eelleeccttrroommaaggnneettiicc...

10
E E l l e e c c t t r r o o m m a a g g n n e e t t i i c c T T h h e e o o r r y y f f o o r r E E l l e e c c t t r r o o n n i i c c s s & & C C o o m mm mu u n n i i c c a a t t i i o o n n E E n n g g i i n n e e e e r r i i n n g g By www.thegateacademy.com

Upload: others

Post on 16-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

EElleeccttrroommaaggnneettiicc TThheeoorryy

ffoorr

EElleeccttrroonniiccss && CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg

By

www.thegateacademy.com

Page 2: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

Syllabus

: 080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com

Syllabus for Electromagnetic Theory

Elements of Vector Calculus, Divergence and Curl, Gauss and Stoke’s Theorems, Maxwell’s

Equations, Differential and Integral Forms. Wave Equation, Poynting Vector. Plane Waves,

Propagation Through Various Media, Reflection and Refraction, Phase and group Velocity, Skin

Depth. Transmission Lines, Characteristic Impedance, Impedance Transformation, Smith Chart,

Impedance Matching, S Parameters, Pulse Excitation. Waveguides, Modes in Rectangular

Waveguides, Boundary Conditions, Cut-Off Frequencies, Dispersion Relations. Basics of Propagation

in Dielectric Waveguide and Optical Fibers. Basics of Antennas, Dipole Antennas, Radiation Pattern,

Antenna Gain.

Analysis of GATE Papers

Year Percentage of Marks Overall Percentage

2015 8.70

8.862%

2014 8.25

2013 5.00

2012 12.00

2011 9.00

2010 7.00

2009 8.00

2008 8.00

2007 10.67

2006 12.00

Page 3: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

Contents

:080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com i

CCoonntteennttss

Chapters Page No.

