2 8 5 8 2 8 2 8

2 8 2 8 5 8 2 8 2

Ym (IN)

4

4 4 4 4 4 4 4 4 4

4 4 4

4 4 4

4 4 4 4 4 4 1 1 1

Mx (FT-KIPS/FT

7.724

5.624

14.291

12.149 5.644

14.293

12.154

5.649

14.301

12.165

2.693

13.714

9.609

2.693

13.715

9.608

4.093

13.715

9.607

1.261

8.720

2.140

8.760

5.581

8.842

1.261

11.170

4.240

11.200

6.370

11.270

21.540

19.890

3.070

19.920

3.090

19.990

3.060

13.490

3.070

13.520

19.390

13.570

1.261

8.720

2.140

«y V X

KFT-KIPS/R) (KIP/FT)

10.884

15.471

15.085

13.549

15.471

15.072

13.533

15.469

15.048

13.503

2.936

15.718

13.475

2.924

15.699

13.490

2.896

15.661

13.547

1.429

13.380

1.430

13.290

6.771

13.710

1.429

17.980

4.969

18.030

1.425

18.140

14.010

29.310

3.937

29.170

3.876

28.930

3.960

22.410

3.936

22.420

27.430

22.460

1.429

13.380

1.430

3.462

2.821

5.759

4.273

2.822

5.760

4.273

2.825

5.762

4.274

1.346

6.814

3.300

1.346

6.812

3.299

1.345

6.812

3.296

0.631

3.043

0.630

3.046

2.037

5.266

0.631

4.318

1.390

4.320

1.008

4.331

7.511

5.565

1.345

5.565

1.344

5.570

1.345

4.312

1.345

4.321

8.287

4.329

0.631

3.043

0.630

»y

(KIP/R)

3.512

7.735

6.030

4.315

7.735

6.025

4.310

7.735

6.017

4.301

1.399

6.707

3.448

1.396

6.706

3.448

1.386

6.704

3.445

0.677

3.317

0.671 3.314

2.169

5.982

0.674

4.818

1.499

4.820

1.028

4.811

5.530

6.481

1.450

6.467

1.451

6.439

1.450

5.147

1.450

5.146

8.851

5.144

0.674

0.674

3.317

A (IW)

1.200

0.150

0.760

0.930

0.260

0.086

1.010

0.320

1.130

1.210

0.320

0.940

1.050

0.280

1.130

1.210

0.450

1.140

1.230

0.030

0.321

0.085

0.285

0.119

0.222

0.064

0.476

0.115

0.438

0.120

0.322

0.253

0.752

0.064

0.725

0.094

0.612

0.023

0.651

0.048

0.613

0.024

0.526

0.061

0.172

0.055

93

L

(FT)

72 72

72 72 72 72 72 72 72 72 72

72 72 72 72 72 72 72 72 72

72 72 72 72 72 72 72 72 72

96 96 96 96 96 96 96 96 96

96 96 96

96 96

96

96 96

S

(FT)

12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 1 ^

12

12

12

12 12

d (in)

18

18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18

18

18 18

Pp (lb/ft)

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

600.00

P P-

(lb/ft) (lb/ft)

0.00 3000.00

0.00 3000.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 1000.00

0.00 1000.00

0.00 1000.00

0.00 3000.00

0.00 3000.00

0.00 3000.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 1000.00

0.00 1000.00

0.00 1000.00

0.00 3000.00

0.00 3000.00

0.00 3000.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 1000.00

0.00 1000.00

0.00 1000.00

0.00 3000.00

0.00 3000.00

0.00 3000.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 1000.00

0.00 1000.00

0.00 1000.00

0.00 3000.00

0.00 3000.00

0.00 3000.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 1000.00

0.00 1000.00

0.00 1000.00

0.00 3000.00

0.00 3000.00

^ Y . M^ «y V X

(R) (IN) (R-KIPS/FT)(FT-KFPS/R)(KIP/FT)

5 1

8 1

2 4

5 4

8 4

2 4

5 4

8 4

2 4

5 4

8 4

2 1

5 1

8 1

2 1

5 1

8 1

2 1

5 1

8 1

2 4

5 ^

8 ^

2 ^

5 ^

8 2 '

5 8 '

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8

2 5

3.826

6.928

1.128

3.325

8.364

1.437

3.323

8.378

3.909

3.584

8.409

5.331

7.982

12.103

5.333

7.990

12.120

5.339

14.289

12.159

\ 2.471

[ 13.562

\ 11.209

\ 2.476

\ 13.562

\ 11.214

\ 4.135

4 13.574

4 11.224

1 1.227

1 3.874

1 3.953

1 1.404

1 3.873

1 6.956

1 3.876

1 3.874

1 6.956

4 1.227

4 3.414

4 7.723

4 1.404

4 3.413

4 7.723

4 3.876

4 3.514

4.276

9.896

1.465

3.789

10.534

1.458

3.786

10.580

1.442

3.763

10.682

15.566

15.073

13.491

15.564

15.056

13.453

15.559

14.956

13.389

3.298

15.493

13.488

3.292

15.493

13.479

3.275

15.424

13.459

1.259

4.358

7.481

1.249

4.346

7.479

1.311

4.326

11.053

1.259

3.668

10.750

1.249

3.664

10.788

1.311

3.652

1.674

4.895

0.565

1.384

3.491

0.563

1.382

3.493

0.815

1.379

3.497

2.665

3.968

4.150

2.666

3.971

4.150

2.670

5.756

4.153

1.229

6.827

3.359

1.228

6.827

3.361

1.226

6.830

3.365

0.613

1.666

2.615

0.613

1.666

2.615

0.816

1.660

4.757

0.613

1.415

3.466

0.613

1.414

3.464

0.817 1 4 ' •>

1 . "* i ^

^ (KIP/FT)

1.633

3.342

0.732

1.492

3.520

0.728

1.487

3.517

0.721

1.478

3.511

7.783

6.023

4.463

7.787

6.016

4.462

7.780

5.983

4.459

1.649

6.697

3.479

1.646

6.697

3.476

1.638

6.696

3.466

0.630

1.636

2.353

0.635

1.630

2.621

0.647

1.610

4.1c3

0.630

1.464

3.515

0.625

1.463

3.514

0.655

1.462

A (IN)

