ee491/492 design document superconducting...

35
1  EE491/492 Design Document Superconducting Generators for Wind Turbine   Abrahem Alafandi  Hamad Almutawa  Majed Ataishi   Rehman Shahzad491  Nikhil Purma491    

Upload: others

Post on 22-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

1  

EE491/492 Design Document 

Superconducting 

Generators for Wind 

Turbine  

 Abrahem Al‐afandi 

 Hamad Almutawa 

 Majed Ataishi  

 Rehman Shahzad‐491 

 Nikhil Purma‐491 

 

  

Page 2: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

2  

  Table of Contents 

1‐Design Description………………………………………………….……………………………… 3 

1.1 Project Definition………………………………………………..………………………………...………. 3 

1.2 Project goals and Deliverables………………………………………………………………………. .3 

2‐ System Level Design………………………………………………………………………………..3 

2.1 System Requirements………………………………………………………………………………………3 

2.2 Functional Decomposition……………………………………………………………………………….4 

2.3 PMSG vs. HTs……………………………………………………………………………….……….4 

3‐ Detailed Design & attributes…………………………………………………………………..6 

3.1 Implementation & Optimization challenges……………………………………….….………..6 

3.2 Different Topologies within HTS……………………………………………..……………….………7 

3.3 Different topologies within PMSG……………………………………………………….…….…..11 

4‐ Suggested Designs…………………………………………………………………………………15 

4.1 Design 1 (PMSG)…………………………………………………………………………………….……….15 

4.2 Design 2 (HTS)………………………………………………………………………………………………...16 

5‐ Performance Evaluation…………………………………………………………………………16 

6‐ Cooling Systems………………………………………………………………………….………….18 

6.1 PMSG Cooling System……………………………………………………………………………………..18 

6.2 HTS Cooling System………………………………………………………………………….………………19 

7‐ Cost Analysis…………………………………………………………………………………………..20 

7.1 Assumptions………………………………………………………………………………………….…………20 

7.2 Cost Model……………………………………………………………………………………………..……….20 

7.3 Results & Evaluation……………………………………………………………………………….…..…..21 

8‐ Design Approach & System Level diagram………………………………………..…….23 

8.1 Design Approach………………………………………………………………………………………...…..23 

8.2 System Level Diagram………………………………………………………………………….……..……24 

References………………………………………………………………………………………….….…..25 

Appendix A……………………………………………………………………………………….……..….28 

Appendix B………………………………………………………………………………………...……….29 

Appendix C…………………………………………………………………………………………….……31 

 

  

 

 

 

   

Page 3: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

3  

 

1. DesignDescription

1.1 projectdefinition

Inthisdesignproject,wewillexaminesuperconductinggeneratordesignsforhighcapacityland‐basedthree‐bladehorizontal‐axiswindturbines(HAWT).Theworkwillovercomethreemainbarrierswithinwind‐turbinedesign.Theprimaryfocuswillbeongearless,direct‐driveconfigurationsutilizingpowerelectronicinterfacesratedatfullturbinecapacitywithhigh‐temperaturesuperconducting(HTS)orpermanentmagnet(PM)generators.

1.2 ProjectGoalsandDeliverables Suggested5MWturbineusingpermanentmagnetgenerator. Suggested10MWturbineusinghightemperatureSuperconductorgenerator.

Eachsuggesteddesignhas:

Tobecost‐effective. Highenergyyield. Lowweightandvolume. Suitablecoolingsystem. TobeefficientwithminimizedAClossesandfluxleakage. VolumeandB‐fieldshouldbebalanced,sincepowerisproportionaltoarea,

lengthandB‐field.

2. SystemLevelDesign

2.1 SystemRequirements Gearless,Direct‐Drivewindturbineconfiguration. Outputpoweristobeintherangeof5MW‐10MW. Thesizeofthegeneratormustbetransportedwithoutdifficulty. Systemiscapableofwithstandingthetorqueduringnormaloperationas

wellasshort‐circuitfaultssituation.[2] Mustwithstandanywindspeed. Coolingsystemmustbereliableandself‐maintained.

Page 4: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

4  

2.2 FunctionalDecomposition

SynchronousGenerator:Inasynchronousgenerator,aDCcurrentisapplied

totherotorwindingproducingarotormagneticfield.Therotoristhenturnedbyexternalmeans(propellerofthewindturbine)producingarotatingmagneticfield,whichinducesa3‐phasevoltagewithinthestatorwinding(Copper).Fieldwindingsarethewindingsproducingthemainmagneticfield,whicharerotorwindings.Armaturewindingsarethewindingswherethemainvoltageisinduced,whicharestatorwindings[9].

