eee ies conventional solved papers of 2013

Upload: prashant-tomar

Post on 26-Feb-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    1/19

    1) (a) The circuit in the question will look like :

    Finding thevein equivalent across inductor terminals

    th

    16kV * 8 6.4V

    16k 4k (By potential divider rule)

    16 4thR k k

    16*43.2k

    16 4

    The equivalent circuit looks like as shown in adjoining figure

    Steady state

    Inductor can be short circuited

    6.4Vi 2mAR 3.2

    Time - constant

    1L 0.3125msR 3.2k

    (b) Output of a LTI system

    y t x t * h t

    y(t) x h t d

    t

    o

    u u t d 1d tu t

    y(t) tu(t)

    (c) LX wL 0.1w

    c

    1 1X

    wC w

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    2/19

    Re-drawing the circuit in phasor form

    Equivalent of1 2

    Z & Z

    1 2

    eq

    1 2

    Z ZZ

    Z Z

    =

    2 2

    j1 * j w j 1 jwjw

    j w j 1 w 1 w1 w

    Total impedance of circuit

    in eq 3 2

    1 jwZ Z z j0.1w

    1 w

    For current and voltage to be in phase Zinshould be real

    Im Zin 0

    2

    w0.1w 0

    1 w

    2

    1w 0.1 0

    1 w

    Either w = 0 or 210.1 1 w

    21 w 10

    2w 9 w 3rad / sec

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    3/19

    (d) 04.6

    y 2

    zB 10e a mWb / m

    (i) r 0

    On comparison

    r

    4.6

    r m

    1 , where Xm =magnetic susceptibility

    m = 3.6

    (ii) B H

    y 3y

    z7

    B 10e *10H 1730e a A / m

    4.6 * 4 *10

    (iii)o

    BM H

    y 3

    y yz7

    10e * 10 1730e 6227.75e a A / m4 * 10

    (f)

    x

    H i 2exp j wt z20

    On comparing with

    H A exp j wt kz

    20k

    (i)22 40mk20

    (ii)8c 3 *10

    f 7.5MHz40

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    4/19

    (iii)

    x y zi i i

    XBx y z

    2exp j wt z 0 020

    x y zd d dd d di 0 0 i * 0 2exp j wt z i 2exp j wt z 0

    dy dz dx 20 20dz dy dx

    y

    X B i 2 * jexp j wt z20 20

    yji exp j wt z d

    2010

    By Maxwells Equations

    0 0dE

    XB dt

    0 0

    dE 1XB

    dt

    2

    0 0

    1c

    2 2

    Lc XB c i jexp j wt z

    10 20

    2

    y

    E

    E dt c i * j exp j wt z dt10 20t

    2cexp j wt z iy

    10w 20

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    5/19

    28

    6 6

    1 6t sec,z 5m

    15

    3 *10 * 1

    E exp j 2 * * 7.5 *10 * *10 * 5201510 *2 * *7 .5*10

    16

    y6

    9 * 10 *E exp j i

    410 * 2 * 7.5 * 1 0

    8 y36 *10 exp j i4

    (g) By the use of KCL

    nm 1 2I I I

    mo am nm 1 2I I I 2I I

    By KVL

    1 am moV 10 I 5 I

    1 1 210 * I 5 2I I

    1 1 2V 20I 5I

    2 nm moV I 10 I 5

    1 2 1 2I I 10 2I I 5

    2 1 2V 20I 15I

    In terms of Z-parameters

    1 11 1 12 2V Z I Z I

    2 21 1 22 2V Z I Z I

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    6/19

    On Comparing

    11 12 21 22Z 20 ; Z 5 ; Z 20 ; Z 15

    20Z

    20

    5

    15

    (i) G G

    1G( jw) cos sin 0

    N

    Assume G(jw) = x+ iy

    For unity feedback system,

    C( jw) G( jw) x iyM( jw)

    R( jw) 1 G( jw) x iy 1

    2 2

    2 2

    x yM( jw)

    (1 x) y

    Assume |M(jw)| = M

    => 2 2 2 2M (1 x) y x y

    Squaring both sides we get

    2 2 2 2 2M (1 x) y x y

    Re-arranging this equation we get,

    2 222

    2 2

    M Mx y

    1 M 1 M

    In our case, C( jw)

    M( jw) 6dBR(jw)