0.345

0.769

0.064

0.322

0.949

0.100

0.336

0.929

0.174

0.342

0.917

0.806

0.941

0.832

0.801

0.942

1.027

0.802

1.025

1.023

0.194

1.279

1.301

0.200

1.285

1.243

0.236

1.261

1.283

0.500

0.400

0.600

0.060

0.710

I.IOO

0.120

0.700

1.300

0.090

0.560

0.800

0.600

0.550

0.9OO

0.100

0.920

96

L

(R)

|96 j96 196 96 96 96 96 96 96

96 96 96 96 96 96 96 96 96

96 96 96 48 48 48 48 48 48 48

48 48 48 48 48

S

(FT)

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 20 20 20 20 20 20 20

20 20 20 20 20

d ( in)

30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30

•30 30

30 30 30 30 30

Pp

( l b / f t )

600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00

1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00

1500.00 1500.00 1500.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00

600.00 600.00 600.00

1500.00 1500.00

DATA FROtI LOADING CASE C

48 48 48 48 48 48 4fl 48

48

12 12 12 i 4m

12 12 12 1 d.

12 12 ft &

12

18 18 18 18 18 18 18 18 18

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p P ' ^ i x ' ^ i y ( l b / f t ) ( I b / n )

0.00 1000.00 0.00 3000.00 0.00 3000.00 0.00 100.00 0.00 100.00 0.00 1000.00 0.00 1000.00 0.00 3000.00 0.00 3000.00

0.00 100.00 0.00 100.00 0.00 1000.00 0.00 1000.00 0.00 3000.00 0.00 3000.00 0.00 100.00 0.00 100.00 0.00 1000.00

0.00 1000.00 0.00 3000.00 0.00 3000.00 0.00 100.00 0.00 100.00 0.00 1000.00 0.00 1000.00 0.00 3000.00 0.00 3000.00 0.00 100.00

0.00 100.00 0.00 1000.00 0.00 1000.00 0.00 3000.00 0.00 3000.00

0.00 100.00 0.00 100.00 0.00 100.00 0.00 1000.00 0.00 1000.00 0.00 1000.00 0.00 3000.00 0.00 3000.00 0.00 3000.00

e ffl

(R )

8 5 8 2 8 5 8 2 8

5 8 2 8 2 8 2 8 2

8 5 8 2 8 5 8 2 5 5

8 2 8 5 8

2 5 8 2 5 8 2 5 8

Y .

(IN)

1 1 1 4 4 4 4 4 4

4 4 4

4 4 4

4

4 4 4 4 4

\ «y V X

(R-KIPS/FT) (FT-KIPS/R) (KIP/FT)

8.760 5.581 8.842 1.261

11.170 4.240

11.200 6.370

11.270

21.540 19.890 3.070

19.920 3.090

19.'990 3.060

13.490 3.070

13.520 19.390 13.570 1.190 8.590 5.030 8.720 1.250 5.240 3.860

12.260 3.380

12.320 19.28 16.04

0.337 2.S64

3.233 1.708 2.899 5.189 4.775 4.858 5.372

13.290 6.771

13.170 1.429

17.980 4.969

18.030 1.425

18.140

14.010 29.310 3.937

29.170 3.876

28.930 3.960

22.410 3.936

22.420 27.430 22.460

1.180 8.840 4.920 8.730 3.050 4.790 3.880

12.680 1.720

12.720 19.020 16.350

o.4o;

3.122 6.023 0.711 3.14? 5.887 1.386 3..-1 5.831

3.047 2.038 5.266 0.631 4.319 1.391 4.320 1.008 4.338

7.511 5.566 1.345 5.566 1.344 5.570 1.345 4.312 1.345

4.332 8.288 4.328 0.596 2.893 1.946 2.910 1.117 1.986 1.427

4.156

0.588 4.170 8.004 4.331

0.126

1.586 2.090 0.385 1.603 2.348 1.162 1.639 2.333

" y (KIP/R)

0.671 3.314 2.170 5.982 0.674 4.818 1.499 4.820 4.811

5.530 6.481 1.450 6.467 1.451 6.439 1.450 5.147 1.450

5.146

8.851 5.144 0.590 2.908 1.924 2.884 2.886 0.618 1.447

4.223

0.575 4.208 7.903 4.349

0.124

1.559 0 ^"^ ">

0.179 1.553 2.266

0.300 1.541 2.254

A (IN)

0.456 0.091 1.123 0.070 1.235 0.812 1.102 0.093 1.210

0.320 0.213 0.092 1.012 0.085 1.253 0.095 1.013 0.062

1.230

1.312 1.413 0.075 0.481 0.166

0.432 0.195 0.053 0.176

0.803

0.060 0.746 0.670 0.897

0.057

0.240 0.419 0.102 0.204 0.439 0.210 0.2-32 0 . -41

97

L S d

(R) (FT) (in)

' p " ix ' ly m (lb/ft) (lb/ft) (lb/a) (R) (II

48 48 48 48 48 48 48 48 48

72 72 72 72 72 72 72 72 72

72 72 72 72 72 72 72 72 72

96 96 96 96 96 96 96 96 96

96 96 96 96 96 96 96 96 96

48

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

12 30

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00 1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00 1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00 1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