Coolingsystem:ThecoolingsystemisrequiredtocooldowntheHTSwires,whichoperateat20Ktemperaturetomaintainastablecryogenic(Verylowtemperature)environment.Thishelpsinminimizinglosses,whichisaresultoftheheatcomingoutofwiresbecauseoftheresistivity.

Converters:Convertershelpthewindturbinegeneratorwithgridintegration.

Asthewindturbineoperatesatvariablespeedsthefrequencyofthegeneratorisdifferentthanthefrequencyofthegrid.Thisiswhypowerconvertersareneeded.Theyalsohelptostabilizethevoltageofthegenerator.

2.3 PMSGVs.HTS

Figure1: PMSG Block Diagram [4]

Page 5: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

5  

Figure2: HTS Block Diagram [5]

System Description:

The propeller takes in the kinetic energy of the wind, which rotates the shaft. The shaft is connected to the rotor, which rotates it. The DC exciter will energize the field windings on the rotor, which will create magnetic field. The rotating rotor will create a change in magnetic field, which will induce voltage on the stator windings. The stator is connected to the converters that are connected to the grid. Schematically, the difference between HTS and PMSG is that HTS is using an external DC exciter to energize the field windings, while in PMSG; permanent magnets provide the excitation instead of field windings.

5MW PMSG & 10MW HTS:

Permanent magnet synchronous generators (PMSG) have been announced by Siemens Power Generation and GE Energy for the Megawatt class [15]. They are characterized as having large air gaps. However, the increase of output power requires a reduction in cost of energy.PMSG are feasible up to 5MW, because a 10MW PM generators are above 300 tons (Figure 3) and their diameter are larger than 10 m [2]. Therefore, heavy weight and large diameter always translate to high cost, which limits PMSG from commercialization for the 10 MW level.

Figure 3: HTS Block Diagram [20]

Page 6: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

6  

On the other hand, HTS generators are new and strong candidates for 10 MW level. They are well known for their low weight, small size, and high efficiency (Figure 4).

Figure 4: HTS Block Diagram [20]

American Superconductor (AMSC) has designed a 10 MW SC direct-drive generator with weight of about 160 tons [2]. When referring to weight, volume and the overall drive train cost, HTS generator concept is superior. A study conducted by the National Renewable Energy Laboratory (NREL) [25] shows That PMDD generator is the heaviest (Figure 5), the AMSC HTSDD generator is second heaviest, and the geared turbines generator is the lightest. The roughly 50% reduction in mass between the PMDD and AMSC HTSDD generators at 10 MW is one of the core advantages of HTS generators.

Figure 5: HTS Block Diagram [25]

3. DetailedDesign&attributes

3.1 Implementation&OptimizationChallenges

Nospecificsoftwaretosimulatefindings,sinceHTSandPMSGarenowtonext

generationtechnologies.

Optimizationtokeepcostandvolumewithinreasonablelimits.

Page 7: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

7  

Thereneedtobeabalanceamongelectrical,magnetic,thermal,mechanical,and

economicfactorsforawell‐designedgenerator[2].Thesefactorsarealways

conflictingwitheachother,nomatterwhatkindofmethodsdesignersuseto

optimize,thekeysarelowcost.highreliabilityandavailability.Highcostalways

preventsgeneratorsfromcommercialization.

Ingeneral,thebesttopologyofDDgeneratorshasthemaximumoutput,minimum

expensesandhighestreliability.

3.2 DifferenttopologieswithinHTS

3.2.1 FullySuperconductingVs.PartiallySuperconducting[2]

Table[1]:FullySCvs.PartiallySC

PartiallySuperconducting

ismoresuitable,unless

thereisabreakthroughin

reducingAClossesinfully

SC.

Figure 6: Partially Superconducting [2]

Page 8: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

8  

3.2.2 RadialVs.AxialFlux[2]

Table[2]:Axialfluxvs.Radialflux

Radialfluxtopologyismorepromisingand

mostwidelyusedforMWpowerratings.

