電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス...

19
05 半導体ダイオード (ショットキーダイオード) 電子デバイス工学

Upload: others

Post on 19-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

05 半導体ダイオード (ショットキーダイオード)

電子デバイス工学

Page 2: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

n形半導体 金属 順方向バイアス

逆方向バイアス

金属・半導体接触

n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

空乏層

このような場合,整流性が現れる

Page 3: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

金属半導体接触の エネルギーバンド図

Page 4: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

χφS

φM

EF

EF

EC

EV

φB

EF EF

EC

EV

qVD

空乏層

金属/n形半導体のショットキー接触

φM>χ ショットキー接触

φM χ

金属の仕事関数 半導体の電子親和力

φS:半導体の仕事関数に相当するもの

VD: 拡散電位 ΦB: 障壁高さ

整流性 がある

Page 5: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

χφM

EF

EF

EC

EV

EF EF

EC

EV

金属/n形半導体のオーム性接触

φM<χ オーム性接触

φM χ

金属の仕事関数 半導体の電子親和力

整流性 はない

Page 6: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

金属/p形半導体のショットキー接触

χφM

EF

EF

EC

EV

EF

EF

EC

EVEG

φB qVD

整流性 がある

φM<χ+EG ショットキー接触

φM χ

金属の仕事関数 半導体の電子親和力

Page 7: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

金属/p形半導体のオーム性接触

χ

φM

EF

EG

EC

EV

EF EF

EC

EV

EF

整流性 はない

φM>χ+EG オーム性接触

φM χ

金属の仕事関数 半導体の電子親和力

Page 8: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

ショットキー接触の 電流電圧特性

Page 9: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

ΔE

温度T>0 の時に,ΔE だけ高いエネルギー準位に電子を見つける確率

∆−=∆

kTEEf exp)(n

f f

E E E E

復習:ボルツマン分布関数

T = 0 T > 0

Page 10: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

金属/n形半導体ショットキー 順方向バイアス時

半導体から金属に向かう電子

−−=→ kT

VVqKI )(exp D1MS

金属から半導体に向かう電子

φB

EF EF

EC

EV

qVD

空乏層 φB

q(VD-V)

qVD

−=→ kT

KI B2SM exp φ

無バイアス 順バイアス

定性的説明 I(SM)は電圧Vとともに指数関数的に増加 I(MS)は電圧Vによらず一定 電流がよく流れる

Page 11: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

φB

EF EF

EC

EV

qVD

空乏層

無バイアス

金属/n形半導体ショットキー 逆方向バイアス時

φB

q(VD+V)

qVD

逆バイアス

半導体から金属に向かう電子

+−=→ kT

VVqKI )(exp D1MS

金属から半導体に向かう電子

−=→ kT

KI B2SM exp φ

定性的説明 I(SM)は電圧Vとともに指数関数的に減少 I(MS)は電圧Vによらず一定 電流があまり流れない

Page 12: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

金属/n形半導体ショットキー IV特性

−−=→ kT

VVqKI )(exp D1MS

−=→ kT

KI B2SM exp φ

Vの符号:順方向のときはプラスとし、逆方向のときはマイナスとする

全電流は、

−−

−−=−= →→ kT

KkT

VVqKIII B2

D1SMMS exp)(exp φ

V=0でI=0であることから、

=

−= 1exp1expexp 0

B2 kT

qVIkTqV

kTKI φ

式だけを見ればpn接合と同じ

pn接合と違うところは何か? 電流の担い手が少数キャリアか、多数キャリアか、で違う

Page 13: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

ショットキーダイオード vs. pn接合ダイオード

ショットキーダイオードにはpn接合に特有であった 小数キャリアの蓄積が無い. 高速でスイッチできる.という特長がある.

Page 14: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

ショットキー接触の 空乏層解析

φB

q(VD+V)

空乏層

WD0

ND

ドナー密度

電界

VD+V

電位

0S

D2

2

εεqN

dxVd

−=ポアソンの方程式

境界条件 V(0)=0, V(WD)=VD+V

[dV/dx]WD=0 (電界は空乏層のみにかかる)

)( D0S

D WxqNdxdVE −=−=

εε

)( D0S

D WxxqNV −−=εε

D

D0SD

)(2qN

VVW +=

εε

電界分布

電位分布

空乏層幅

Page 15: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

0S

D2

2

εεqN

dxVd

−= 10S

D CxqNdxdVE +−==−

εε1回積分

半導体中の電界はゼロ E(WD) = - [dV/dx]WD = 0であるから, 0S

DD1 εε

WqNC =

よって、電界分布が以下のように得られる。

)( D0S

D WxqNdxdVE −−==−

εε

空乏層解析 計算詳細

また、上式をもう一回積分すれば、電位分布が以下のように得られる。

)( D0S

D WxxqNV −−=εε

V(0) = 0を使った

空乏層幅は、V(WD)=VD+Vであることを利用して、以下のように得られる。

D

D0SD

)(2qN

VVW +=

εε

Page 16: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

空乏層解析 容量電圧特性

WD0

ND 幅WDの中に、qND x WDの電荷が蓄積(単位面積当たり)

)(2 DD0SDD VVqNWqNQ +== εε

その容量は、

)(2 D

D0S

VVqN

dVdQC

+==

εε

以下のように1/C2と電圧が比例関係にある。切片がVDとなる。

)(21D

D0S2 VV

qNC+=

εε

逆バイアス電圧

1/C2

-VD

Page 17: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

トンネル現象と オーム性接触について

金属半導体の界面には界面準位というエネルギー準位がある。そのために、オーミックかショットキーになるかは、仕事関数と電子親和力の関係だけでは決まらない場合が多い。 オーミック接触は、個体表面に金属電極を付けて電気的測定をするときには必ず必要な接触である。そこで、仕事関数や電子親和力がどんな場合でも、ほぼオーミック接触が保証される金属接触の方法が編み出されている。そこでは、量子力学的なトンネル現象が利用される。

復習事項

量子力学の復習 エネルギー障壁があっても、極めて薄ければ、 電子がそれを通過できる。

本日の復習 ショットキー障壁の厚み(空乏層の厚み)は、 不純物濃度に反比例している(平方根が入っているが)

D

D0SD

)(2qN

VVW +=

εε

Page 18: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

高ドープ層=極薄障壁厚

n-type

n+

-type

トンネル電流

トンネル電流p-type

p+

-type

高濃度に不純物を添加した極薄層を金属と半導体の間に設ける トンネル電流によってオーム性接触がほぼ確実に得られる

Page 19: 電子デバイス工学 - t-shirafuji金属 n形半導体 順方向バイアス 逆方向バイアス 金属・半導体接触 n形半導体の中の電子が金属のそれ よりも高いエネルギー準位にある場合

高ドープ層はどうやって得るの?

Au

Si

Au

Si

加熱

共晶点温度 ~370℃くらい

Si:Au合金層 ~高ドープ層となる

共晶点が比較的低温になる 金属を用いないと、どえらい 高温にしないといけなくなる。 なんでもよい、というわけでもない。