ee750 advanced engineering electromagnetics …mbakr/ee750/lecture12_2003.pdf · ee750, 2003, dr....

23
1 EE750 Advanced Engineering Electromagnetics Lecture 12

Upload: vohuong

Post on 02-May-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

1

EE750Advanced Engineering Electromagnetics

Lecture 12

2EE750, 2003, Dr. Mohamed Bakr

Duality

• Duality means that two differential/integral equationsdescribing the behavior of two different variables have thesame mathematical forms solutions are identical

• Equations describing the case (J≠ 0, M=0) are dual toequations describing the case (J= 0, M ≠ 0)

HE AA jωµ−=×∇ EH FF jωε=×∇

EJH AA jωε+=×∇ HME FF jωµ−−=×∇

JAA µβ −=+∇ 22 MFF εβ −=+∇ 22

VdeR

Rj-

V

′∫∫∫=′

β

πµ J

A4

VdeR

Rj-

V

′∫∫∫=′

β

πε M

F4

3EE750, 2003, Dr. Mohamed Bakr

Duality (Cont’d)

AH ×∇= )/1( µA FE ×∇−= )/1( εF

)).()(/( AAE ∇∇−−= ωµεω jjA )).()(/( FFH ∇∇−−= ωµεω jjF

It follows that the following quantities are identical

E A H F H A E− F J M

A F ε µ εµ

ββ 1/ηη

4EE750, 2003, Dr. Mohamed Bakr

Example

Using Duality, find the fields resulting from an infinitesimalmagnetic dipole Im=azIm

The fields resulting from an electric dipole are

erj

cosθr

lIE rj-e

βπη

)1

1(2 2

+=

errj

sinθr

lIjE rj-e β

θ ββπηβ

))(

111(

4 2−+=

erj

sinθr

lIjH rj-e β

ϕ βπβ

)1

1(4

+= x

y

z

θ

ArAz

θ

Ie=Ieaz

5EE750, 2003, Dr. Mohamed Bakr

Example (Cont’d)

It follows that the fields resulting from the magnetic dipoleare given by

erj

cosθr

lIH rj-m

βηπ)

11(

2 2+=

errj

sinθr

lIjH rj-m β

θ ββηπβ

))(

111(

4 2−+=

erj

sinθr

lIjE rj-m β

ϕ βπβ

)1

1(4

+−

=

6EE750, 2003, Dr. Mohamed Bakr

Uniqueness Theorem

• This theorem establishes the conditions under which aunique solution exists for a given problem

• Assume that a closed surface S encloses a material withsources Ji, Mi and complex parameters ,

• If there are two possible solutions Ea, Ha and Eb , Hb, theymust satisfy Maxwell’s equations

εεε ′′−′= jµµµ ′′−′= j

HME ai

a jωµ−−=×∇

HME bi

b jωµ−−=×∇

EEJH aai

a jωεσ ++=×∇,

, EEJH bbi

b jωεσ ++=×∇

7EE750, 2003, Dr. Mohamed Bakr

Uniqueness Theorem (Cont’d)

•••• Subtracting the corresponding equations we get

HE ωµδδ j−=×∇ EH δωεσδ )( j+=×∇,

where δE=Ea−Eb and δH=Ha-Hb

•••• Notice that the differential fields satisfy the source-freeMaxwell’s equations

•••• Applying the source-free conservation of energy relation forδE and δH we get

[ ] dvjjV

***

S∫∫∫ ++−=∫∫ × HHEEdsHE δωµδδωεσδδδ ).().().(

dvV

*

S∫∫∫ ′′+′′+−=∫∫ × ))(().(

22HEdsHE δµωδεωσδδ

dv-j-V∫∫∫ ′+′ )(

22HE δµωδεω

8EE750, 2003, Dr. Mohamed Bakr

Uniqueness Theorem (Cont’d)

• Now if we have , this implies that

δE=δH=0 everywhere inside S. Notice that the assumption of

losses existence is important!

• Using the vector identity A•B×C= B•C×A= C•A×B, we have

0).( =∫∫ × dsHE δδ *

S

dsdsdsS

**

S

*

S

EnHHEnnHE δδδδδδ ).().().( ∫∫ ×=∫∫ ×=∫∫ ×

•••• It follows that the condition implies that

one of the following three cases is satisfied:

0).( =∫∫ × dsHE δδ *

S

a) The tangential component of the E field is specified on S,i.e. n ×δE =0 on S

9EE750, 2003, Dr. Mohamed Bakr

Uniqueness Theorem (Cont’d)

b) The tangential component of the H field is specified on S,i.e. n ×δH =0 on S δH*× n =0 on S

c) The tangential component of the E field is specified onpart of S and the tangential component of the H field isspecified on the rest of S, i.e.

n ×δE =0 on S1

n ×δH =0 on S2

S=S1∪ S2

10EE750, 2003, Dr. Mohamed Bakr

Image Theory

• Image theory enables us to evaluate the field generated bysources placed near infinite perfectly conducting boundary

•••• Virtual sources are added to maintain the same tangentialfield boundary conditions for the original problem

εo, µo

σ =∞

direct

reflection

Actual source

Virtual source

11EE750, 2003, Dr. Mohamed Bakr

Image Theory (Cont’d)

εo, µo

Actual source

Virtual source

εo, µo

h

h

θ1

π-θ1

Er2Er1

Eθ1 Eθ2

• Image of a vertical electric dipole is another verticalelectric dipole (same orientation)

• Notice that the tangential electric field componentscancel out

12EE750, 2003, Dr. Mohamed Bakr

Image Theory (Cont’d)

εo, µo

Actual source

Virtual source

εo, µo

h

h

Image for a horizontal electric dipole has the same valuebut opposite orientation (Prove it!)