Figure 7: Radial Flux generator [2]

3.2.3 RotatingFieldVs.Rotatingarmature[2]

Type Advantages Disadvantages

RotatingField 1. Many ongoing projects areusingRF.Ex.AMSC.

2. Makesarmaturedesigneasier3. Permits current density &

magneticfluxdensity.4. Easier to make armature

reinforcementforhightorques.5. Stator’scoolingsystemiseasier

tobuild.

1.Rotatingcryogeniccooling

Tech.mustbeadvanced.

Rotatingarmature 1.Eliminatestheneedofrotatingseal.

2.WithstationaryLTScoils,costis

reduced.

3.Stationaryfieldisdesirable,because

coolingsystemiswithSCcoils.

1.Requirescooling&

electricalcircuitsto

accommodatevibrationdue

torotation.

Page 9: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

9  

Figure 8: Stationary Armature Vs. Rotating Armature [2]

3.2.4 Statorwithair‐gapVs.Statorwithironteethwinding[2]

Table[4]:airgapstatorvs.ironteethstator

Ingeneral,HTSgeneratorsoperatedunderhighlymagneticallysaturatedconditions

withironcoretopologyhavebetterperformances.Whentakingintoaccounttheprice

trendofHTSwire.However,air‐core,air‐rotor,andair‐gapwindingisapromising

futuredesign.

Figure 9: Air-gap teeth vs. iron-teeth [2]

Page 10: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

10  

3.2.5 Air‐corevs.Iron‐corevs.TypesofIron‐core[2]

Table[4]ironCoreTypes

Figure 10: HTS generator [8]

Page 11: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

11  

3.3 DifferenttopologieswithinPMSG

3.3.1 DesignDecisionsDescription

Air‐gapOrientation:

Theairgapisnecessaryasameansformechanicallyseparatingthe

rotorfromthestator.Itformsasurfacebetweentherotorandthe

stator.Thevectornormaltotheairgapsurfacecaneitherberadially

orientedoraxiallyoriented.Inthefirstcase,thevectoris

perpendiculartotheaxisofrotation,whereinthesecondcase,the

vectorisparalleltotheaxisofrotation.[16]Thisisillustratedin

figure11.

 

 

 

Figure 11: Air gap orientation [16]

StatorCoreorientation:Thestatorcorecarriesfluxaroundthestatorwindinginordertocreateanelectromotiveforceinthatwinding.Thefluxcanbetransportedinadirectionparalleltothedirectionofmotionormainlyperpendiculartothedirectionofmotion.Inthefirstcase,themachineissaidtobelongitudinalandinthesecondcase,themachineissaidtobetransverse.[16]

Page 12: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

12  

 

Figure 12: Stator Core Orientation [16]

PMorientationwithrespecttoairgap: ThePMsaremountedontotherotoriron.ThePMmagnetizationhasadirection,whichcaneitherbeparallelorperpendiculartoavectornormaltothesurfaceoftheairgap[16],asillustratedinfigure13.

  Figure 13: PM orientation [16]

CopperHousing: Thestatorlaminationscanbemadeeitherwithorwithoutteeth.Inthetoothedstator,theteethareusedtocarrythemagneticfluxandtomaintainthestatorconductorsinplace.Inthetoothlessstator,thestatorconductorsareplacedintheairgapandthemagneticfluxmustthencrossamuchthickerspaceofnon‐magneticmedium,whichwillleadtothickermagnetsor/andlowerno‐loadfluxdensity.[16]

    Figure 14: Slotted vs. Slotless [16]

Page 13: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

13  

Cogging Torque:

CoggingtorqueisaninherentcharacteristicofPMgeneratorsandiscaused

bythegeometryofthegenerator.Itaffectsself‐startabilityandproduces

noiseandmechanicalvibration.Thus,minimizingCoggingtorqueis

importantinimprovingtheoperationofwindturbines.[17]

3.3.2 MajorDesignDecisions[10],[11]

Themaindesigndecisionsarelistedintable5.

Table[5]:MajorDesignDecisions

3.3.3 PromisingDesignsofPMSG[10],[11]

ListedarethefourdesignsofthePMSGbasedonthedecisionsmadefrom

table5.

Page 14: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

14  

Table[6]:PromisingPMdesigns

3.3.4 LimitingFactorstoConsider[10],[11]

Limitingfactorsencounteredarelistedin

Table[7]:LimitingFactors

Page 15: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

15  

4. SuggestedDesigns

4.1 Design1(PMSG)

5‐MWPMSGwindGenerator

Outofthefourdesignconfigurationlistedintable6,theinnerrotor,andouter

rotorRF‐L‐SM‐ICispromisingandwidelyused.Eg.ABB.