H. «y "x »y (R-KIPS/FT)(FT-f^FS/FT)(KIP/FT) (KIP.'R)

0.00 100.00 2 1

0.337 1.245 7.091 1.707 1.920 6.818 4.775 5.468 7.021

0.258 2.861 5.103 1.622 2.865 5.115 4.169 4.225 5.142

0.258 1.240 6.722 1.622 1.833 6.736 4.169 4.843 6.769

0.249 2.859 5.100 1.598 2.860 5.102 4.149 4.167 5.106

0.249 1.238 6.718 1.598 1.788 6.718 4.149 4.794 6.718

0.743

0.407 1.346 4.686 0.711 1.418 8.665 1.386 1.903 8.992

0.429 3.211 6.086 0.732 3.252 6.071 1.327 3.345 6.075

0.429 1.332 8.931 0.732 1.441 9.045 1.327 1.904 9.351

0.437 3.222 6.112 0.739 3.267 6.115 1.335 3.359 6.127

0.437 1.323 9.031 0.739 1.449 9.168 1.335 1.911 9.475

0.126 0.545 3.320 0.335 0.546 3.606 1.163 1.280 3.660

0.125 i.585 2.330 0.388 1.586 2.330 0.898 1.590 2.334

0.126 0.550 3.573 0.338 0.542 3.581 0.898 1.112 3.586

0.125 1.533 2.328 0.388 1.583 2.328 0.900 1.583 2.327

0.125 \* . s . / ^ ^

0.323 0.542 3.575 0.900 1.112 3.572

0.124 0.562 3.100 0.215 0.548 3.554 0.301 0.907 3.516

0.121 1.556 2.269 0.175 1.556 2.269 0.290 1.555 2.267

0.121 0.560 3.560 0.175 0.556 3.558 0.290 0.908 3.548

0.122 1.559 2.273 0.152 1.555 2.269 0.257 1.552 2.261

0.121 0.568 3.096 0.152 0.614 3.516 0.257 2.951 3.403

A (IN)

0.054 0.360 0.740 0.066 0.128 0.652 0.210 0.214 0.608

0.090 0.223 0.461 0.083 0.247 0.458 0.226 0.288 0.444

0.072 0.100 0.698 0.103 0.145 0.685 0.226 0.274 0.668

0.081 0.150 0.250 0.131 0.223 0.461 0.241 0.780 0.990

0.030 0.270 0.590 0.01^^ 0.230 0.750 0.L> 0 0.550 0.7oO

1.0)2 0.162 0.190 0..51

98

L S d Pp

!R) (FT) (in) (lb/ft)

48 48 48 48 48 96 96 96 96 96 96

12 12 12 12 12 12 12 12 12 12 12

30 30 30 30 30 30 30 30 30 30 30

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DATA FROM LOADING CASE 0

48 48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48 48

72 72 72 72 72 72 72 72 72

72 72 72 72 72 72

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12

. 12 12 12 12 12

12 12 12 12 12 12

18 18 18 18 18-18 18 18 18

18 18 18 18 18 18 18 18 18

18 •18 18 18 18 18 18 18 18

" 18 18 18 18 18 18

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

Pix (lb/ft»

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00

1000.00 1000.00 1000.00

Piy nb/^) (

1000.00 3000.00

100.00 1000.00 3000.00

100.00 1000.00 3000.00

100.00 .1000.00 3000.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

'ffl. Y« R ) (IN)

5 1 8 1 8 4 5 4 2 4 2 1 5 1 8 1 5 4 8 4 2 4

2 1 5 1 8 1 2 1 5 1 8- 1 2 1 5 1 8 1

2 < 5 '

' 8 t 2 ' 5 * 8 2 ' 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8

Mx M„ V X %

(R-KIPS/FT)(R-KIPS/R)(KIP/FT) (KIP/R)

3.870 7.630 1.670 9.670 1.001 0.743 3.870 7.630 1.670 1.001 9.670

1.001 0.267 2.866 5.087 0.555 2.912 5.052 1.196 3.015

I 4.974

\ 0.267 \ 1.270 \ 7.081 1 0.556 ) 1.544 1 6.787 4 1.196 4 12.278 » 7.009

1 0.255 1 2.866 1 5.009 1 0.536 1 2.912 1 4.975 1 1.087 I 3.009 1 11.098

4 0.255 4 1.269 4 6.720 4 0.536 4 0.279 4 6.793

5.010 11.310 1.903

15.370 2.405 1.002 5.010

11.310 1.903 0.594

15.370

0.594 0.538 3.127 5.928 2.021 3.116 5.811 5.318 3.864 5.550

0.538 1.334 4.651 2.021 1.261 8.098 5.318 4.394 7.258

0.569 3.211 6.084 2.055 3.195 5.959 4.847 3.328 6.960

0.569 1.325 8.887 2.055 1.249 8.517

1.849 2.896 0.614 4.322 1.134 0.162 1.849 2.869 0.614 1.134

4.324

1.134 1.284 1.584 2.316 0.179 1.544 2.278 0.311 1.481 2.190

0.128 0.556 3.307 0.179 0.652 3.528 0.311 6.152 3.420

0.127 1.580 2.384 0.179 1.544 2,333 0.306 1.480 3.769

0.127 0.554 3.574 0.179 0.652 3.529

1.924 3.058 0.665 4.598 0.352 0.190 1.924 3.058 0.665 0.296

4.598

0.296 0.122 1.559 2.273 0.383 1.555 2.269 1.148 1.552 2.261

0.121 0.568 3.096 0.383 0.614 3.516 1.148 2.951 3.408

0.121 1.556 2.273 0.383 1.552 2.269 0.863 1.540 2.953

0.124

0.565 3.557 0.382 0.611 3.506

A (IN)

0.084 0.162 0.044 0.320 0.159 0.070 0.361 0.912 0.095 0.567

0.215

0.567 0.053 0.220 0.471 0.107 0.174 0.421 0.186 0.073 0.305

0.054 0.278 0.718 0.107 0.365 0.822 0.224 0.784 0.585

0.078 0.205 0.454 0.091 0.154 0.397 0.246 0.404 0.690

0.071

0.235 0.685 0.129 0.249 0.642

9 9

L (FT)

72 72 72

96 96 96 96 96 96 96 96 96

96 96 96 96 96 96 96 96 96

48 48 48 48 48 48 96 96 96 96

96 96

S (FT)

12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12 12

12 12

d ( in)

18 18 18

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

30 30 30 30 30 30 30 30 30 30

30 30

Pp

( Ib / f t>

0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00

Pix ( l b / f t )

3000.00 3000.00 3000.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 100.00 100.00

1000.00 1000.00 1000.00 3000.00 3000.00 3000.00

100.00 1000.00 3000.00 1000.00 1000.00 3000.00

100.00 1000.00 3000.00

100.00

1000.00 3000.00

Piy ( l b / f t )