13EE750, 2003, Dr. Mohamed Bakr

Example

εo, µo

σ =∞

h

Ie=Ieaz

•••• Obtain an expression for the far fields generated by avertical electric dipole of length l placed near an infiniteconducting wall

14EE750, 2003, Dr. Mohamed Bakr

Example (Cont’d)

εo, µo

εo, µo

h

h

θ1

θ2

Pr1

r2

r

θ

For the far fields we have

eθsinr

lIjE rj-e 1

11

1

θ πηβ= eθsin

r

lIjE rj-e 2

22

2

θ πηβ=and

θcoshrhrr 22221 −+=

θcoshrhrr 22222 ++=

r>>h θcos1 hrr −=θcos2 hrr +=

15EE750, 2003, Dr. Mohamed Bakr

Example (Cont’d)

• Further, we can use for the amplitude r=r1=r2

• The total field in the top half space is the sum of thefield generated by both the actual and virtual sources

)(4

21 eeesin θr

lIjEEE hcosj-hcosjrj-e θβθββ

θθθ πηβ +=+=

z ≥ 0

Eθ=0, z<0

•••• Combining terms we get

)cos(4

2 θβπ

ηβ βθ hcosesin θ

r

lIjE rj-e=

array factorelement factor

16EE750, 2003, Dr. Mohamed Bakr

Reciprocity Theorem

• Reciprocity theorem in circuit theory states that we canchange the location of the source and observation pointswithout affecting the measured values

• A similar theorem can be derived for electromagnetics

• Assume that two sets of sources J1, M1 and J2, M2 radiatewithin a linear isotropic medium

• Using Maxwell’s equations, we have

HME 111 ωµj−−=×∇ HME 222 ωµj−−=×∇

EJH 111 ωεj+=×∇ EJH 222 ωεj+=×∇

17EE750, 2003, Dr. Mohamed Bakr

Reciprocity Theorem (Cont’d)

•••• Dot multiplying the H2 curl equation by E1 and dotmultiplying the E1 curl equation by H2 and subtracting weget

HHEEMHJEEHHE 212112211221 ...... ωµωε jj +++=×∇−×∇

HHEEMHJEHE 2121122121 ....).( ωµωε jj +++=×∇−

•••• Similarly, we obtain

HHEEMHJEHE 1212211212 ....).( ωµωε jj +++=×∇−

•••• Subtracting these two expressions, we obtain

MHJEMHJEHEHE 211212211221 ....).( −−+=×−×∇−

18EE750, 2003, Dr. Mohamed Bakr

Reciprocity Theorem (Cont’d)

•••• Applying divergence theorem, we obtain the Lorentzreciprocity theorem

=∫∫ ×−×−S

dsHEHE ).( 1221 ∫∫∫ −−+V

dV)....( 21121221 MHJEMHJE

•••• For a source-free region we have0)( 1221 =∫∫ ×−×− •

S

dsHEHE

•••• If S is taken as a sphere of infinite radius, we have

0)....( 21121221 =∫∫∫ −−+V

dVMHJEMHJE

∫∫∫ −=∫∫∫ −VV

dVdV )..()..( 12122121 MHJEMHJE

19EE750, 2003, Dr. Mohamed Bakr

Surface Equivalence Theorem

• This theorem is based on the uniqueness theorem

• It obtains the fields outside an imaginary surface byplacing electric and magnetic sources on the boundary sothat the same boundary conditions are satisfied

• Assume that sources J1 and M1 radiate in an unboundedmedium

• We place a virtual surface S that encloses these sources

20EE750, 2003, Dr. Mohamed Bakr

Surface Equivalence Theorem (Cont’d)

V1

V2

E1, H1

E1, H1

S J1 M1

Remove the sources and assumearbitrary fields E, H inside S. Forthe boundary conditions to besatisfied we add the boundarysources )( 1 HHnJ −×=s

)( 1 EEnM −×−=s

ε1, µ1ε1, µ1

V1

V2

E1, H1

E, H

S ε1, µ1ε1, µ1

Js

Ms

As E and H are chosenarbitrarily we may chooseE=0, H=0

21EE750, 2003, Dr. Mohamed Bakr

Surface Equivalence Theorem (Cont’d)

V1

V2

E1, H1

0, 0

S ε1, µ1ε1, µ1

Js=n×H1

Ms=-n ×E1

As Js and Ms represent thetangential components of theH1 and E1 fields, only one ofthem is needed according touniqueness theorem

V2

E1, H1

S ε1, µ1

Js=0

Ms=-n ×E1

Electric Conductor Notice that Js is shorted out

22EE750, 2003, Dr. Mohamed Bakr

V2

E1, H1

S ε1, µ1

Ms=0

Js=n ×H1

Magnetic Conductor Notice that Ms is shorted out

Surface Equivalence Theorem (Cont’d)

23EE750, 2003, Dr. Mohamed Bakr

Application: H-plan Horn Antenna

z

x

• At the surface we know Ey and Hx

• Equivalent sources are given by Jy=Hx and Mx=Ey