effect of lateral stress on the liquefaction resistance of scp...

14
R.P. Orense University of Auckland K. Harada & J. Mukai Fudo Tetra Corporation, Tokyo, Japan K. Ishihara Chuo University, Tokyo, Japan Effect of lateral stress on the liquefaction resistance of SCP-improved sandy soils

Upload: others

Post on 25-Jan-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • R.P. OrenseUniversity of Auckland

    K. Harada & J. MukaiFudo Tetra Corporation, Tokyo, Japan

    K. IshiharaChuo University, Tokyo, Japan

    Effect of lateral stress on the liquefaction resistance of SCP-improved sandy soils

    http://www2.chuo-u.ac.jp/global/index.htmlhttp://www.auckland.ac.nz/

  • Mechanism of compaction

    1. INTRODUCTION

    enlarging

    diameter

    Sand Pile

    compactioncompaction

    pulling out redrive

    Procedure

    Vibratory sand

    compaction pile method

    Non-vibratory sand

    compaction pile method

    • Countermeasure against liquefaction

    (by densification)

  • -10

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    0 100 200 300

    (a) qt (kgf/cm 2)

    DL (m)

    Pre C PT

    Post C PT

    Depth

    (m

    )

    SPT N-value

    Post SPT

    (SCP)

    Post SPT

    (NvSCP)

    Pre SPT

    Pre CPT

    (SCP)

    Post SPT

    (SCP)

    CPT qc-value (kPa×100)

    Measured point

    2. BACKGROUND

    • Increase in penetration

    resistance is due to increase in

    density AND increase in lateral

    stress

    • How to incorporate the effect of

    lateral stress?

    vhcK '/' Lateral

    Stress Ratio:

  • ①Penetration Resistances, N

    1 or qc

    1

    ~ Relative Density, Dr

    (Kc=0.5)

    Cyclic Strength, Rl

    ~ Relative Density, Dr

    (Kc=0.5)

    ③     ●Kc effect on N

    1/qc

    1 and Rl)

               Kc ⇒ N1 or qc1

               Kc ⇒ Rl

    N1 or qc

    1 ~ Rl

    (Kc≧0.5)

    chamber test

    chamber test

    cyclic torsional test

    Rl~N1/qc

    1

    (Kc=0.5:CODE)

    3. BASIC METHODOLOGY

    Relation between Rl and N1(qc1) through DrRl

    3

    2

    1RlH

    3

    2

    1RlL

    N1(qc1)H

    N1 or qc1

    Kc

    High

    Kc

    High

    Rl

    3

    2

    1

    RlH

    3

    2

    1

    RlL

    3

    2

    1

    3

    2

    1

    N1(qc1)L

    Kc

    High

    Kc

    High

    N1(qc1)H

    N1 or qc1

    N1(qc1)L

    Dr

    Rl

    3

    2

    1RlH

    3

    2

    1RlL

    N1(qc1)H

    N1 or qc1

    Kc

    High

    Kc

    High

    Rl

    3

    2

    1

    RlH

    3

    2

    1

    RlL

    3

    2

    1

    3

    2

    1

    N1(qc1)L

    Kc

    High

    Kc

    High

    N1(qc1)H

    N1 or qc1

    N1(qc1)L

    Dr

    ③②

    Flow of Study

  • 0.0 0.2 0.4 0.6 0.8 1.00

    20

    40

    60

    (a)

    Fine sand

    Coarse sand

    SP

    T (

    N1) 8

    0-v

    alu

    e

    Dr2

    4. PENETRATION RESISTANCE & REL. DENSITY

    ① Penetration resistance (N1)80 ~ Relative density Dr (Kc=0.5)

    0.0 0.2 0.4 0.6 0.8 1.00

    20

    40

    60

    80

    100

    Fine Coarse

    Toyoura(sat.) Harada et al.,2000 Tonegawa(sat.) Yoshida et al.

    Toyoura(dry) Yasuda et al.,1995 ,1988

    Fine(sat.) Gibbs-Holtz,1957 Coarse(sat.) Gibbs-Holtz,1957

    Yanase*(sat.) Fujita,1968 Niigata(wet) Fujita,1968

    Yanase*(wet) Fujita,1968 * quoted by Fujita,1968

    Fine Coarse

    Toyoura(sat.) Harada et al.,2000 Tonegawa(sat.) Yoshida et al.,1988

    Toyoura(dry) Yasuda et al.,1995 Coarse(sat.) Gibbs-Holtz,1957

    Fine(sat.) Gibbs-Holtz,1957 Niigata(wet) Fujita,1968

    Yanase*(sat.) Fujita,1968

    Yanase*(wet) Fujita,1968

    * quoted by Fujita, 1968

    CD=27.5

    CD=35.5

    Fine sand(b)

    CD=9/(e

    max-e

    min)