0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00

e m •

(FT)

2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 2 5 8 2 5 8

2 5 8 5 2 8 2 5 8 8

5 8

Ym (IN)

4 4 4

4 4 4 4 4 4 4 4 4

1 1 1 4 4 4

. 1 1 1 4

4 4

«x «y V X

(FT-(nPS/FT) (FT-KIPS/FT) (KIP/FT)

1.086 12.269 7.002

0.254 2.865 5.089 0.531 2.860 5.054 1.078 3.008

12.050

0.254 1.268 6.717 0.531 1.542 6.789 1.078

12.264 6.789

0.979 3.620 6.660 1.680 1.640 9.150 0.819 3.670

18.540 1.270

9.660 2.410

0.485 4.152 7.647

0.583 3.217 6.101 2.071 3.267 5.975 4.872 3.324

11.347

0.583 1.319 8.981 2.071 1.243 8.609 4.872 4.145 7.738

1.127 4.180 7.680 1.850 3.410

10.600 1.260 4.340 9.880 1.319

13.490 8.310

0.305 6.155 3.431

0.127 1.579 2.323 0.180 1.583 2.275 0.306 1.478

12.787

0.127 0.553 3.570 0.180 0.650 3.526 0.306 6.151 3.426

0.188 1.779 2.664 0.625 0.354 4.035 0.167 1.788 5.201 0.553

4.277

0.338

^ (KIP.'FT)

0.862 2.941 3.385

0.119 1.555 2.269 0.382 1.555 2.263 0.860 1.538 3.799

0.119 0.565 3.554 0.382 0.610 3.503 0.860 2.939 • 3.380

0.188 1.884 2.766 0.664 0.436 4.158 0.208 1.814 3.448 0.564

4.443

1.167

A (IW)

0.255 0.710 0.558

0.082 0.210 0.461 0.090 0.280 0.373 0.278 0.323 0.730

0.082 0.182 0.682 0.143 0.259 0.683 0.278 0.721 0.551

0.049

0.085 0.177 0.039 0.081 0.302 0.091 0.089 0.504 0.091

0.308

0.214

APPEJiDIX B

PLOTS OF MAXIMUM DIFFERENTIAL DEFLECTION

100

101

z D

UJ

5

EDCE PEHETPATK>H iFT}

(a). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 m.

I ui

I

19 -

IB -

1.7 -

1.B -

15 -

1.4 -

1.3 -

1.3 -

1.1 -

1 -

D.g -

D.B -

0.? -

D 6 -

D.5 -

D.4 -

0.3 -

D.2 -

0 1 H

0

d = 18"

048 ft slab + 72 ft slab o 96 ft slab

-tr'

CODE PEHETK.".T>C-H <:n\

Kb) DIFFERENTIAL SOIL MOVEMENT (y^) 1 n

FIGURE B.1 MAXIMUM DIFFERENTIAL DEFLECTION OF PERIMETER AND PARTITION

LOAD, FOR CENTER LIFT P =1000 LB/FT)

p ^y

OCCURRING AS

A RESULT (Y-DIRECTION) (P =600 LB/FTt

CONDITION

102

z

z D

iJ

5<

EDCE PEHCTP>.T>3H (TT}

(c). DIFFERENTIAL SOIL MOVEMENT <y ) = 1 in, m

EDCE PEHnPATOH v n ;

<d). DIFFERENTIAL SOIL MOVEMENT tn in.

FIGURE B.l CONTINUED

u

a

2?

3 •

1.9 -

1.8

1 7 -

1.E •

1.S

1.4

I.a

1.2

1.1

1

0.9

D.B

0.7

0.6

D.S

0.4

0.3

0.3

0.1

D

103 d = 18'

n P = 600 l b / f t + P > 1 5 0 0 lb '* i -

P. . .

_--i

EOCC PEHCTRAHOH irt}

(a>. DIFFERENTIAL SOIL MOVEMENT (y ) = i .„ ' m * i n .

z D

I u3

<^

1.9

1.B

1.7

1.6

1.5

1.4

1.3

1.3

1.1

1

09

D.B

0.7

O.E

0.5

0.4

0.3

0.3

0.1

0

18"

a P = 600 l b / f t •»• p'^slSOO l b / f t

/

EDCE PEHETB.A.TOM vfT}

(b) DIFFERENTIAL SOIL MOVEMENT = 4 in,

FIGURE B.2 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION <Y-DIRECTION) LOAD FOR CENTER LIFT CONDITION <P =1000 LB/FTf SLAB SIZE 48 X 24 FT)

iy

104

z z D

1 lii CJ

3? ^ UI

1 Q S

S

^ s

3

1.9

1.B

1.7

1.6

1.5

1.4 1.3

1.2

1.1

1 0.9 D.B

0.7 0.6

D.S 0.4

0.3

0.3

0.1

0

d = 3 0 '

Q P =

+ Pp=1500 l b / f t 600 l b / f t

__—I

EDCE PEHnPA1>:>H (FT|

( c > . DIFFERENTIAL SOIL MOVEMENT ( y ) = 1 m .

2 O

z o

I b a 3> E z ( i j

1 a 5

S

J 2

3

1.9

1.B

1.7

1.6 1.5

1.4 1.3 1.3

1.1

1 D.g OB

0.7 0.6

0.5

0.4

D.3

0.3

0.1

D

d a 3 0 "

p

600 + P:=I5OO

l b / f t l b / f t

. — — t i

_—-O" — - ^ ' •

- - e -

EOCE PEHCTP.''.n:>H ijV,

( d ) . DIFFERENTIAL SOIL MOVEMENT = 4 I n,

FIGURE B.2 CONTINUED

105

^2

>5

EDG E P E.N' ETHATIO N ' FT)

(a). DIFFERENTIAL SOIL MOVEMENT (v ) = 1 i n .