#1. Electromagnetic Field 1 – 43 Introduction 1

Operators 2 – 7

Material and Physical Constants 7 – 8

Electromagnetic (EM Field) 8 – 9

Electric Field Intensity 9 – 12

Electric Dipole 12 – 17

Divergence of Current Density and Relaxation 18

Boundary Conditions 19 – 21

The Magnetic Vector Potential 21 – 25

Faraday’s Law 25 – 27

Maxwell’s Equation’s 27 – 28

Solved Examples 28 – 34

Assignment 1 35 – 37

Assignment 2 37 – 38

Answer Keys & Explanations 39 – 43

#2. EM Wave Propagation 44 – 71 Introduction 44

General Wave Equations 44 – 45

Plane Wave in a Dielectric Medium 45 – 49

Loss Tangent 49 – 54

Wave Polarization 54 – 61

Assignment 1 62 – 64

Assignment 2 64 – 66

Answer Keys & Explanations 67 – 71

#3. Transmission Lines 72 – 103 Introduction 72 – 73

Classification of Transmission Lines 73 – 77

Transients on Transmission Lines 77 – 78

Bounce Diagram 78 – 81

Transmission & Reflection of Waves on a Transmission Line 81 – 82

Impedance of a Transmission Line 83 – 88

The Smith Chart 88 – 90

Scattering Parameters 90 – 91

Page 4: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

Contents

:080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com ii

Strip Line 91 – 93

Balun 93 – 94

Assignment 1 95 – 96

Assignment 2 97 – 98

Answer Keys & Explanations 99 – 103

#4. Guided E.M Waves 104 – 133 Introduction 104

Wave Guide 104

Rectangular Wave Guide 105 – 107

Transverse Magnetic (TM) Mode: (Hz = 0) 107 – 110

Transverse Electric (TE) Mode: (Ez = 0) 110 – 115

Non-Existence of TEM Waves in Wave Guides 116

Circuter Wave Guide 116 – 117

Cavity Resonators 117 – 119

Optical Fiber 120 – 121

Stub Matching Technique 121 – 122

Solved Examples 122 – 127

Assignment 1 128 – 129

Assignment 2 129 – 130

Answer Keys & Explanations 131 – 133

#5. Antennas 134 – 166 Inroduction 134

Hertzian Dipole 135 – 137

Field Regions 137

Antenna Characteristics 138 – 141

Radiation Pattern 141 – 142

Antenna Arrays 142 – 147

Solved Examples 148 – 159

Assignment 1 160 – 161

Assignment 2 162 – 163

Answer Keys & Explanations 163 – 166

Module Test 167 – 177

Test Questions 167 – 172

Answer Keys & Explanations 172 – 177

Reference Books 178

Page 5: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

:080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com 1

“Picture yourself vividly as winning and that

alone will contribute immeasurably to success."

…Harry Fosdick

Electromagnetic

Field

Learning Objectives After reading this chapter, you will know:

1. Elements of Vector Calculus

2. Operators, Curl, Divergence

3. Electromagnetic Coulombs’ law, Electric Field Intensity, Electric Dipole, Electric Flux Density

4. Gauss's Law, Electric Potential

5. Divergence of Current Density and Relaxation

6. Boundary Conditions

7. Biot-Savart’s Law, Ampere Circuit Law, Continuity Equation

8. Magnetic Vector Potential, Energy Density of Electric & Magnetic Fields, Stored Energy in

Inductance

9. Faraday’s Law, Motional EMF, Induced EMF Approach

10. Maxwell’s Equations

Introduction Cartesian coordinates (x, y, z), −∞ < x < ∞, −∞ < y < ∞, −∞ < z < ∞ Cylindrical coordinates (ρ , ϕ, z), 0 ≤ ρ < ∞, 0 ≤ ϕ < 2π, −∞ < z < ∞ Spherical coordinates (r, θ, ϕ ) , 0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π Other valid alternative range of θ and ϕ are-----

(i) 0 ≤ θ < 2π, 0 ≤ ϕ ≤ π (ii) −π ≤ θ ≤ π, 0 ≤ ϕ ≤ π

(iii) −π

2≤ θ ≤ π

2⁄ , 0 ≤ ϕ < 2π

(iv) 0 < θ ≤ π,−π ≤ ϕ < π

Vector Calculus Formula

SL. No Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates

(a) Differential Displacement dl = dx ax + dy ay + dz az

dl = dρaρ + ρdϕaϕ +dzaz dl = drar + rdθaθ + r sin θdϕaϕ

(b) Differential Area dS = dy dz ax = dx dz ay

= dx dy az

dS = ρ dϕ dz aρ

= d ρ dz aϕ

= ρdρd ϕ az

ds = r2sin θ dθ dϕ ar = r sin θ dr dϕ aθ = r dr dθ aϕ

(c) Differential Volume dv = dx dy dz

dv = ρ dρ dϕ dz dv = r2sin θ dθ dϕ dr

CH

AP

TE

R

1

Page 6: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

Electromagnetic Field

: 080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com 2

Operators 1) ∇ V – Gradient, of a Scalar V

2) ∇ V – Divergence, of a Vector V

3) ∇ × V – Curl, of a Vector V

4) ∇2 V – Laplacian, of a Scalar V

DEL Operator:

∇ =∂

∂xax +

∂yay +

∂z az(Cartesian)

= ∂

∂ρaρ +

1

ρ

∂ϕaϕ +

∂z az(Cylindrical)

=∂

∂rar +

1

r

∂θaθ +

1

rsi n θ ∂

∂ϕ aϕ(Spherical)

Gradient of a Scalar field

V is a vector that represents both the magnitude and the direction of maximum space rate of

increase of V.