Table[8]:SuggestedDesign1

    Figure 15: Inner rotor vs. Outer rotor

Page 16: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

16  

4.2 Design2(HTS)

10MWSCDDWindGenerator:

PartiallySCwithHTSfieldwindingontherotor.

Stationaryarmaturewindings.

Radialfluxmachine.

Iron‐coredrotorwithironteethstatorwinding.

Figure[16]:AMSC

5. PerformanceEvaluation

ThecriteriausedinmostresearchpaperstofindasuitablePMSGdesignwastolook

atCost/Torque(CT)andTorquedensityorTorque/mass(TM)ratios.

ThedesignwithlowCTrationandahighTMrationwasisconsideredafeasible

design.

Figure17,and18showsthatsuggesteddesign1(PMSG)maynothaveagood

torquedensity,butithasthebestCTratiowhichisthereasonitswidely

commercialized.

Page 17: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

17  

Figure[17]:Torquedensitycomparison[18]

TheabovepictureshowsthatRFPMhasarelativelylowTorquedensity.However

figure18showsthatRFPMhasthelowestCost/Torqueration.

Figure[18]:Cost/TorqueComparison[18]

• Additionally,Figures17,18confirmthataxialmachinesarenotsuitedforMW

powerratings,sincetheouterradiusbecomeslarger,andthemechanicaldynamic

balancemustbetakenintoconsideration.Moreover,aspowerratingsgethigher

costgetslowerforradialmachines.

Page 18: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

18  

6. CoolingSystems

6.1 PMSGCoolingsystem

Liquidcoolingisanewtechnologyforwindturbinesanditsimpactonreliability

mustbeevaluated.Paper[19]presentsareliabilityanalysisforaliquid‐cooled8

MWDD‐PMSGcoupledwithprimaryandsecondaryliquidcoolantsystems.

Reliabilityhasbeencalculatedanalyticallyandassessedbasedonthefollowing

reliabilitymetrics:MTBF,MDT,MTTF,failureintensity,andavailability.

Paperconcludesthatthecoolingsystemwasbrokenoutintotwosubsystems:

thegeneratorwithitsprimaryliquidcoolingloopandthesecondarysidecooling

system.Bothaliquid‐to‐liquidandliquid‐to‐airsecondarysidecoolingsolutions

wereanalyzed.

Note:EconomicAnalysiswasnotperformedforthiscoolingtopologyas

mentionedby[19].

Figure[19]showsthegeneratorandcoolingsystembasedonliquid‐to‐liquid

heatexchanger,Figure[20]showsliquidtoairheatexchanger.

Figure[19],[20]:Liquid‐to‐liquid&Liquid‐to‐air[19]

Page 19: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

19  

6.2 HTSCoolingsystem[20]

TheHTSneedsanoperationtemperatureofabout30‐40K.

CoolingisdonebyexpansionofcompressedHelium.

Compressorscanbesomewhereoutsidetheturbine.

Acouplingbetweennon‐rotationalpartandrotationalpart(rotor)isneeded.

Figure[21]showsthesuggestedcoolingsystemforHTScoilsby[20].

Figure[21]:HTScoolingSystem[20]

Page 20: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

20  

7. Costanalysis 

Thispartwillmainlycovertheassumption,methodofevaluation,&resultsofthewindturbinecostanalysis.TheFirststepwasstatingseveralassumptionsandcheckediftheseassumptionswererealistic.Afterthat,acostmodelwasneededtogetthecostofenergyofourdesigns.Comingupwithcostmodelisfairlycomplextask,thusanexistingmodelwaschosen[21]thathavebeenbuiltbytheNationalRenewableEnergyLab(NREL).Usingthismodelsomeresultswereobtainedandthenevaluatedbasedonresearchstudiesthatusedthismodelandsomeexistingmodel.

7.1 Assumptions

Inordertogettheresults,it’sessentialtochoosethehubheight,rotordiameter,

andtheratedpowerforourdesigns.Table9containsthevalueschosenforthe

twodesigns‐PMSG&HTS‐basedondesigndecisionsfromthepreviouspartsof

thedocument.