C'.3

: . 23

-^ . . i s —]

o Ui

u a

UJ a: u

2

a d = 18" + d = 30"

EDGE PENETRATION (FT)

( b ) DIFFERENTIAL SOIL MOVEMENT (y ) = 4 in, m

FIGURE B.3 MAXIMUM DIFFERENTIAL DEFLECTION OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 LB/FTf f^ =1000 LB/FT), FOR CENTER LIPT CONDITION (SLAB SIZE 48 x 24 FT)

106

cn

- - - -ZiAj-

*> ( « •

00

H E

01

1

G

. c •* ^ II

E >-

. «J «••

t tVJ

H

3

1

o

. «> «•-

fVJ •H

n

cn

v «•-\ a — o o -a H

a OL

«> <*-\ x> - o o o II

- OL.

1

O

1 in

o

00

CO IT

CNI

o M 00 fsl (C M

C>l

<N 04

O

OO

<£)

CM

O

OO

- <o

- - « * -

- (N

O

O

O

u J

CO

<

O

> >-t

< .J UI X

Q Z J <

K

Q

O U

H

O Z

w u • J

X CQ O

< u. in u

u < u,

H cn UJ m m

< • J

z

z o <: • J

UJ cc

u, o z o y-t

H U U W

0.

I 03

UJ

a o

Lu UJ Q

(S3HDMI) H O I l D 3 n J 3 a 3AI1V-I3d

APPENDIX C

PLOTS OF MAXIMUM SHEAR FORCES

107

X

108

3-|d

e -

B -

4. -

C-T

= 18"

• 48 ft slab + 72 ft slab « 9b ft slab

-r-2

-T— A.

EDGE PEN ETHATIO N (FT)

(a). DIFFERENTIAL SOIL MOVEMENT (y ) = i m.

-1 8

10

cn a

2i

-|

E -

5

4. H

:5

2 -4

+

(b).

18"

D 48 ft slab +.72 ft slab « 96 ft slab

-r-2

-r-

EDGE PENETRATION (FT)

DIFFERENTIAL SOIL MOVEMENT (y ) m

4 in.

FIGURE C.1 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER .-ND PARTITION (Y-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P =600 LB/FT, P =1000 LB/FT) ^

Q.

Q:

6

a

or

10

9

109

_ d = 30"

B -J

3 -

T _

1 -

• 48 ft slab + 72 ft slab o 96 ft slab

c -r o 1-

2 ^ ^

-r-6

EDGE PENETTRATION (FT )

(c). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 m .

10

g

D 48 ft slab + 72 ft slab 0 96 ft slab

^ -1

3 H

EDGE PENETTIATION (FT )

(d). DIFFERENTIAL SOIL MOVEMENT (y ) = 4 in. m

FIGURE C l CONTINUED

'T: Q.

UJ

o P = 600 l b / f t + P^=1500 l b / f t

R -1

5

110

c• r;c• O C K I L I U> -, . . w . . ... . y

<a). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 in. in

a.

UJ

Ol

c-nr;r DC-MI- IU)ATI,^M /c-T . - w w w . w . , W . . N ^ . . W , , i^, . ,

<b). DIFFERENTIAL SOIL MOVEMENT (v ) = 4 ,„

FIGURE C . 2 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION (Y-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P = 1 0 0 0 LB/FT, SLAB SIZE 4 8 X 24 FT) ^^

a."

10

g

5 -

A. -

d '= 3 0 "

a P = 6 0 0 * l b / f t + P = 1 5 0 0 l b / f t

P

KJ -y-

O T-2 A.

1^

B

EDGE PENETRATION (FT )

111

<c). DIFFERENTIAL SOIL MOVEMENT (y ) m

= 1 i n .

CT u .

UI

d = 3 0 "

c P = 6 0 0 l b / f t + P ^ = 1 5 0 0 l b / f t

P

6 -

S -

A -

2> -

1 - f

O - T " 2

- I — A .

-r-S

cr^.'^F" oc*^-'P~ro ^ y - ^ M ^ PT^

( d ) . DIFFERENTIAL SOIL MOVEMENT (y ) = 4 i n .

a

FIGURE C . 2 CONTINUED

a

UJ X

g -

a -

~ —

6 -

5 -

"^ -r-o

a d = 18" •^• d = 3 0 "

2

EDGE PENETP.ATION (FT)

(a). DIFFERENTIAL SOIL MOVEMENT (y„) = 1 i", m

- I a

112

i o

\

a: <i UJ - 1 . cn

3 -

3 -

B -

6 -

4.-

I I I

^ I I

. J

D d + d

18" 30"

. < ^

-t

- T '-' - r -r

2 A -r-B

' • ' ^ PENETRATION ( . ^ )

- I

a

b). DIFFERENTIAL SOIL MOVEMENT (y^) 4 in.

FIGURE C.3 MAXIMUM SHEAR FORCES OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 LB/FT, p =1000 LB/FT) FOR CENTER LIFTPCONDITION ( felAB SIZE 48 X 24 FT)

APPENDIX D

PLOTS OF MAXIMUM BENDING MOMENTS

113

1 1 4

CD

. c '-t

t-t

II E

>-

•P «•-

CVJ

II E

01

•P <•-\ n ^^

o II

a CL

+J «•-\ J3 —

o o o r-t 11

0.

Q -< O

z o

J < Q Z UJ •-I U Q < D J H 0. >-« o cn Z H<

o

u X o z o

<

z UJ 2: o z: u. o z o

<

H

<

Q < O

ct:

UJ

UJ

z cx UJ UJ Z CL

cn UJ X <

O

z

Q : UJ «< > > cn z

< a:

UJ 2 tn oc cn

<

u • - »

Q. >•

Q

UJ X

o

Q Z <

X < I

X

o z o <

( I J / S c i l H - l J ) l.WJWOW

c ^///////•yy/////

CD

<•-

CXI

II

OJ

•P

N

O

II

-P

jQ

O O O «—( II

Q.

Hi I-

+1

C\J

II

: i !

r]

ri

CVI II

2

1^

D

Z]

- - D '

. ^ ' - — a ~ " f — +-•

D - — - _ _ V:

• ^ - Q .

