eee241: fundamentals of electromagnetics introductory concepts, vector fields and coordinate systems...

80
EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Upload: lynne-quinn

Post on 27-Dec-2015

276 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

EEE241: Fundamentals of Electromagnetics

Introductory Concepts, Vector Fields and Coordinate Systems

Instructor: Dragica Vasileska

Page 2: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Outline

• Class Description

• Introductory Concepts

• Vector Fields

• Coordinate Systems

Page 3: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Class Description

Prerequisites by Topic:– University physics– Complex numbers– Partial differentiation– Multiple Integrals– Vector Analysis– Fourier Series

Page 4: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Class Description

• Prerequisites: EEE 202; MAT 267, 274 (or 275), MAT 272; PHY 131, 132

• Computer Usage: Students are assumed to be versed in the use MathCAD or MATLAB to perform scientific computing such as numerical calculations, plotting of functions and performing integrations. Students will develop and visualize solutions to moderately complicated field problems using these tools.

• Textbook: Cheng, Field and Wave Electromagnetics.

Page 5: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Class Description

• Grading:

Midterm #1 25%

Midterm #2 25%Final 25%

Homework 25%

Page 6: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Class Description

Page 7: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Why Study Electromagnetics?

Page 8: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Examples of Electromagnetic Applications

Page 9: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Examples of Electromagnetic Applications, Cont’d

Page 10: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Examples of Electromagnetic Applications, Cont’d

Page 11: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Examples of Electromagnetic Applications, Cont’d

Page 12: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Examples of Electromagnetic Applications, Cont’d

Page 13: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Research Areas of Electromagnetics

• Antenas• Microwaves• Computational Electromagnetics• Electromagnetic Scattering• Electromagnetic Propagation• Radars• Optics• etc …

Page 14: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Why is Electromagnetics Difficult?

Page 15: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

What is Electromagnetics?

Page 16: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

What is a charge q?

Page 17: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Fundamental Laws of Electromagnetics

Page 18: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Steps in Studying Electromagnetics

Page 19: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

SI (International System) of Units

Page 20: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Units Derived From the Fundamental Units

Page 21: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Fundamental Electromagnetic Field Quantities

Page 22: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Three Universal Constants

Page 23: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Fundamental Relationships

Page 24: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Scalar and Vector Fields

• A scalar field is a function that gives us a single value of some variable for every point in space.

• Examples: voltage, current, energy, temperature

• A vector is a quantity which has both a magnitude and a direction in space.

• Examples: velocity, momentum, acceleration and force

Page 25: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Example of a Scalar Field

Page 26: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

26

Scalar Fields

e.g. Temperature: Every location has associated value (number with units)

Page 27: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

27

Scalar Fields - Contours

• Colors represent surface temperature• Contour lines show constant

temperatures

Page 28: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

28

Fields are 3D

•T = T(x,y,z)

•Hard to visualize Work in 2D

Page 29: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

29

Vector FieldsVector (magnitude, direction) at every point

in space

Example: Velocity vector field - jet stream

Page 30: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Vector Fields Explained

Page 31: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Examples of Vector Fields

Page 32: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Examples of Vector Fields

Page 33: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Examples of Vector Fields

Page 34: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

VECTOR REPRESENTATION

3 PRIMARY COORDINATE SYSTEMS:

• RECTANGULAR

• CYLINDRICAL

• SPHERICAL

Choice is based on symmetry of problem

Examples:

Sheets - RECTANGULAR

Wires/Cables - CYLINDRICAL

Spheres - SPHERICAL

Page 35: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Orthogonal Coordinate Systems: (coordinates mutually perpendicular)

Spherical Coordinates

Cylindrical Coordinates

Cartesian Coordinates

P (x,y,z)

P (r, Θ, Φ)

P (r, Θ, z)

x

y

zP(x,y,z)

θ

z

rx y

z

P(r, θ, z)

θ

Φ

r

z

yx

P(r, θ, Φ)

Page 108

Rectangular Coordinates

Page 36: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

-Parabolic Cylindrical Coordinates (u,v,z)-Paraboloidal Coordinates (u, v, Φ)-Elliptic Cylindrical Coordinates (u, v, z)-Prolate Spheroidal Coordinates (ξ, η, φ)-Oblate Spheroidal Coordinates (ξ, η, φ)-Bipolar Coordinates (u,v,z)-Toroidal Coordinates (u, v, Φ)-Conical Coordinates (λ, μ, ν)-Confocal Ellipsoidal Coordinate (λ, μ, ν)-Confocal Paraboloidal Coordinate (λ, μ, ν)

Page 37: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Parabolic Cylindrical Coordinates

Page 38: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Paraboloidal Coordinates

Page 39: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Elliptic Cylindrical Coordinates

Page 40: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Prolate Spheroidal Coordinates

Page 41: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Oblate Spheroidal Coordinates

Page 42: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Bipolar Coordinates

Page 43: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Toroidal Coordinates