Variables  PMSG  HTS 

Rated Power   5MW  10MW 

Hub height  120m   140m 

Rotor Diameter  120m  160m 

Table9

7.2 CostModel

ThecostmodelthathasbeenusedinthisdocumentwasdevelopedbyNREL[21].Thepurposeofthemodelistogettheinstalledcapitalcost(ICC)andtheannualoperatingexpenses(AOE).ThevaluesforAOEandICCcanbeobtainedusingtable2[24].Thenextstepwastolookattheannualenergyproduction[21]:

AEP CF ∗ P ∗ 8760hours

CFreferstothecapacityfactor.Thecapacityfactorvariesforlocationtoanotherdependingontheaveragewindspeed.AtypicalCFforin‐landwindfarmsisfrom30%‐40%.

Page 21: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

21  

 

Table10[24]

TheCOEcancalculatedforeachdesign[24]:

TheFCRisaround12%accordingto[21],[22]and[23].Table11

Itshouldbenotedthatthismodelisvalidforpowerrangefrom0.75‐5MW&rotordiameterof80‐120m.It’salsovalidforextrapolationforpowerupto10MWandrotordiameterof200m[22].

7.3 Results&Evaluation

Table12showstheresultsfortheproposeddesignsusingExcel.Thefilecanbe

modifiedtothedesiredhubheight,rotordiameter,andratedpowerandit

generatethevaluesneededtocomputeCOE.

COE  Cost of energy 

FCR  Fix charge rate 

ICC  Installed Capital cost 

AOE  Annual operating expenses  

AEP   Annual energy production 

Page 22: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

22  

 

 

 

              Table12 

TheuncertaintyrangefortheAEPandtheCOEwascalculatedbasedonthedifferentcapacityfactorsthatcanbeobtainedfromdifferentlocation.Table13showstheuncertaintyrangefortheproposeddesigns.

Table13

Inordertoevaluatethedesigns,aquickcomparisonwithanexistingwindturbinesofthesamecategory.Table6showsaquickcomparisonbetweentheproposed5MWgeneratorandGamesa4.5MWgenerator[27].Itcanbeseenthattheresultsobtainedforthe5MWgeneratorisveryclosetotheexistinggenerator.  

Generator  5 MW  10 MW 

AEP  13140 MWh  26280 MWh 

ICC (total)  5583.62k $   25510.96k $ 

AOE  145.4k $  290.6k $ 

COE  0.061 $/KWh  0.13 $/KWh 

Generator  5MW  10MW 

AEP    ~2%  ~5% 

COE  ~5%  ~9% 

Page 23: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

23  

8. DesignApproach&SystemLeveldiagram

8.1 DesignApproach

Page 24: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

24  

8.2 SystemLeveldiagram

 

 

 

Page 25: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

25  

 

 

References

1. Sung,JunJung."StatorWindingFaultInfluenceontheFieldCoilofa10MWSuperconductingSynchronousGenerator."IEEETRANSACTIONSONAPPLIEDSUPERCONDUCTIVITY.23.3(2013):n.page.Web.7Nov.2013.

2. Qu,Ronghai,YingzhenLiu,andJinWang."ReviewofSuperconductingGeneratorTopologiesforDirect‐DriveWindTurbines."IEEE(2013):1‐1.

3. Bang,Deok‐je,etal."Promisingdirect‐drivegeneratorsystemforlargewindturbines."WindPowertotheGrid‐EPEWindEnergyChapter1stSeminar,2008.EPE‐‐‐WECS2008.IEEE,2008.

4. Kim,G.H.,etal."AnovelHTSSMESapplicationincombinationwithapermanentmagnetsynchronousgeneratortypewindpowergenerationsystem."PhysicaC:Superconductivity471.21(2011):1413‐‐‐1418.

5. XiaohangLi(2011).SuperconductingDevicesinWindFarm,WindEnergyManagement,DrParitoshBhattacharya(Ed.),ISBN:978‐953‐307‐336‐1,InTech,DOI:10.5772/17969.

6. Alexandrova,Y.,etal."Definingproperinitialgeometryofan8MWliquid‐‐‐cooleddirect‐‐‐drivepermanentmagnetsynchronousgeneratorforwindturbineapplicationsbasedonminimizingmass."ElectricalMachines(ICEM),2012XXthInternationalConferenceon.IEEE,2012.