- - " t 3

Z]

. -•-•

I I

n—I—I i r M"! l O - + 1^ ' C l

i I I I I I I I I I . I

•-I iD r- ' f lO -+ f* c I — c r- c I f - i

Cl o izi o i: I I \~\

< z l-H

Q D

Q UJ U <

a. o tn z >-i

o <

UJ o Z J

o z o

<

z UJ

o

o z o

z o

Q <

o • 1 DC H UJ X H < UJ a. "z.

>-t

z tr U UJ Z CL

en u X

H D O

z

H U 3 < cn •-< CK cn PC UJ «-• < > X > cn <

Z I J < > < a: u H o >-t z 0, Q O >- Z J H < <

C\J .

Q

X

1 1 5

I I I

( i J / s d i H - i J ) iHz;^':^;^

CT

O

WJ

s

^

U.

<

2 2

20 -I d = 18"

1S -I Q P = 6 0 0 l b / f t + P ^ = 1 5 0 0 l b / f t

1 6 - 1

116

' -r 1 ^

5 -1 a

EDGE PENETRATION (FT)

(a). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 i"' tn

EDGE PE.NETRATIO.N (FT)

(b). DIFFERENTIAL SOIL MOVEMENT (y ) = 4 in, m

FIGURE D.3 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION (Y-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P^ =1000 LB/FT SLAB SIZE 48 X 24 FT) iy

^ 20 - d = 30

.u.

I

I • I

117

15-1 a P = 600* l b / f t I + P^=1500 l b / f t

IB -J P

1 J. -

12 -

10 -

e -

6 -

A -

/ /

/

EDGE PENETRATION (FT)

(c). DIFFERENTIAL SOIL MOVEMENT (y ) 1 in.

f 1

!

u.

UJ

LU

g

n P = 600 lb/ft

W W W W . _ , . W .. N.I-k. . W . < y . ./

(d). DIFFERENTIAL BOIL MOVEMENT (y_ ) = 4 in.

FIGURE D.3 CONTINUED

118

rn

in

UJ

UJ

T / ^ _

15 -i

16 -I

d = 1 3 "

• 4 3 f t s l a b + 72 f t s l a b '> 96 f t s l a b

EDGE PENETPsATION (FT)

(a). DIFFERENTIAL SOIL MOVEMENT (y ) = I in. m

J d = 18"

ie -

IS -

14. -

12 -

io -

a -

6 -

4. -

2 -

D 48 ft slab + 72 ft slab o 96 ft slab

^

EDGE PENETRATION (FT)

(b). DIFFERENTIAL SOIL MOVEMENT (y^) = 4 in. tn

4

I

-i a

FIGURE D.4 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION (Y-DIRECTION) LOAD FOR CENTER LIFT CONDITION (P =600 LB/FT, P =1000 LB/FT) ^

119

20 -I d 30"

IB -i

UI

'S

18 -I

o An ft slab + 72 ft slab o 96 ft slab

-one- oc-M c-ro Axi/^M ,'c- ^ - w w w . w. . w . . v -k . .w . • .(, . .y

(c). DIFFERENTIAL SOIL MOVEMENT (y ) = 1 m.

d = 30"

15 -

1 e -

1 J. -

I.I -.»• ^ ' ^ _> w—

<

=

— 1

12 -

IO -

a -

t -

A -

a 48 ft slab + 72 ft slab « 96 ft slab

-/

a EDGE PENETRATION (FT )

( d ) . DIFFERENTIAL SOIL MOVEMENT ( y ) = 4 i n ,

FIGURE D.4 CONTINUED

120

u.

?5

J

„J 1 6 -I

IJ. -1

u -r -O

( a )

a d = 1 8 " •(- d = 3 0 "

, • ! • • "

5

EDGE PENETRATION (FT)

D I F F E R E N T I A L S O I L MOVEMENT ( y ) m

= 1 i n ,

-I a

UJ

o

'<^

X.

15 -i

16 -

1.1 -

12

IO -

a —

6 -

A -

w -r-

a d = 18' + d = 3 0 '

5

EDGE PENETTRATION (FT)

( b ) . D I F F E R E N T I A L S O I L MOVEMENT ( y ^ ) = ^ i " '

I

/ I I

a

FIGURE D . 5 MAXIMUM NEGATIVE MOMENT OCCURRING AS A RESULT OF PERIMETER AND PARTITION LOAD (P =600 LB/FT, P. =1000 LB/FT)t FOR CENTER LIFT C6NDITI0N (i^AB SIZE 48 X 24 FT)

APPENDIX E

EXAMPLE PROBLEMS

121

PROBLEM i:

Designed by Using the PTI Method. The slab was designed,

by using a program written by Abdallah (1987). The input

data and the output of the program is given below.

40'-0"

o 1 CD CO.

1

/ /

yV////yy/yyyyy.^yyyyy

PERIMETER LOAD

13'-0" 6'-6" f - 6'-6" tf 14'-0" -I

Design Data.

1. Perimeter Load

2. Live load

(P >= 840 lb/ft P

= 40 psf

(f ')= 2500 psi c

3. Concrete Compressive Strength

4. Prestressing Steel Ultimate Strength = 270 ksi

5. Strand Nominal Area

6. Strand diameter

= .085 sq.in.

= 0.5 in

7. Edge Moisture Variation Distance (e^) = 3 ft

8. Differential Soil swell

122

(y ) = .189 in. m

123

9. Allowable Soil Bearing Pressure

10. Slab-Subgrade Friction

11. Slab Length

12.

13.

14.

15.

Slab Width

= 2700 psf

= .75

(L)= 40 ft

(W)= 38 ft

Modulus of Elasticity of Concrete (E ) c

(E ) s

Modulus of Elasticity of Soil

Required Residual Compressive Strength

25 X 10

1500 psi

at the Center of Slab

16. Slab Thickness

17. Partition load

= 50 psi

(t) = 4 in.

a) P ly

b) P ly

= 840 lb/ft

= 1260 lb/ft

According to PTI (1980) design manual, if the value of

the tensile stress

f = (2.35 P/t^*^^)-fp (D. 1 )

where

P = partition load in lbs/ft

t = thickness of the slab in inch

f = minimum compressive stress in concrete due to P

prestressing (usually 50 psi)

exceeds the allowable tensile stress,

f = 6,/f~ ta V c

(D. 2)

where

f '= concrete compressive stress c

124

then a thicker slab section should be used under the loaded

area, or a stiffening beam should be placed directly beneath

the concentrated line load.