Page 44: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Conical Coordinates

Page 45: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Confocal Ellipsoidal Coordinate

Page 46: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Confocal Paraboloidal Coordinate

Page 47: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Cartesian CoordinatesP(x,y,z)

Spherical CoordinatesP(r, θ, Φ)

Cylindrical CoordinatesP(r, θ, z)

x

y

zP(x,y,z)

θ

z

rx y

z

P(r, θ, z)

θ

Φ

r

z

yx

P(r, θ, Φ)

Page 48: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Coordinate Transformation

• Cartesian to Cylindrical(x, y, z) to (r,θ,Φ)

(r,θ,Φ) to (x, y, z)

Page 49: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

• Cartesian to CylindricalVectoral Transformation

Coordinate Transformation

Page 50: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Coordinate Transformation

• Cartesian to Spherical(x, y, z) to (r,θ,Φ)

(r,θ,Φ) to (x, y, z)

Page 51: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

• Cartesian to Spherical Vectoral Transformation

Coordinate Transformation

Page 52: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Page 109

x

y

z

Z plane

y planex plane

xyz

x1

y1

z1

Ax

Ay

Unit vector properties

0ˆˆˆˆˆˆ

1ˆˆˆˆˆˆ

xzzyyx

zzyyxx

yxz

xzy

zyx

ˆˆˆ

ˆˆˆ

ˆˆˆ

Vector Representation

Unit (Base) vectors

A unit vector aA along A is a vector whose magnitude is unity

A

Aa

Page 53: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

zyx AzAyAxA ˆˆˆ

Page 109

x

y

z

Z plane

y planex plane

222zyx AAAAAA

xyz

x1

y1

z1

Ax

Ay

Az

Vector representation

Magnitude of A

Position vector A

),,( 111 zyxA

111 ˆˆˆ zzyyxx

Vector Representation

Page 54: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

x

y

z

Ax

Ay

AzA

B

Dot product:

zzyyxx BABABABA

Cross product:

zyx

zyx

BBB

AAA

zyx

BA

ˆˆˆ

Back

Cartesian Coordinates

Page 108

Page 55: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Multiplication of vectors

• Two different interactions (what’s the difference?)– Scalar or dot product :

• the calculation giving the work done by a force during a displacement

• work and hence energy are scalar quantities which arise from the multiplication of two vectors

• if A·B = 0– The vector A is zero

– The vector B is zero = 90°

ABBABA cos||||

A

B

Page 56: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

– Vector or cross product :

• n is the unit vector along the normal to the plane containing A and B and its positive direction is determined as the right-hand screw rule

• the magnitude of the vector product of A and B is equal to the area of the parallelogram formed by A and B

• if there is a force F acting at a point P with position vector r relative to an origin O, the moment of a force F about O is defined by :

• if A x B = 0– The vector A is zero

– The vector B is zero = 0°

nsin|||| BABA

A

B

ABBA

FrL

Page 57: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Commutative law :

ABBA

ABBA

Distribution law :

CABACBA )(

CABACBA )(

Associative law :

))(( DCBADBCA

CBABCA )(

CBACBA )(

CBACBA )()(

Page 58: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Unit vector relationships

• It is frequently useful to resolve vectors into components along the axial directions in terms of the unit vectors i, j, and k.

1

0

kkjjii

ikkjji

jik

ikj

kji

kkjjii

0

zyx

zyx

zzyyxx

zyx

zyx

BBB

AAA

kji

BA

BABABABA

kBjBiBB

kAjAiAA

Page 59: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Scalar triple product CBA

The magnitude of is the volume of the parallelepiped with edges parallel to A, B, and C.

CBA

A

BC

AB

],,[ CBABACACBACBCBACBA

Page 60: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Vector triple product CBA

The vector is perpendicular to the plane of A and B. When the further vectorproduct with C is taken, the resulting vector must be perpendicular to and hence in the plane of A and B :

BA

A

BC

AB

BA

nBmACBA )( where m and n are scalar constants to be determined.

0)( BnCAmCCBACACn

BCm

BACABCCBA )()()( Since this equation is validfor any vectors A, B, and CLet A = i, B = C = j:

1

CBABCACBA

ACBBCACBA

)()()(

)()()(

Page 61: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

x

z

y

VECTOR REPRESENTATION: UNIT VECTORS

yaxa

zaUnit Vector

Representation for Rectangular

Coordinate System

xaThe Unit Vectors imply :

ya

za

Points in the direction of increasing x

Points in the direction of increasing y

Points in the direction of increasing z

Rectangular Coordinate System

Page 62: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

r

z

P

x

z

y

VECTOR REPRESENTATION: UNIT VECTORS

Cylindrical Coordinate System

za

a

ra

The Unit Vectors imply :

za

Points in the direction of increasing r

Points in the direction of increasing

Points in the direction of increasing z

ra

a

Page 63: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

BaseVectors

A1

ρ radial distance in x-y plane

Φ azimuth angle measured from the positive x-axis

Z

r0

20

z

Cylindrical Coordinates

ˆˆˆ

,ˆˆˆ

,ˆˆˆ

z

z

z

zAzAAAaA ˆˆˆˆ

Pages 109-112Back

( ρ, Φ, z)