7. Duan,Yao,andRonaldG.Harley."Presentandfuturetrendsinwindturbinegeneratordesigns."PowerElectronicsandMachinesinWindApplications,2009.PEMWA2009.IEEE.IEEE,2009.

8. WenpingCao(2011).High‐TemperatureSuperconductingWindTurbineGenerators,WindTurbines,Dr.IbrahimAl‐Bahadly(Ed.),ISBN:978‐953‐307‐221‐0,InTech

9. Grote,Karl‐Heinrich,andErikK.Antonsson,eds.Springerhandbookofmechanicalengineering.Vol.10.Springer,2009.

10. Chan,T;Lai,L,"AnAxial‐FluxPermanent‐MagnetSynchronousGeneratorforaDirect‐CoupledWind‐TurbineSystem".IEEETransactionsonEnergyConversion,VOL.22,NO.1.March2007.

11. Cao,J;Yang,X,"DesignandMagneticFieldAnalysisofaDual‐RotorPermanent‐MagnetSynchronousWindGenerator",SouthChinaUniversityofTechnology/CollegeofElectricPower,China.

12. Hae‐JinSung,Gyeong‐HunKim,KwangminKim,MinwonPark,In‐‐‐KeunYu,Jong‐YulKim,"Designandcomparativeanalysisof10MWclasssuperconductingwindpowergeneratorsaccordingtodifferenttypesofsuperconductingwires,"PhysicaC:Superconductivity,Volume494,15November2013,Pages255‐261,ISSN0921‐4534.

13. Mihai,A.M.;Benelghali,S.;Livadaru,L.;Simion,Al.;Outbib,R.2012XXthInternationalConferenceonElectricalMachines,Sept.2012,pp.267‐273IEEE

14. Eriksson,Sandra;Bernhoff,Hans2012XXthInternationalConferenceonElectricalMachines,Sept.2012,pp.1419‐1423IEEE

Page 26: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

26  

15. Okedu,Kenneth,E.“WindTurbineDrivenbyPermanentMagnetSynchronousGenerator”,ThePacificJournalofScienceandTechnology,volume12,No.2.Nov.2011.

16. Dubois,M.R.J,“OptimizedPermanentMagnetGeneratorTopologiesforDirect‐DriveWindTurbines”,Dissertation,DepartmentofElectricalEngineering,MathematicsandComputerScience.Jan26,2004.

17. Jayasankar.K.C.;Rajashekhara,“MinimizationofDetentTorqueinPMWindTurbineGeneratorbyUsingFiniteElementMethod”,ResearchScholar,CMJUniversityShillong,Meghalaya(India)–793003.2012.

18.  Dubois,M.R.;Polinder,H.;Ferreira,J.A.,“Comparisonofgeneratortopologiesfordirect‐drivewindturbines”,Lab.OfElectricalPowerProcessingMekelweg4,KamerLB03.6602628CDDelft,TheNetherland.

19. Polikarpova,Maria;Semken,Scott;Pyrhönen,Juha,“ReliabilityAnalysisofaDirect‐LiquidCoolingSystemofDirectDrivePermanentMagnetSynchronousGenerator”,LappeenrantaUniversityofTechnology.

20. AmericanSuperconductor,“ConceptsforHighPowerWindTurbinesIntroducingHTSTechnology”,WorldGreenEnergyForum2010,Gyeongjucity,Korea,November17‐19,2010.

21. L. Fingersh, M. Hand, and A. Laxson, “Wind turbine design cost and scaling model,” NREL 

National Renewable Energy Laboratory, Tech.Rep., 2006. 

22. Ben Maples, M Hand, and Walter D Musial, “Comparative Assessment of Direct Drive High 

Temperature Superconducting Generators in Multi‐Megawatt Class Wind Turbines”, Golden, CO, 

National Renewable Energy Laboratory 2010. 

23. S. Tegen, E. Lantz, M. Hand, B. Maples, A. Smith, and P. Schwabe, National Renewable Energy 

Laboratory, “2011 cost of wind energy review”, Golden, Colo. National Renewable Energy 

Laboratory 2012. 

24. Preindl, M.; Bolognani, S., "Optimization of the generator to rotor ratio of MW wind turbines 

based on the cost of energy with focus on low wind speeds," IECON 2011 ‐ 37th Annual 

Conference on IEEE Industrial Electronics Society , vol., no., pp.906,911, 7‐10 Nov. 2011. 