Check whether stiffening beam is required i

a) Partition load (P.) = 840 lb/ft 1

f = (2.35 X 840/ (4^*^^ ) )-50

= 299 psi

f^ = 6 X (2500) ta

.5

= 300 psi

f < f stiffening beam is not required t ta

b) Partition load (P^) = 1260 lb/ft

f = (2.35 X 1260/(t^*^^) - 50

= 473 psi

^ > ^ a stiffenng beam is required

840 lb/ft partition load can be placed on the slab without a

stiffening beam, but 1260 lb/ft perimeter load cannot be

placed without a stiffening beam.

The problem with partition load of 1260 lb/ft is solved

in the PTI method and the results obtained toghether with

the design data were used in the new developed equations to

calculate moemnts, shear forces and differential deflection.

125

Section Properties

Long Short Direction Direction

Moment of Inertia

Cross Sectional Area

Centroids of Strands

Depth to Neutral Axis

Prestressing Eccentricity

Allowable Concrete Tensile Stress (ksi ) (f =6 X ,/r~' )

t V c Allowable Concrete Compressible Stress (ksi) (f =.45 X f ' ) c c

Tensile Cracking Stress (ksi) (F =.75 X jr~' ) cr V c

85808.5

2784.0

-2.0

-5.44

3.45

0.30

1. 125

0.375

102006.3

3120.0

-2.0

-5.85

3.84

0.30

1. 125

0.375

Calculation Summary

1. Moment (ft-kips/ft)

Short Direction

Tensi le

Compressive

Cracking

Long Direction

Tensi le

Compressive

2. Differential Deflection (inches)

Pes iqn Allowab1e

2. 58 <

2.58 <

2.58 <

2. 53

12. 13

12. 16

14. 58

11. 35

2.54 < 10.42

126

S h o r t D i r e c t i o n 0.15 < 1.27

Long Direction 0.19 < 1.33

3. Shear Stresses (Ib/sq. in.)

Long Direction 30.92 < 75.00

Short Direction 31.27 < 75.00

Design Summary

Long Direction

Use 20 in. deep beams, 15 in, wide, spaced at

12.67 ft on center. Use 15 each .375 in. 270 k strands in

slab with centroid at 2 in. below top of the 4 in. thick

slab.

Total of 15 tendons and 4 beams.

Short Direction

Use 20 in. deep beams, 15 in, wide, spaced at

10 ft on center. Use 16 each .375 in. 270 k strands in

slab with centroid at 2 in. below top of the 4 in. thick

slab.

Total of 16 tendons and 5 beams.

127

Designed by Using The New Developed Equations.

Design Data.

1.

2.

3.

4.

12.

13.

14.

15.

Perimeter Load

Live load

(P )= 840 lb/ft P

= 40 psf

(f ')= 2500 psi c ^ Concrete Compressive Strength

Prestressing Steel Ultimate Strength = 270 ksi

5. Strand Nominal Area

6. Strand nominal Diameter

= .085 sq.1n

= 0.5 in

7. Edge Moisture Variation Distance (e ) = 3 ft m

8. Differential Soil swell

9. Allowable Soil Bearing Pressure

10. Slab-Subgrade Friction

11. Slab Length

Slab Width

(y ) = .189 in. •m

= 2700 psf

= .75

(L)= 40 ft

(W)= 38 ft

Modulus of Elasticity of Concrete (E ) c

(E ) s

Modulus of Elasticity of Soil

Required Residual Compressive Strength

25 X 10

1500 psi

at the Center of Slab

16. Slab Thickness

= 50 psi

(t) = 4 in.

Additional design parameters are taken from the

previous problem in order to compare the results, resulting

from the solution by two different methods.

17. Beam depth (d) = 20 in.

128

18. Beam width <W) = 15 ^^^

19. Beam spacing x-direction (S ) = 12.67 ft

20. Beam spacing y-direction (S ) = 10 ft y

21. Partition load (P >= 126O lb/ft

The design data are used to calculate moments, shear

forces and differential deflection with the following

equations.

' ( L ) - ° ' ^ <S ' ) - ^ ^ ^ < d ) - 3 ' ' ' ' ( . ) 1 - 1 0 ^ <P , - 8 9 2 ^p , . 1 0 2 ^p , . 1 0 4 ..X •» P i x l y

M • 0 .00029 . . ^ « X VJ.UUWCT ( D . 3 )

/ , . 0 3 2

< L ) - 2 ^ 5 , ^ , . 3 5 3 ^^ , 1 . 1 0 8 ^p , . 9 7 0 ^p , . 0 8 6 ^p , . 0 7 3

M^ - 1 . 6 0 9 ^ . ! ! p _ * * ' y y . ( D . 4 )

<y„>*°^^ <s )3-^6< m ^

V - 3 .5£ ( D . S ) X . , . 0 5 4

( m

<t.,-'^^ . . . • " ' < . „ . • " = < p „ ' - ' ' ' < ^ . ' • " ' < ' . v ' - ° " V a 0 . 4 0 7 <D. 6 )

<L>-=" <e >^-^'^ < r „ . - ° " < P p ' - ' " ' ^ , > - ' " ' ^ v ' - ^ ° '

A . = 0. 077 •X - «• — ' 1 . 3 8 9 1 . 1 6 9 (D.7) (S ) <= '

X

. 3 4 5 , . , 1 . 3 1 6 , , , . 0 6 1 ^p , . B 2 & ^p . 1 0 5 c p _ ) - ' 0 6 <S >- = -^2 ( L ) - ^ ' ^ ^ ( e , ) ^ * - " <y„ ) ^^p^ ^ ^ x ' ^ ^ l y ' ^"y

re

^ n 0 .00029 — ; ^ ^ g y ( d )

(D. 8)

w^.^ • # ' ^

»» i .-. . ^fT

129

Partition Load (P ) iy

= 1260 lb/ft

M^ (ft-kips/ft)

M (ft-kips/ft)

V^ (kips/ft)

V (kips/ft)

Aa, (inch)

A (inch)

Design

3«69

8.03 <

66.10 i

81.26 :

0.167 <

0.145 <

Allowable

C 12.46

C 13.49

: 75.00

• 75.00

: 1.33

1.27

PROBLEM 2:

PTI DESIGN METHOD

— 42

OJ

" ^ ^' V^-^ /••->////. / - Z Z Z Z Z z ^ .

/ / /

/ PARTITION LOAD

/

"///yy////// PERIMETER LOAD

//y /////y//^/ '•"' I

tf •16' If 13' =tf 13'

(Vi v-l

4) X

(U

Design Data?

1. Perimeter load (P^)= 1040 lb/ft P

2. Live Load = 40 psf

130

3. Concrete Compressive Strength (f ')= 2500 psi

4. Prestressing Steel Ultimate Strength= 270 ksi

5. Strand Nominal area

6. Edge Moisture Variation Distance

m 7. Differential Soil Swell

8. Allowable Soil Bearing Pressure

9. Slab-Subgrade Friction

10. Slab length

11. Slab width

12. Modulus of Elasticity of Concrete

13. Modulus of Elasticity of Soil

14. Required Residual Compressive

Strength at the Center of slab

15. Slab Thickness

16. Partition load

= 1. 135 sq in.

= 5.5 ft

= 4.46 in

= 2700 psf

= .75

= 42 ft

= 24 ft

= 25 x 10^

= 1500 psf

= 50 psi

= 4 in

= 1560 lb/ft

Check:

f = (2.35 X 1560/(t^*^^)) - 50

= 598 psi

allowable

f = 6 X (2500) ta

= 300 psi

.5

f > f stiffening beam is required

Section Properties

131

Moment of Inertia

Cross Sectional Area

Centroids of Strands

Depth to Neutral Axis

Prestressing Eccentricity

Allowable Concrete Tensile Stress (ksi)

Long Short Direction Direction

131447.90

2124.00

-2.00

-8.008

6.008

0.30

Allowable Concrete Compressible Stress (ksi) (f = .45 X f ')

c c

Tensile Cracking Stress (ksi)

cr

1. 125

0.375

190739.91

3336.00

-2.00

-7. 14

5. 143

0.30

1. 125

0.375 (F = .75 X ^f^')

Calculation Summary

1. Moment (ft-kips/ft)

Short Direction

Tensile

Compressive

Cracking

Long Direction

Tensi le

Compressive

Design Allowab 1 e

1 3 . 8 4 < 2 4 . 1 2

1 3 . 8 3 < 2 3 . 8 9

1 3 . 8 3 < 2 8 . 07

1 3 . 0 7 < 2 3 . 4 7

1 3 . 0 7 < 2 9 . 7 5

2. Differential Deflection

132

Short Direction .53 < .80

Long Direction .63 < 1.40

3. Shear Stress (Ib/sq.in)

Short Direction 46.50 < 75.00

Long Direction 54.21 < 75.00

Design Summary

Long Direction

Use 26 inch deep beams, 15 inch wide, spaced at 12

ft on center. Use 1 each .5 in 270 k strands in slab with

centroid at 2 inch below top of the 4 inch thick slab.

Total of 1 tendons and 3 beams.

Short Direction

Use 26 inch deep beams, 15 inch wide, spaced at 14

ft on center. Use 2 each 0.5 inch 270 k strands in slab

with centroid at 2 inch below top of the 4 inch thick slab.

Total of 2 Tendons and 4 beams.

Designed by Using the new Developed Equations.

Design Data

1.

2.

3.

4.

Perimeter load ^^p^"

Live Load

Concrete Compressive Strength (f^')=

Prestressing Steel Ultimate Strength=

1040 lb/ft

40 psf

2500 psi

270 ksi

133

5. Strand Nominal area

6. Edge Moisture Variation Distance

(y ) • m

7. Differential Soil Swell

8. Allowable Soil Bearing Pressure

9. Slab-Subgrade Friction

10. Slab Length

11. Slab Width

12. Modulus of Elasticity of Concrete

13. Modulus of Elasticity of Soil

14. Required Residual Compressive

Strength at the Center of slab

15. Slab Thickness

16. Partition load

17. Beam Depth

18. Beam width

= 1.135 sq in

= 5.5 ft

= 4.46 in

= 2700 psf

= .75

= 42 ft

= 24 ft

= 25 X 10^

= 1500 psf

= 50 psi

= 4 1 n

= 1560 lb/ft

= 26 in.

= 15 in.

(S ) = 1 2 ft X

(S ) = 1 4 ft y

19. Beam Spacing x-direction

20. Beam Spacing y-direction

Substituting the above data in the Equations D-3 to D-8 we

get the following values

Results:

Partition Load (P^ ) = 1560 lb/ft

M (ft-kips/ft) X

M (ft-kips/ft) y

Design

8.72

6. 04

Allowab1e

24. 12

23. 89

134

V (kips/ft) X

V (kips/ft) y

•^x ( inch )

-^y ( inch )

68. 10

35.26

0. 187

0.445

75.00

75.00

.80

1.40

COMMENTS

Prob lem 1

Calculating the moments, shear forces and differential

deflection values with the new developed equations in this

study for 1260 lb/ft partition load, it is observed that

only the value of the shear stress in the y-direction (page

129) exceeds the allowable value and all the other

calculated values are less then the allowable. To reduce

the shear stress the beam width of 15 in. in the problem

should be increased.

Problem 2.

In the second problem the values (page 133) calculated

from the eqautions are less then the allowable values. So

these values can be used in the design of the slab with

perimeter load.

PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the

requirements for a master's degree at Texas Tech University. I agree

that the Library and my major department shall make it freely avail­

able for research purposes. Permission to copy this thesis for

scholarly purposes may be granted by the Director of the Library or

my major professor. It is understood that any copying or publication

of this thesis for financial gain shall not be allowed without my

further written permission and that any user inay be liable for copy­

right Infringement.

Disagree (Permission not granted) Agree (Permission granted)

Student's signature Student's signature

Date Date ng/ai/g^