∇V =∂V

∂xax +

∂V

∂yay +

∂V

∂z az For Cartisian Coordinates

=∂V

∂ρaρ +

1

ρ

∂V

∂ϕaϕ +

∂V

∂z az For Spherical Coordinates

=∂V

∂rar +

1

r

∂V

∂θaθ +

1

rsi n θ ∂V

∂ϕ aϕ For Cylindrical Coordinates

The following are the fundamental properties of the gradient of a scalar field V

1. The magnitude of ∇V equals the maximum rate of change in V per unit distance.

2. ∇V points in the direction of the maximum rate of change in V.

3. ∇V at any point is perpendicular to the constant V surface that passes through that point.

4. If A = ∇V, V is said to be the scalar potential of A.

5. The projection of ∇V in the direction of a unit vector a is ∇V. a and is called the directional

derivative of V along a. This is the rate of change of V in direction of a.

Example: Find the Gradient of the following scalar fields:

(a) V = e−z sin 2x cosh y

(b) U = ρ2z cos 2ϕ

(c) W = 10r sin2θ cos ϕ

Solution:

(a) ∇V =∂V

∂xax +

∂V

∂yay +

∂V

∂zaz

= 2e−z cos 2x cosh y ax + e−z sin 2x sinh y ay − e−z sin 2x cosh y az

(b) ∇U =∂U

∂ρaρ +

1

ρ

∂U

∂ϕaϕ +

∂U

∂zaz

= 2ρz cos 2ϕ aρ − 2ρz sin 2ϕ aϕ + ρ2 cos 2 ϕ az

(c) ∇W =∂W

∂rar +

1

r

∂W

∂θaθ +

1

r sinθ

∂W

∂ϕaϕ

= 10 sin2θ cosϕ ar + 10 sin 2θ cosϕ aθ − 10 sin θ sinϕ aϕ

Page 7: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

Electromagnetic Field

: 080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com 3

Divergence of a Vector

Statement: Divergence of A at a given point P is the outward flux per unit volume as the volume

shrinks about P.

Hence,

DivA = ∇. A = lim∆v→0

∮ A . ds

S

∆v ………………………………………(1)

Where, ∆v is the volume enclosed by the closed surface S in which P is located. Physically, we may

regard the divergence of the vector field A at a given point as a measure of how much the field

diverges or emanates from that point.

∇. A =∂Ax

∂x+

∂Ay

∂y

∂Az

∂z Cartisian System

=1

ρ

∂ρ(ρAρ) +

1

ρ

∂Aϕ

∂ϕ+

∂Az

∂z Cylindrical System

=1

r2

∂r(r2Ar) +

1

r sin θ ∂

∂θ(Aθ sin θ) +

1

r sin θ ∂Aϕ

∂ϕ Sphearical System

From equation (1),

∮A . dS

S

= ∫∇ . A dv

V

This is called divergence theorem which states that the total outward flux of the vector field A

through a closed surface S is same as the volume integral of the divergence of A.

Example: Determine the divergence of these vector field

(a) P = x2yzax + xzaz

(b) Q = ρ sinϕ aρ + ρ2zaϕ + z cos ϕ az

(c) T =1

r2 cos θ ar + r sin θ cosϕ aθ + cos θ aϕ

Solution:

(a) ∇. P =∂

∂xPx +

∂yPy +

∂zPz

=∂

∂x(x2yz) +

∂y(0) +

∂z(xz)

= 2xyz + x

(b) ∇ . Q =1

ρ

∂ρ(ρQρ) +

1

ρ

∂ϕQϕ +

∂zQz

=1

ρ

∂ρ(ρ2 sinϕ) +

1

ρ

∂ϕ(ρ2z) +

∂z (z cosϕ)

= 2 sinϕ + cosϕ

(c) ∇. T =1

r2

∂r(r2Tr) +

1

r sinθ

∂θ(Tθ sin θ) +

1

r sinθ

∂ϕ (Tϕ)

=1

r2

∂r(cos θ) +

1

r sin θ

∂θ(r sin 2θ cosϕ) +

1

r sin θ

∂ϕ(cos θ)

= 0 +1

r sin θ2r sin θ cos θ cosϕ + 0

= 2 cos θ cosϕ

P

Page 8: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

Electromagnetic Field

: 080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com 4

Curl of a Vector

Curl of a Vector field provides the maximum value of the circulation of the field per unit area and

indicates the direction along which this maximum value occurs.

That is,

Curl A = ∇ × A = limΔS→0

(∮ A . dl

L

∆S)

max

an ………………… . . (2)

∇ × A = ||

ax ay az

∂x

∂y

∂zAx Ay Az

||

= 1

ρ ||

aρ ρaϕ az

∂ρ

∂ϕ

∂zAρ ρAϕ Az

||

= 1

r2 sin θ ||

aρ raθ r sin θ aϕ

∂r

∂θ

∂ϕAr rAθ r sin θ Aϕ

||

From equation (2) we may expect that

∮ A dl = ∫(∇ × A

S

) . ds

L

This is called stoke’s theorem, which states that the circulation of a vector field A around a (closed)

path L is equal to the surface integral of the curl of A over the open surface S bounded by L, Provided

A and Δ × A are continuous no s.

Example: Determine the curl of each of the vector fields.

(a) P = x2yz ax + xzaz

(b) Q = ρ sinϕaρ + ρ2 zaϕ + z cosϕaz

(c) T =1

r2 cos θ ar + r sinθ cosϕaθ + cosϕ aϕ

Solution:

(a) ∇ × P = (∂Pz

∂y−

∂Py

∂z) ax + (

∂Px

∂z−

∂Pz

∂x) ay + (

∂Py

∂x−

∂Px

∂y) az

= (0 − 0)ax + (x2y − z)ay + (0 − x2z)az

= (x2y − z)ay − x2zaz

(b) ∇ × Q = [1

ρ

∂Qz

∂ϕ−

∂Qϕ

∂z] aρ + [

∂Qρ

∂z−

∂Qz

∂ρ] aϕ +

1

ρ [

∂ρ(ρQϕ) −

∂Qρ

∂ϕ] az

= (−z

ρsinϕ − ρ2) aρ + (0 − 0)aϕ +

1

ρ(3ρ2z − ρ cosϕ)az

= −1

ρ(z sinϕ + ρ3)aρ + (3ρz − cosϕ)az

Page 9: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

Electromagnetic Field

: 080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com 5

(c) ∇ × T =1

r sin θ[∂

∂θ(Tϕ sin θ) −

∂ϕTθ] ar

+1

r[

1

sin θ

∂ϕTr −

∂r(rTϕ)] aθ +

1

r [

∂r(rTθ) −

∂θTr] aϕ

=1

r sin θ[∂

∂θ(cos θ sin θ) −

∂ϕ(r sin θ cosϕ)] ar

+1

r [

1

sin θ

∂ϕ

(cos θ)

r2−

∂r(r cos θ)] aθ

+1

r[∂

∂r(r2 sin θ cosϕ) −

∂θ

(cos θ)

r2] aϕ

=1

r sin θ(cos 2θ + r sin θ sinϕ)ar +

1

r(0 − cos θ)aθ

+1

r(2r sin θ cosϕ +

sin θ

r2) aϕ

= (cos 2θ

r sin θ+ sinϕ) ar −

cos θ

raθ + (2 cosϕ +

1

r3) sin θ aϕ

Laplacian

(a) Laplacian of a scalar field V, is the divergence of the gradient of V and is written as ∇2V.

∇2V =∂2V

∂x2+

∂2V

∂y2+

∂2V

∂z2→ For Cartisian Coordinates

∇2V =1

ρ

∂ρ(ρ

∂V

∂ρ) +

1

ρ2

∂2V

∂ϕ2+

∂2V

∂z2→ For Cylindrical Coordinates

=1

r2

∂r(r2

∂V

∂r) +

1

r2 sin θ

∂θ(sin θ

∂V

∂θ) +

1

r2 sin θ

∂2V

∂ϕ2→ For Spherical Coordinates

If ∇2V = 0, V is said to be harmonic in the region.

A vector field is solenoid if ∇.A = 0; it is irrotational or conservative if ∇ × A = 0

∇. (∇ × A) = 0

∇ × (∇V) = 0

(b) Laplacian of Vector A

∇2A = ⋯ is always a vector quantity

∇2A = (∇2Ax)ax + (∇2Ay)ay + (∇2Az)az

∇2Ax → Scalar quantity

∇2Ay → Scalar quantity

∇2Az → Scalar quantity

∇2V =−p

ϵ........Poission’s E.q.

∇2V = 0 ........Laplace E.q.

∇2E = μσ ∂E

∂t+ μE

∂2E

∂t2. . . . . . . wave E. q.

Example: The potential (scalar) distribution in free space is given as V = 10y4 + 20x3.

If ε0: permittivity of free space what is the charge density ρ at the point (2,0)?

Page 10: EElleeccttrroommaaggnneettiicc TThheeoorryythegateacademy.com/files/wppdf/Electromagnetic-Theory.pdf · 2018-02-28 · Syllabus for Electromagnetic Theory . Elements of Vector Calculus,

Electromagnetic Field

: 080-617 66 222, [email protected] ©Copyright reserved. Web:www.thegateacademy.com 6

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Poission’s Equation ∇2 V = −ρ

ε

(∂2

∂x2+

∂2

∂y2+

∂2

∂z2) (10 y4 + 20x3) =

−ρ

ε0

∵ ε = εr ε0[ε = ε0 as εr = 1]

20 × 3 × 2x + 10 × 4 × 3y2 =−ρ

ε0

At pt(2, 10) ⇒ 20 × 3 × 2 × 2 =−ρ

ε0ρ = −240ε0

Example: Find the Laplacian of the following scalar fields

(a) V = e−z sin 2x cosh y

(b) U = ρ2z cos 2ϕ

(c) W = 10r sin2 θ cos ϕ

Solution: The Laplacian in the Cartesian system can be found by taking the first derivative and later

the second derivative.

(a) ∇2V =∂2V

∂x2+

∂2V

∂y2+

∂2V

∂z2

=∂

∂x(2e−z cos 2x cosh y) +

∂y(e−z sin 2x sinh y) +

∂z(−e−z sin 2x cosh y)

= −4e−z sin 2x cosh y + e−z sin 2x cosh y + e−z sin 2x cosh y

= −2e−z sin 2x cosh y

(b) ∇2U =1

ρ

∂ρ(ρ

∂U

∂ρ) +

1

ρ2

∂2U

∂ϕ2+

∂2U

∂z2

=1

ρ

∂ρ(2ρ2z cos 2ϕ) −

1

ρ24ρ2z cos 2ϕ + 0

= 4z cos 2ϕ − 4z cos 2ϕ

= 0

(c) ∇2W =1

r2

∂r (r2

∂W

∂r) +

1

r2 sin θ

∂θ(sin θ

∂W

∂θ) +

1

r2 sin2θ

∂2W

∂ϕ2

=1

r2

∂r(10 r2 sin2θ cosϕ) +

1

r2 sinθ

∂θ(10r sin 2θ sin θ cosϕ) −

10r sin2θ cosϕ

r2 sin2θ

=20 sin2 θ cosϕ

r+

20r cos 2θ sin θ cosϕ

r2 sin θ+

10r sin 2θ cos θ cosϕ

r2 sin θ−

10 cosϕ

r

=10 cosϕ

r (2 sin2 θ + 2 cos 2θ + 2 cos2 θ − 1)

=10 cosϕ

r(1 + 2 cos 2θ)

Stoke’s Theorem

Statement: Closed line integral of any vector A integrated over any closed curve C is always equal to

the surface integral of curl of vector A integrated over the surface area ‘s’ which is enclosed by the

closed curve ‘c’.