25. Li, H.; Chen, Z., "Optimal direct‐drive permanent magnet wind generator systems for different 

rated wind speeds," Power Electronics and Applications, 2007 European Conference on , vol., 

no., pp.1,10, 2‐5 Sept. 2007. 

26. A. Grauers, “Design of direct‐driven permanent‐magnet generators for wind turbines”, Ph.D. 

dissertation, Chalmers University of Technology, Göteburg, 1996. 

27. ] H. Polinder, Frank F. A. vander Piji, Ger‐Jan de vilder and Peter J. Tavner, “Comparison of direct‐drive and geared generator concepts for wind turbines”, in 2005 IEEE International Conference on Electric Machines and Drives, May. 2005, pp. 543‐550. 

28. A. B. Abrahamsen, N. Mijatovic, E. Seiler, M. P. Sorensen, M. Koch, P. B. Norgard, N. F. Pedersen, C. Traeholt, N. H. Andersen, and J.Ostergard, “Practical Design of a 10 MW Superconducting Wind  Power Generator Considering Weight Issue” IEEE Trans. Appl. Supercond., vol. 23, no. 3, 2013. 

29. MetalPrices.com. [Plot presentation of the price of laminated silicon per pound Plot Sep 2013].Retrieved from http://www.metalprices.com/p/SiliconFreeChart. 

Page 27: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

27  

30. A. Grauers, “Design of direct-driven permanent-magnet generators for wind turbines”, Ph.D. dissertation, Chalmers University of Technology, Göteburg, 1996. 

31. H. Polinder, Frank F. A. vander Piji, Ger-Jan de vilder and Peter J. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines”, in 2005 IEEE International Conference on Electric Machines and Drives, May. 2005, pp. 543-550.

32. A. B. Abrahamsen, N. Mijatovic, E. Seiler, M. P. Sorensen, M. Koch, P. B. Norgard, N. F. Pedersen, C. Traeholt, N. H. Andersen, and J.Ostergard, “Practical Design of a 10 MW Superconducting Wind Power Generator Considering Weight Issue” IEEE Trans. Appl. Supercond., vol. 23, no. 3, 2013.

33. MetalPrices.com. [Plot presentation of the price of laminated silicon per pound Plot Sep 2013].Retrieved from http://www.metalprices.com/p/SiliconFreeChart   

Page 28: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

28  

AppendixA

1. PropertiesofdifferentSCwires[12]

2. TypicalMaterialsusedin10MWHTS[12]

3. Comparativeadvantageofeachmaterial[12]

Page 29: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

29  

AppendixB

MaterialselectionforPermanentmagnet:

Thematerialselectionshouldbebasedonthedifferentdesiredqualities.Forinstance,reducecost,weigh,volume,heatriseandincreaseoutput.ThesequalitiesdependsonthePMmaterialswith:

Advantages&disadvantages:

Ferritemagnet

TheferritemagnethaslowremanentfluxdensitycomparedtoNdFeBandSmCo,whichreducestheefficiencyofmagneticenergy.Also,inordertoproducethesameoutputpowerasNdFeBorSmCo,wewillneedtoincreasetheweightofthePMmaterialinthegeneratordesign.ThismeansthattheFerritemagnetdesignwillhaveahigherweightcomparedtoNdFeBdesign.However,itisthecheapestmaterialbetweenthemandsomedesignsconsiderusingitduetothehighperformance/priceratio,whichgivesitaneconomicadvantage.[13],[14].

Neodymiumironboron(NdFeB)

ThisPMmaterialbyfaristhebestbetweentheelementsinthegroupintermsofperformance.Themagneticenergyis+300kJ/ 3,whichis10timesbetterthantheferritemagnetandabout30%betterthanSmComagnet.TheNeodymiumis5timesmoreprevalentthanthesamarium,whichmightreducetheproductioncostofthefinalproduct.

Page 30: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

30  

ButitshouldbenotedthattheNeodymiumpriceisnotstablebecausethemainproducerofitisChinaanditscontrolsthepricesofit.TheNdFeBgeneratordesignwillrequireacoolingsystembecauseoftheLowoperationtemperature(115Celsius).

SamariumCobalt(SmCo)

TheSmCosharessimilarcharacteristicsasNdFeB,butperformancewisetheNdFeBisbetter.OneoftheDrawbacksoftheSmCoPMisthefragilityofit.It’sverybrittlecomparedtotheothersPMinthegroups.However,thepriceofSmCoPMisstablecomparedtoNdFeB,whichmakesiteconomicallypreferable.Also,SmCohasbettercorrosionresistancethantheNdFeBPM.