    1.7

    Coarse sand

    CD=

    (N1) 8

    0/D

    r2

    emax

    -emin

    From chamber tests:S

    PT

    (N

    1) 8

    0valu

    e

    Relation for soils tested:

    CD=

    (N1) 8

    0/D

    r2

    2

    7.1

    50

    2

    7.1

    minmax

    2

    801

    06.023.0

    99rrrD D

    D

    Dee

    DCN

    emax - eminDr2

  • 4. PENETRATION RESISTANCE & REL. DENSITY

    ② Penetration resistance qc1 ~ Relative density Dr (Kc=0.5)

    0.0 0.2 0.4 0.6 0.8 1.00

    10

    20

    30 (a)

    Fine sand

    Coarse sand

    CP

    T q

    c1-v

    alu

    e (

    MP

    a)

    Dr2

    0.0 0.2 0.4 0.6 0.8 1.00

    20

    40

    60

    Fine Coarse

    Toyoura TUS* Da Nang(Huang et al.,2005)

    Quiton** Hukksund(Jamiolkowski et. al.

    Hilton(Jamiolkowski et al.,1988) ,1988)

    * Tokyo University of Science Ticino(Jamiolkowski et al.,1988)

    ** Provided by Prosti Edgar(Jamiolkowski et al.,1988)

    CDq

    =12/(emax

    -emin

    )0.8

    (b) Fine sandCoarse sand

    CD

    q=

    qc

    1/D

    r2

    emax

    -emin

    From chamber tests:

    CP

    T q

    c1

    valu

    e

    CD=

    (qc

    1)

    /Dr2

    Relation for soils tested:

    2

    8.0

    50

    2

    8.0

    minmax

    2

    1

    06.023.0

    1212rrrDqc D

    D

    Dee

    DCq

    emax - emin

    Dr2

  • 5. CYCLIC STRENGTH & REL. DENSITY

    14for)14(106.17.1/0882.0

    14for7.1/0882.0

    801

    5.4

    801

    6

    801

    801801

    NNN

    NNR

    ① SPT: Cyclic strength Rl ~ Relative density Dr (Kc=0.5)

    In Japan, based on cyclic triaxial tests on

    undisturbed samples (JRA, 1996)

    200

    1

    4510

    50

    13534

    1

    65.0

    1

    65.0 2601

    601

    601 N

    N

    N

    CRRR

    In North America, based on field

    observations (Youd and Idriss, 2001)

    0 50 1000.0

    0.2

    0.4

    0.6

    0.8

    (a)

    From N1-R

    l relation inJapan, Eq. (4)

    Coarse sand

    Fine sand

    Fine sand emax

    -emin

    =0.450

    Coarse sand emax

    -emin

    =0.375

    Relative density, Dr (%)

    Cyclic

    str

    eng

    th, R

    l

    (4)

    (5)

  • 5. CYCLIC STRENGTH & REL. DENSITY

    ② CPT: Cyclic strength Rl ~ Relative density Dr (Kc=0.5)

    In Japan, based on studies by Suzuki

    and Tokimatsu (2003)

    In North America, based on studies by

    Robertson and Wride (1998)

    MPa0.20

    MPa0.22.0341.0where

    7.83

    16

    100

    1657.045.0

    65.0

    1

    '65.0

    1

    1

    10929.034.1

    194.1

    14

    c

    ccI

    ccc

    cc

    o

    q

    qqIN

    NNR

    MPa3.158.4for123.01063.1

    MPa8.4for077.00134.0

    65.0 13

    1

    4

    11

    cc

    cc

    qq

    qqCRRR

    (7)

    (6)

    0 50 1000.0

    0.2

    0.4

    0.6

    0.8

    (b)

    From qC1

    -Rl relation in

    North America, Eq. (7)

    Coarse sand

    Fine sand

    Fine sand emax

    -emin

    =0.450

    Coarse sand emax

    -emin

    =0.375

    Relative density, Dr (%)

    Cyclic

    str

    eng

    th, R

    l

  • 6. PENETRATION RESISTANCE & KC-VALUE

    ① Effect of Kc on SPT N1-value

    rD

    NCC

    C

    Kc

    KcSPH

    K

    K

    N

    NC

    75.080.0

    ,5.01

    1

    )(

    )(

    0 50 1000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Kc=0.5

    (Kc/0.5)0.8-0.75Dr

    Kc=1.5(a)

    Kc=1.0

    (N1)

    Kc=1.0/(N

    1)

    Kc=0.5 (Harada et al.,2000)

    (N1)

    Kc=1.5/(N

    1)

    Kc=0.5 (Harada et al.,2000)

    Relative density, Dr (%)

    CS

    PH=

    (N1) K

    c/(

    N1) K

    c=

    0.5

    0 50 1000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Kc=0.5

    Kc=1.5Kc=1.5

    Kc=1.0Kc=1.0

    (b)

    (Kc/0.5)07759-0.5208Dr

    (Kc/0.5)0.6-0.55Dr

    (qc1)

    Kc=1.0/(qc

    1)

    Kc=0.5 (TUS*)

    (qc1)

    Kc=1.0/(qc

    1)

    Kc=0.5 (Huang et al.,2005)

    (qc1)

    Kc=1.5/(qc

    1)

    Kc=0.5 (TUS*)

    (qc1)

    Kc=1.5/(qc

    1)

    Kc=0.5 (Huang et al.,2005)

    * Tokyo University of Sciense

    Relative density, Dr (%)

    CC

    PH=

    (qc1) K

    c/(

    qc1) K

    c=

    0.5

    rD

    NCC

    C

    Kcc

    KccCPH

    K

    K

    q

    qC

    55.060.0

    ,5.01

    1

    )(

    )(

    ② Effect of Kc on qc1-value

    CS

    PH

    CC

    PH

  • 7. LIQUEFACTION STRENGTH & KC-VALUE

    Based on studies by Ishihara and Takatsu (1979)

    NCC

    C

    NC K

    K

    R

    R

    ,, 21

    21

    0 50 1000.0

    0.2

    0.4

    0.6

    0.8

    Kc=0.5

    (a)

    From N1-R

    l relation

    in Japan, Eq. (4)

    Kc=1.0

    Kc=1.5

    Average sand

    emax

    -emin

    =0.413

    Relative density, Dr (%)

    Cyclic

    str

    en

    gth

    , R

    l

    0 50 1000.0

    0.2

    0.4

    0.6

    0.8

    Kc=0.5

    (b)

    From qC1

    -Rl relation

    in North America, Eq. (7)

    Kc=1.0

    Kc=1.5

    Average sand

    emax

    -emin

    =0.413

    Relative density, Dr (%)

    Cyclic

    str

    en

    gth

    , R

    l

    Effect of Kc on Liquefaction Strength

    From Eqtn (4) From Eqtn (7)

  • 8. RECOMMENDED CHARTS

    0 5 10 15 20 25 30 350.0

    0.2

    0.4

    0.6

    0.8

    (a)

    Cyclic

    str

    eng

    th, R

    l

    Kc=0.5

    Kc=1.0

    Kc=1.5

    JRA (1996)

    (Kc=0.5)

    SPT(N1)

    80-value

    0 5 10 15 20 25 30 35 400.0

    0.2

    0.4

    0.6

    0.8

    Kc=1.5

    (b)

    Cyclic

    str

    en

    gth

    , R

    l

    Kc=0.5

    Kc=1.0

    JRA (1996)

    (Kc=0.5)

    Youd et al. (2001)

    (Kc=0.5)

    SPT(N1)

    60-value

    SPT N1-value and liquefaction strength

  • 0 5 10 15 20 250.0

    0.2

    0.4

    0.6

    0.8

    (a)

    C1

    AIJ(2001)

    (Kc=0.5)

    Kc=0.5

    Kc=1.0

    Kc=1.5

    Cyclic

    str

    eng

    th, R

    l

    q -value(MPa)

    0 5 10 15 20 250.0

    0.2

    0.4

    0.6

    0.8

    (b)

    C1

    Robertson et al.(1998)

    (Kc=0.5)

    AIJ(2001)

    (Kc=0.5)Kc=0.5

    Kc=1.0

    Kc=1.5

    Cyclic

    str

    en

    gth

    , R

    l

    q -value(MPa)

    CPT qc1-value and liquefaction strength

    8. RECOMMENDED CHARTS

  • 9. SUMMARY

    b-e : Increase in Rl due to N

    1 or q

    C1 increase

    e-d : Increase in Rl due to Kc increase

    Liquefaction curve

    for Kc>0.5

    e

    dc

    b

    (a) Low N1, q

    c1

    Cyclic

    str

    en

    gth

    , R

    l

    Liquefaction curve

    for Kc=0.5

    Gradient of liquefaction curve

    a

    Penetration Resistances N1, q

    C1

    Schematic Diagram

    • For loose deposit:

    The gradient due to increase in KC is

    much greater than the gradient

    coming from the density increase

    alone, indicating that the effect of KCon Rl is more significant than the

    effect of penetration resistance.

  • 9. SUMMARY

    b-e : Increase in Rl due to N

    1 or q

    C1 increase

    e-d : Increase in Rl due to Kc increase

    Liquefaction curve for Kc>0.5

    e

    dc

    b

    (b) High N1, q

    C1

    Cyclic

    str

    en

    gth

    , R

    l

    Liquefaction curve

    for Kc=0.5

    Gradient of liquefaction curve

    a

    Penetration Resistances N1, q

    C1

    • For dense deposit:

    The gradient of the liquefaction curve

    for KC=0.5 is generally high, indicating

    that the effect of penetration resistance

    is much more significant than the effect

    of KC. With increasing KC-value, the

    liquefaction strength increases, but its

    effect becomes smaller at higher

    density.

    Schematic Diagram