Vector representation

222zAAAAAA

Magnitude of A

Position vector A

Base vector properties

11 ˆˆ zz

Page 64: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Dot product:

zzrr BABABABA

Cross product:

zr

zr

BBB

AAA

zr

BA

ˆˆˆ

B A

Back

Cylindrical Coordinates

Pages 109-111

Page 65: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

VECTOR REPRESENTATION: UNIT VECTORS

Spherical Coordinate System

r

P

x

z

y

a

a

ra

The Unit Vectors imply :

Points in the direction of increasing r

Points in the direction of increasing

Points in the direction of increasing

ra

aa

Page 66: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

ˆˆˆ,ˆˆˆ,ˆˆˆ RRR

Spherical Coordinates

Pages 113-115Back

(R, θ, Φ)

AAARA Rˆˆˆ

Vector representation

222 AAAAAA R

Magnitude of A

Position vector A

1ˆRR

Base vector properties

Page 67: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Dot product:

BABABABA RR

Cross product:

BBB

AAA

R

BA

R

R

ˆˆˆ

Back

B A

Spherical Coordinates

Pages 113-114

Page 68: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

zr aaa ˆˆˆ aaar ˆˆˆ zyx aaa ˆˆˆ

RECTANGULAR Coordinate Systems

CYLINDRICAL Coordinate Systems

SPHERICAL Coordinate Systems

NOTE THE ORDER!

r,, z r,,

Note: We do not emphasize transformations between coordinate systems

VECTOR REPRESENTATION: UNIT VECTORS

Summary

Page 69: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

METRIC COEFFICIENTS

1. Rectangular Coordinates:

When you move a small amount in x-direction, the distance is dx

In a similar fashion, you generate dy and dz

Unit is in “meters”

Page 70: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Cartesian Coordinates

Differential quantities:

Differential distance:

Differential surface:

Differential Volume:

dzzdyydxxld ˆˆˆ

dxdyzsd

dxdzysd

dydzxsd

z

y

x

ˆ

ˆ

ˆ

dxdydzdv

Page 109

Page 71: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Cylindrical Coordinates:

Distance = r d

x

y

d

r

Differential Distances:

( dr, rd, dz )

Page 72: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Cylindrical Coordinates:

Differential Distances: ( dρ, rd, dz )

zadzadadld ˆˆˆ

zz addsd

adzdsd

adzdsd

ˆ

ˆ

ˆ

Differential Surfaces:

Differential Volume:

Page 73: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Spherical Coordinates:

Distance = r sin d

x

y

d

r sin

Differential Distances:

( dr, rd, r sind )

r

P

x

z

y

Page 74: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Spherical Coordinates

Differential quantities:

Length:

Area:

Volume:

dRRddRR

dldldlRld R

sinˆˆˆ

ˆˆˆ

RdRddldlsd

dRdRdldlsd

ddRRdldlRsd

R

R

R

ˆˆ

sinˆˆ

sinˆˆ 2

ddRdRdv sin2

dRdl

Rddl

dRdlR

sin

Pages 113-115Back

Page 75: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Representation of differential length dl in coordinate systems:

zyx adzadyadxld ˆˆˆ

zr adzadradrld ˆˆˆ

adrardadrld r ˆsinˆˆ

rectangular

cylindrical

spherical

METRIC COEFFICIENTS

Page 76: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Example

• For the object on the right calculate:

• (a) The distance BC• (b) The distance CD• (c) The surface area ABCD• (d) The surface area ABO• (e) The surface area A OFD• (f) The volume ABDCFO

Page 77: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

AREA INTEGRALS

• integration over 2 “delta” distances

dx

dy

Example:

x

y

2

6

3 7

AREA = 7

3

6

2

dxdy = 16

Note that: z = constant

In this course, area & surface integrals will be on similar types of surfaces e.g. r =constant or = constant or = constant et c….

Page 78: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

Representation of differential surface element:

zadydxsd ˆ

Vector is NORMAL to surface

SURFACE NORMAL

Page 79: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

DIFFERENTIALS FOR INTEGRALS

Example of Line differentials

or or

Example of Surface differentials

zadydxsd ˆradzrdsd ˆ

or

Example of Volume differentials dzdydxdv

xadxld ˆ

radrld ˆ

ardld ˆ

Page 80: EEE241: Fundamentals of Electromagnetics Introductory Concepts, Vector Fields and Coordinate Systems Instructor: Dragica Vasileska

zz

yx

yxr

ˆˆ

cosˆsinˆˆ

sinˆcosˆˆ

zz

yx

yxr

AA

AAA

AAA

cossin

sincos

Back

Cartesian to Cylindrical Transformation

zz

xy

yxr

)/(tan 1

22

Page 115