Page 31: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

31  

AppendixC

PMSG active Materials 

In order to calculate the total cost of active materials (copper, iron, and neodymium) for PMSG, the 

following needed to be found: 

   

1) Weight of active materials:  

The weight of active materials has a dramatic relation to the rated power. The relationship 

between active materials and rated power is almost linear [30] (page 101). This would indicate 

that the percentage of active materials in the generators would be the same regardless of the 

rated power.  

 

 

 

 

 

 

 

 

 

Figure 25 

Figure 26 

Page 32: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

32  

The plan was to find the weight of Neodymium, which is obtainable using the following relations [30] 

page (64):  

 

 

 

 

 

An estimation for the mass of copper and iron needed for 5MW generator was made based on 

comparing the percentage of active materials in two different designs, which have different 

specifications. 

1) The magnet weight and rated power graph (figure1) was extrapolated with the assumption of 

its linearity. Here are the percentages of active materials that we found: 

Figure 27 

Page 33: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

33  

2) The values given for a direct‐drive permanent magnet generator [31] was used to find the 

percentages of the active materials in the generator: 

The percentage of copper was noticed be the same in both designs. The range of iron mass percentage 

is from 41.8% to 75.1% and the range of Neodymium mass percentage is from 7.05% to 40.4%. 

Generally, the price of Neodymium is higher than the price of iron. Therefore, the design of the second 

generator, which include higher amount of iron and lower amount of Neodymium was used in our cost 

analysis. The total weight of the generator was obtained from the value of magnet weight: 

Total weight = 28.65 ton 

The values given for a direct‐drive permanent magnet generator [31] was used to find the percentage of 

the active materials in the generator. 

 

2) Cost of active materials: After finding the weight of active materials, it is possible to find the cost for each type of 

materials using the price that we used in the previous semester. 

 

Here is a table that includes our cost analysis for 5 PMSG generator: 

 

Page 34: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

34  

HTS active materials cost 

For a partially 10 MW superconducting generator, there are 6 parts which consist active materials [32]: 

Component  Type of material 

Rotor body  nonmagnetic material 

Vacuum shield  nonmagnetic material 

Stator teeth  nonmagnetic material 

Stator coil  copper 

Rotor coil   YBCO 

Magnetic shield  laminated silicon 

 

The total weight of the active materials is 71 ton. The total is distributed among the five parts of the 

superconducting generator in the following way: 

Nonmagnetic material 

Iron was our choice as the nonmagnetic material since our design was iron‐cored. 38 ton of iron 

is needed in our design. The price of iron in dollar‐per‐kg ($5/kg) that was already used for 

PMSG cost analysis was also used to find the total cost of copper in the HTSG cost analysis. 

($5/kg)*38ton = $172365   

Copper 

The price of copper in dollar‐per‐kg ($7/kg) that was already used for PMSG cost analysis was 

also used to find the total cost of copper in the HTSG cost analysis. 

  ($7/kg)* 4 ton = $25401 

YBCO 

The rated filed current from our design specifications was used to since YBCO wires are used in 

the design.  This number is multiplies by the length of HTS wires that also found in our design 

specifications.  

Component   Weight  

Rotor body  10 tons 

Vacuum shield  12 tons 

Stator teeth   16 tons 

Rotor coil  2 tons 

Magnetic shield  16 tons 

Stator coil  4 tons 

Page 35: EE491/492 Design Document Superconducting …isusgwt.weebly.com/uploads/1/5/5/3/15535852/design...superconducting (HTS) or permanent magnet (PM) generators. 1.2 Project Goals and Deliverables

35  

 

Kiloamp‐meters = rated field current*length of HTS wire 

         = 0.1kA*920000m=92000kAm 

Total cost of YBCO = cost of YBCO per kiloamp‐meter*kiloamp‐meters 

      ($10/kAm)*92000kAm = $920000 

Laminated silicon: 

The price of silicon ($0.995/LB) that was found in metalprices.com was used to find the total 

cost of silicon [33]. 

Total cost of laminated silicon = ($0.995/LB)*16 ton = $ 318400 

Total cost of the active materials = $1436166 

Here is a table that includes our cost analysis for 10 HTSG generator: