eels analysis of carbon structures nanotube seminar 2005. 05. 09. gergely kovách mta mfa

11
EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

Upload: kristian-carpenter

Post on 12-Jan-2016

215 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

EELS analysis of carbon structures

Nanotube seminar2005. 05. 09.

Gergely KováchMTA MFA

Page 2: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

Electron spectroscopy

-EELS, electron energy loss is characteristical to the material-XPS, binding energy of C1s (284.6eV, 285.4eV) core level electron, energy loss of core level electron

Page 3: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

Electron energy loss in solids

a – zero loss

b – fonons

c – band transitions

d – surface plasmons

e – bulk plasmons

f – inner shell absorption edge

Page 4: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

Hybridization of C atoms

-Energy difference in hybridized orbitals

-Broadening of bonds

-Also valid for amorphous structure

-Pre edge feature in C1s-2p absorption 1s-2p(*)

Page 5: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

Core level absorption spectra of C samples

DLC

Graphite

Evap. C

J. Yuan, Micron 515 (2000)

STEM at 100 kV

sp2/sp3 obtained from peak intensity

Page 6: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

Polarization of 1s-2pz transition

Anisotropic response of 1s-2p dipole transition -> difficulties in quantitative analysis

Page 7: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

sp2/sp3 ratio:Plasmon energy shift

Page 8: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

sp2/sp3 ratio:using reference material

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50 55 60

energy loss [eV]

no

rmal

ized

in

ten

sity

[cp

s]

(c) Ar bomb.

(b) He bomb.

Polycristallinediamond

(a)

Page 9: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

sp2/sp3 ratio:C1s binding energy

Page 10: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

Own measurementsEELS of 500eV electrons

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60

Energy loss [eV]

inte

nsity

[arb

. uni

t]

Nanotube

HOPG

HOPG impl.

Page 11: EELS analysis of carbon structures Nanotube seminar 2005. 05. 09. Gergely Kovách MTA MFA

References

• J. Robertson, Mat. Sci. and Eng. R 37 (2002) 129-281• P. J. Fallon, V. S. Veerasamy, C. A. Davis, J. Robertson, G. A. J. Amaratunga, W. I.

Milne, J. Koskinen Phys. Rev. B 48, 4777–4782 (1993) Phys. Rev. B 48, 4777 (1993)

• R.F.Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (1986)• J. Bruley, L.M. Brown and S.D. Berger. Inst. Phys. Conf. Ser. 78 (1985), p. 561.• S. D. Berger, D. R. McKenzie, and P. J. Martin, Philos. Mag. Lett. 57, 285 (1988) [

CAS][INSPEC].• J. Kulik et. al. Phys. Rev. B Vol. 52, No. 22. 15812 (1995)• J. Yuan, L.M. Brown, Micron 31 (2000) 515• G. Kovach, H. Csorbai, G.Z. Radnoczi, et al., Mat. Sci. Forum 414-4: 127-132, 2003

Properties of high-density amorphous carbon films deposited by laser ablation • S. Rey et. al. Appl. Phys. A 71 433 (2000)• [14] Y. Lifshitz, Diam. Rel. Mat. 8, 1659 (1999) Phys. Rev. B 48, 4777–4782 (1993)

http://prola.aps.org/abstract/PRB/v48/i7/p4777_1• D. L. Pappas, K. L. Saenger, J. Bruley, W. Krakow and J. J. Cuomo, J. Appl. Phys. 71

, 5675 (1992) [ADS][ SPIN][ INSPEC];• J. J. Cuomo et al., Appl. Phys. Lett. 58, 466 (1991) [ADS][CAS][ SPIN][ INSPEC].• J. Kulik et al., J. Appl. Phys. 76, 5063 (1994) [ADS][CAS][ SPIN][INSPEC].