    => 20log(|M(jw)|) = 6dB

    =>|M(jw)| = 2

    The polar plot of the equation (i)

    for M=2 looks like

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    7/19

    dB-Magnitude Phase Angle Plot

    2) (a) The hollow sphere looks like as shown in figure

    By Gausss law

    freeD .d A Q

    2D.dA Q D.4 r Q

    2Q

    D r4 r

    for all values of r

    if r < a

    20 0

    D QE r

    E 4 r

    If a < r < b

    2

    0 r 0 r

    D QE r

    4 r

    If r > b

    20 0

    D QE r

    4 r

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    8/19

    2

    0

    2

    0 v

    2

    0

    Q

    4 rQ

    E4 r

    Q

    4 r

    r a

    a r b

    r b

    0 0

    P E D D E

    2 2 2v

    v

    Q Q Q 11 r4 r 4 r 4 r

    (b) Forward Path

    1 1 2 3 4P G G G G

    2 1 5 8 4P G G G G

    Loop

    1 1 2 9L G G G

    2 3 4 10L G G G

    3 5 6L G G

    4 7L G

    5 1 5 8 4 10 9L G G G G G G

    1 71 G (1P does not touch L4)

    2 1 ( 2P touches all loops)

    1 2 3 4 5 1 4 2 3 2 41 L L L L L L L L L L L

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    9/19

    Gain =>

    1 2 3 4 7 1 5 4 8

    1 2 9 3 4 10 5 6 7 1 5 8 4 10 9 1 2 9 7 3 4 10 5 6 3 4 10 7

    G G G G 1 G G G G G

    1 G G G G G G G G G G G G G G G G G G G G G G G G G G G G

    3) (a)

    (i) This is an image charge problem, as there is an infinite conducting plane beneath the

    charges, image charge needs to be symmetrically placed beneath the surface. The

    charge configuration then looks like

    Electric field at b

    b bc bd baE E E E

    0 0

    bc 2 2

    00

    Q QE

    8 a4 2a

    0

    ba 2

    0

    QE

    4 a

    ;

    0bd 2

    0

    QE

    4 a

    0 0

    b2 2 2

    0 0 0

    Q Q QE x y cos45x sin45y

    4 a 4 a 8 a

    0

    2

    0

    Q 111 x 1 y4 a 2 2 2 2

    2

    0b b

    0 20

    Q 11F Q E 1 x 1 y4 a 2 2 2 2

    2 22

    0b

    2

    0

    Q 1 1F 1 1

    4 a 2 2 2 2

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    10/19

    2

    0

    2

    0

    Q 1 11 11 1

    8 84 a 2 2

    2

    0

    2

    0

    3Q

    8 a

    (ii) If one of charges is reversed, the charge configuration looks like

    b bd ba bc

    E E E E

    0

    bd 20

    Q

    E y4 a

    0

    ba 2

    0

    QE x

    4 a

    0bc 2

    0

    QE cos 45 x sin45 y

    8 a

    0b 2

    0

    Q 1 1E 1 x 1 y

    4 a 2 2 2 2

    0b 0 b 2

    0

    Q 1 1E Q E 1 x 1 y

    4 a 2 2 2 2

    2

    0b 2

    0

    Q 1F 2

    24 a

    (b) Assure VRNis reference voltage

    0RN

    415V 0 V

    3

    0YN

    415V 120 V

    3

    0BN

    415V 120 V

    3

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    11/19

    For a balanced 3-supply line voltage leads phase voltage by 030

    0RYV 415 30 V

    0YBV 415 90 V

    0BRV 415 150 V

    I wattmeter 0415 30

    4.15 66.9 A100 36.9

    V wattmeter 0BN 415V 120 V3

    Swattmeter *

    0415* 4.15VI 120 66.93

    415* 4.1553.1

    3

    =597W

    (c) Z(s)

    2

    2 22 2

    s s 10 s 1 1

    2 s 4 s 16s 4 s 16

    2 21 s 1 s

    2 2s 4 s 16

    Realizing Foster-1 form

    n

    is02 2

    i 1 i

    KkZ s K S

    s s w

    0 s 0K limsZ(s) 0

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    12/19

    2 2s s s

    z s 1 1 1 1K lim lim lim 0

    s 2 2s 4 s 16

    1 1 1 1Z s4 162 2s ss s

    = 2 41 3

    1 1

    8 322s 2ss s

    y y y y

    11Y sC 2s

    1C 2F

    21

    1 8YssL

    ;1

    1L H8

    3 2Y sC 2s

    2C 2F

    42

    1 32Ys

    sL

    21L H32

    4. a) The network given in the question looks like

    LZ sL

    C

    1Z

    SC

    Equivalent impedance of R & L

    eqZ R sL

    eq C2

    eq C

    1R sLZ Z R sLsCZ s1Z Z s LC sRC 1R sLsC

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    13/19

    Pole of Z(s)

    2

    1 2

    RC RC 4 LCZ ,Z

    2LC

    =

    2R R 1

    2L 2L LC

    Zeroes of Z(s)

    0 RZ s L

    On comparisonR

    1 R LL

    ..(i)

    2R 1 3j

    22L LC

    2

    2

    R 1 34LC4L

    21 R 1 3

    44 L LC

    1 314 4LC

    11

    LC (ii)

    Z(j0) = 1

    Replace s by j0 in Z(s)

    Z(j0) = R = 1

    R 1 From (i)

    L = 1H

    From (ii)

    C = 1F

    (b) To find thevenin equivalent across terminals AB, we must open circuit A & B

    Since secondary is open circuited, voltage induced in primary due to secondary is zero.

    1 1100 0 2 j I j4 I

    1100 0

    I A2 5 j

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    14/19

    AB 2 1V I j8 I j3

    since 2I 0

    AB Th100 0

    V V j32 5j

    = 55.7 21.8

    For ThZ , assume 2I 0

    1 1 2V 2 5j I 3j I

    2 1 2V j3I j8I

    For ThZ , 1V need to be shorted

    1

    V 0

    2

    1

    3jII

    2 5j

    22 2

    3j 3j IV 8 jI

    2 5j

    1

    2Th

    2 v 0

    V 9 2 5j 8 jZ 0.62 6.45j

    I 2 5j

    For maximum power transfer, Th*

    LZ Z = (0.62 6.45j)

    (c) Torque expression for moving iron meter is given by

    2d

    1 dLT I

    2 d

    dT = deflecting torque

    For spring controlled

    CT k k = spring constant

    21 dLk I2 d

    dL

    3 H/ rad2d

    2 61k I 3 1022

    22 6 63IIk 10 104 2

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    15/19

    2 2

    26

    3I 3 5

    25I2 10 k 2 254 4

    =75

    2 125

    4

    61.2rad

    55

    2

    1.2rad

    5. (a) 22100

    AJ a mP

    2 3

    1 1 100 1 100 100.J A

    By continuity equationp

    .Jt

    Substituting value of .J

    3

    100 p

    t

    3

    100t

    (b) Conversion time of n-bits successive Approximation ADCn

    Tf

    6C

    8T 8 s

    1 10

    aT 8 s

    (c) The s model of capacitor with initial condition is

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    16/19

    Equivalent circuit in s domain looks like

    Applying KVL

    0V 1v I s Rs sC

    00 0V v sV V C sV Vs

    I S sRC 11 1R sRsC C

    00

    VCV sV

    I S1RC sRC

    =

    00 0 0

    V 1 1V ssV RC RCV V V

    1R R 1s s

    RC RC

    00

    V 1V RCV

    1R 1s

    RC

    t

    0 RC

    0

    V V 1i t 1 e u tV RCR

    6) (a) 1C 10 F

    2C 5 F

    3C 2 F

    The maximum voltage across 2 3C & C can be 5 + 2 = 7 V

    Break down strength of 1C = 10 V

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    17/19

    Which is not possible, else either 2 3C or C will be damaged

    max,C2 2 max,C2Q = C V 5 5 25 C

    max,C3 3 max,C3Q = C V 2 2 4 C

    In series ; change must be same

    C2 C3Q =Q =4 C

    22

    C2Q 4V 0.8VC 5

    ;3

    3

    C3Q 4V 2VC 2

    V =2 3V V = 2.8 V

    In parallel connection, voltage is same

    2 31V V V 2.8V 1 1 1Q C V 10 2.8 28 C

    Maximum safe voltage = 2.8 V

    Equation capacitance of 2 32 32 3

    C C 5 2 10C &C F

    C C 5 2 7

    1 3eq 2C C C || C

    =801010 F7 7

    Total charge =eq

    80C V 2.8 32 C

    7

    (c) The bridge looks like as shown in adjoining Owens Bridge under balanced condition

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    18/19

    42 31L R R C

    = 10 x 842 x 1 x 106

    = 8.42 mH

    41

    2

    3R C 10 1R 74.07C 0.135

    Power factor angle of will =

    31 11

    1

    wL 2 1000 8.42 10tan tan

    R 74.07

    35.53

    Power factor = cos = 0.813

    7) (b) 0B H M

    0

    BM H

    In first case

    B =22Wb m ; H = 1200 A m

    61 7

    2M 1200 1.59 10 A / m

    4 10

    In second case2B 1.4Wb m ; H = 400 A/m

    62 7

    1.4M 400 1.113 10 A / m

    4 10

    Change in magnetization =6

    1 2M M M 0.476 10 A /m

  • 7/25/2019 EEE IES Conventional Solved Papers of 2013

    19/19

    (c)

    2 2

    2

    s 4 s 9Z S

    s s 6

    Degree of numerator = 4

    Degree of Denominator = 3

    Difference = 1

    It is a ratio of even to odd polynomial

    Lowest power of s in Numerator = 0

    Lowest power of s in Denominator = 1

    Difference = 1

    There is a pole at 0

    There is a pole at .

    Pole zero plot

    Poles and zeroes are alternating on jw axis and hence it satisfies all properties required for

    LC impedance function.