ee101_opamp_1

Upload: ganeshiitb

Post on 17-Oct-2015

16 views

Category:

Documents


1 download

DESCRIPTION

Op amp basic knowledge

TRANSCRIPT

  • 5/27/2018 ee101_opamp_1

    1/85

    EE101: Op Amp circuits (Part 1)

    M. B. [email protected]

    Department of Electrical EngineeringIndian Institute of Technology Bombay

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    2/85

    Op Amps: introduction

    * The Operational Amplifier (Op Amp) is a versatile building block that can beused for realizing several electronic circuits.

    M. B. Patil, IIT Bombay

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    3/85

    Op Amps: introduction

    * The Operational Amplifier (Op Amp) is a versatile building block that can beused for realizing several electronic circuits.

    * The use of Op Amps frees the user from cumbersome details such as transistorbiasing and coupling capacitors.

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    4/85

    Op Amps: introduction

    * The Operational Amplifier (Op Amp) is a versatile building block that can beused for realizing several electronic circuits.

    * The use of Op Amps frees the user from cumbersome details such as transistorbiasing and coupling capacitors.

    * The characteristics of an Op Amp are nearly ideal Op Amp circuits can be

    expected to perform as per theoretical design in most cases.

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    5/85

    Op Amps: introduction

    * The Operational Amplifier (Op Amp) is a versatile building block that can beused for realizing several electronic circuits.

    * The use of Op Amps frees the user from cumbersome details such as transistorbiasing and coupling capacitors.

    * The characteristics of an Op Amp are nearly ideal Op Amp circuits can be

    expected to perform as per theoretical design in most cases.* Amplifiers built with Op Amps work with DC input voltages as well useful in

    sensor applications (e.g., temperature, pressure)

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    6/85

    Op Amps: introduction

    * The Operational Amplifier (Op Amp) is a versatile building block that can beused for realizing several electronic circuits.

    * The use of Op Amps frees the user from cumbersome details such as transistorbiasing and coupling capacitors.

    * The characteristics of an Op Amp are nearly ideal Op Amp circuits can beexpected to perform as per theoretical design in most cases.

    * Amplifiers built with Op Amps work with DC input voltages as well useful insensor applications (e.g., temperature, pressure)

    * The user can generally carry out circuit design without a thorough knowledge ofthe intricate details (next slide) of an Op Amp. This makes the design processsimple.

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    7/85

    Op Amps: introduction

    * The Operational Amplifier (Op Amp) is a versatile building block that can beused for realizing several electronic circuits.

    * The use of Op Amps frees the user from cumbersome details such as transistorbiasing and coupling capacitors.

    * The characteristics of an Op Amp are nearly ideal Op Amp circuits can beexpected to perform as per theoretical design in most cases.

    * Amplifiers built with Op Amps work with DC input voltages as well useful insensor applications (e.g., temperature, pressure)

    * The user can generally carry out circuit design without a thorough knowledge ofthe intricate details (next slide) of an Op Amp. This makes the design processsimple.

    * However, as Einstein has said, we should make everything as simple as possible,but not simpler. need to know where the ideal world ends, and the real onebegins.

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    8/85

    Op Amp 741

    OUT

    offset adjust

    Q2Q1

    Q3 Q4

    Q5 Q6

    Q7

    Q8

    Q9

    Q10

    Q11

    Q12

    Q13 Q14

    Q15

    Q16

    Q17

    Q18

    Q19

    Q20

    Q21

    Q23

    Q22

    Q24R1 R2R3

    R4

    R6

    R7

    R8R9

    R10

    R5

    OUT

    CC

    SymbolActual circuit

    V

    CC

    VEE

    VEE

    VCC

    +

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    9/85

    Op Amp: equivalent circuit

    OUT

    Vo VoVi ViAV Vi AV Vi

    Ro

    Ri

    VEE

    VCC

    M. B. Patil, IIT Bombay

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    10/85

    Op Amp: equivalent circuit

    OUT

    Vo VoVi ViAV Vi AV Vi

    Ro

    Ri

    VEE

    VCC

    * The external resistances ( a few k) are generally much larger than Ro andmuch smaller than Ri we can assume Ri , Ro 0 without significantlyaffecting the analysis.

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    11/85

    Op Amp: equivalent circuit

    OUT

    Vo VoVi ViAV Vi AV Vi

    Ro

    Ri

    VEE

    VCC

    * The external resistances ( a few k) are generally much larger than Ro andmuch smaller than Ri we can assume Ri , Ro 0 without significantlyaffecting the analysis.

    * VCC andVEE ( 5 V to 15 V) must be supplied; an Op Amp will not workwithout them!

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    12/85

    Op Amp: equivalent circuit

    OUT

    Vo VoVi ViAV Vi AV Vi

    Ro

    Ri

    VEE

    VCC

    * The external resistances ( a few k) are generally much larger than Ro andmuch smaller than Ri we can assume Ri , Ro 0 without significantlyaffecting the analysis.

    * VCC andVEE ( 5 V to 15 V) must be supplied; an Op Amp will not workwithout them!

    In Op Amp circuits, the supply voltages are often not shown explicitly.

    M. B. Patil, IIT Bombay

    http://find/
  • 5/27/2018 ee101_opamp_1

    13/85

    Op Amp: equivalent circuit

    OUT

    Vo VoVi ViAV Vi AV Vi

    Ro

    Ri

    VEE

    VCC

    * The external resistances ( a few k) are generally much larger than Ro andmuch smaller than Ri we can assume Ri , Ro 0 without significantlyaffecting the analysis.

    * VCC andVEE ( 5 V to 15 V) must be supplied; an Op Amp will not workwithout them!

    In Op Amp circuits, the supply voltages are often not shown explicitly.

    *Parameter Ideal Op Amp 741

    AV 105 (100 dB)

    Ri 2 M

    Ro 0 75

    M. B. Patil, IIT Bombay

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    14/85

    Op Amp: equivalent circuit

    OUT

    10

    10

    5

    0

    5

    10

    10

    5

    0

    5

    linearsaturation saturation

    saturation

    linear

    saturation

    05 50.2 0.1 0 0.1 0.2

    Vo VoVi ViAVVi AVVi

    Ro

    RiVEE

    VCC

    Vo

    (V)

    Vi(V)Vi(mV)

    Vo

    (V)

    Vsat

    Vsat

    slope= AV

    M. B. Patil, IIT Bombay

    O A i l i i

    http://find/
  • 5/27/2018 ee101_opamp_1

    15/85

    Op Amp: equivalent circuit

    OUT

    10

    10

    5

    0

    5

    10

    10

    5

    0

    5

    linearsaturation saturation

    saturation

    linear

    saturation

    05 50.2 0.1 0 0.1 0.2

    Vo VoVi ViAVVi AVVi

    Ro

    RiVEE

    VCC

    Vo

    (V)

    Vi(V)Vi(mV)

    Vo

    (V)

    Vsat

    Vsat

    slope= AV

    * The output voltage Vo is limited to Vsat, where Vsat 1.5 V less than VCC.

    M. B. Patil, IIT Bombay

    O A i l i i

    http://find/
  • 5/27/2018 ee101_opamp_1

    16/85

    Op Amp: equivalent circuit

    OUT

    10

    10

    5

    0

    5

    10

    10

    5

    0

    5

    linearsaturation saturation

    saturation

    linear

    saturation

    05 50.2 0.1 0 0.1 0.2

    Vo VoVi ViAVVi AVVi

    Ro

    RiVEE

    VCC

    Vo

    (V)

    Vi(V)Vi(mV)

    Vo

    (V)

    Vsat

    Vsat

    slope= AV

    * The output voltage Vo is limited to Vsat, where Vsat 1.5 V less than VCC.

    * For Vsat

  • 5/27/2018 ee101_opamp_1

    17/85

    Op Amp circuits

    OUT

    10

    10

    5

    0

    5 saturation

    linear

    saturation

    05 5

    VoViAVVi

    Ro

    Ri

    VEE

    VCC

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    M. B. Patil, IIT Bombay

    Op Amp circ its

    http://find/
  • 5/27/2018 ee101_opamp_1

    18/85

    Op Amp circuits

    OUT

    10

    10

    5

    0

    5 saturation

    linear

    saturation

    05 5

    VoViAVVi

    Ro

    Ri

    VEE

    VCC

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    * Broadly, Op Amp circuits can be divided into two categories:

    M. B. Patil, IIT Bombay

    Op Amp circuits

    http://find/
  • 5/27/2018 ee101_opamp_1

    19/85

    Op Amp circuits

    OUT

    10

    10

    5

    0

    5 saturation

    linear

    saturation

    05 5

    VoViAVVi

    Ro

    Ri

    VEE

    VCC

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    * Broadly, Op Amp circuits can be divided into two categories:

    - Op Amp operating in the linear region

    M. B. Patil, IIT Bombay

    Op Amp circuits

    http://find/
  • 5/27/2018 ee101_opamp_1

    20/85

    Op Amp circuits

    OUT

    10

    10

    5

    0

    5 saturation

    linear

    saturation

    05 5

    VoViAVVi

    Ro

    Ri

    VEE

    VCC

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    * Broadly, Op Amp circuits can be divided into two categories:

    - Op Amp operating in the linear region

    - Op Amp operating in the saturation region

    M. B. Patil, IIT Bombay

    Op Amp circuits

    http://find/
  • 5/27/2018 ee101_opamp_1

    21/85

    Op Amp circuits

    OUT

    10

    10

    5

    0

    5 saturation

    linear

    saturation

    05 5

    VoViAVVi

    Ro

    Ri

    VEE

    VCC

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    * Broadly, Op Amp circuits can be divided into two categories:

    - Op Amp operating in the linear region

    - Op Amp operating in the saturation region

    * Whether an Op Amp in a given circuit will operate in linear or saturation region

    depends on

    M. B. Patil, IIT Bombay

    Op Amp circuits

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    22/85

    Op Amp circuits

    OUT

    10

    10

    5

    0

    5 saturation

    linear

    saturation

    05 5

    VoViAVVi

    Ro

    Ri

    VEE

    VCC

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    * Broadly, Op Amp circuits can be divided into two categories:

    - Op Amp operating in the linear region

    - Op Amp operating in the saturation region

    * Whether an Op Amp in a given circuit will operate in linear or saturation region

    depends on

    - input voltage magnitude

    M. B. Patil, IIT Bombay

    Op Amp circuits

    http://find/
  • 5/27/2018 ee101_opamp_1

    23/85

    Op Amp circuits

    OUT

    10

    10

    5

    0

    5

    saturation

    linear

    saturation

    05 5

    VoViAVVi

    Ro

    Ri

    VEE

    VCC

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    * Broadly, Op Amp circuits can be divided into two categories:

    - Op Amp operating in the linear region

    - Op Amp operating in the saturation region

    * Whether an Op Amp in a given circuit will operate in linear or saturation region

    depends on

    - input voltage magnitude

    - type of feedback (negative or positive)

    (We will take a qualitative look at feedback later.)

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    24/85

    Op Amp circuits (linear region)

    OUT

    10

    10

    5

    0

    5

    saturation

    linear

    saturation

    05 5

    VoVi

    iin

    AVVi

    Ro

    VEE

    VCC

    Ri

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    25/85

    Op Amp circuits (linear region)

    OUT

    10

    10

    5

    0

    5

    saturation

    linear

    saturation

    05 5

    VoVi

    iin

    AVVi

    Ro

    VEE

    VCC

    Ri

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    In the linear region,

    * V+ V =Vo/AV, which is very small

    V+ V

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    26/85

    p p ( g )

    OUT

    10

    10

    5

    0

    5

    saturation

    linear

    saturation

    05 5

    VoVi

    iin

    AVVi

    Ro

    VEE

    VCC

    Ri

    V

    sat

    Vsat

    Vo

    (V)

    Vi(V)

    In the linear region,

    * V+ V =Vo/AV, which is very small

    V+ V

    * Since Ri is typically much larger than other resistances in the circuit,we can assume Ri .

    iin 0

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    27/85

    p p ( g )

    OUT

    10

    10

    5

    0

    5

    saturation

    linear

    saturation

    05 5

    VoVi

    iin

    AVVi

    Ro

    VEE

    VCC

    Ri

    Vsat

    Vsat

    Vo

    (V)

    Vi(V)

    In the linear region,

    * V+ V =Vo/AV, which is very small

    V+ V

    * Since Ri is typically much larger than other resistances in the circuit,we can assume Ri .

    iin 0

    These two golden rules enable us to understand several Op Amp circuits.

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    28/85

    ( g )

    ii

    RL

    R2

    R1Vi

    Vo

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    29/85

    ii

    RL

    R2

    R1Vi

    Vo

    i1

    Since V+ V

    , V

    0 V i1 = (Vi 0)/R=Vi/R.(The non-inverting input is at realground here, and the inverting input is atvirtualground.)

    Op Amp circuits (linear region)

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    30/85

    ii

    RL

    R2

    R1Vi

    Vo

    i1

    Since V+ V

    , V

    0 V i1 = (Vi 0)/R=Vi/R.(The non-inverting input is at realground here, and the inverting input is atvirtualground.)

    Since ii(current entering the Op Amp) is zero, i1 goes through R2.

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    31/85

    ii

    RL

    R2

    R1Vi

    Vo

    i1

    Since V+ V

    , V

    0 V i1 = (Vi 0)/R=Vi/R.(The non-inverting input is at realground here, and the inverting input is atvirtualground.)

    Since ii(current entering the Op Amp) is zero, i1 goes through R2.

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    32/85

    ii

    RL

    R2

    R1Vi

    Vo

    i1

    SinceV

    + V

    ,V

    0V

    i1 = (

    Vi 0)/

    R=

    Vi/

    R.

    (The non-inverting input is at realground here, and the inverting input is atvirtualground.)

    Since ii(current entering the Op Amp) is zero, i1 goes through R2.

    Vo= V i1R2 = 0

    Vi

    R1

    R2 =

    R2

    R1

    Vi.

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    33/85

    ii

    RL

    R2

    R1Vi

    Vo

    i1

    SinceV

    + V

    ,V

    0V

    i1 = (

    Vi 0)/

    R=

    Vi/

    R.

    (The non-inverting input is at realground here, and the inverting input is atvirtualground.)

    Since ii(current entering the Op Amp) is zero, i1 goes through R2.

    Vo= V i1R2 = 0

    Vi

    R1

    R2 =

    R2

    R1

    Vi.

    The circuit is called an inverting amplifier.

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    34/85

    ii

    RL

    R2

    R1Vi

    Vo

    i1

    Since V+ V, V 0 V i

    1= (V

    i 0)/R=V

    i/R.

    (The non-inverting input is at realground here, and the inverting input is atvirtualground.)

    Since ii(current entering the Op Amp) is zero, i1 goes through R2.

    Vo= V i1R2 = 0

    Vi

    R1

    R2 =

    R2

    R1

    Vi.

    The circuit is called an inverting amplifier.Where does the current go?

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    35/85

    ii

    RL

    R2

    R1Vi

    Vo

    i1

    ii

    RL

    R2

    R1

    i1

    Vi

    Vo

    Since V+ V, V 0 V i

    1= (V

    i 0)/R=V

    i/R.

    (The non-inverting input is at realground here, and the inverting input is atvirtualground.)

    Since ii(current entering the Op Amp) is zero, i1 goes through R2.

    Vo= V i1R2 = 0

    Vi

    R1

    R2 =

    R2

    R1

    Vi.

    The circuit is called an inverting amplifier.Where does the current go?

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    36/85

    0

    5

    5

    1 k

    10 k

    0 0.5 1 1.5 2

    t (msec)

    RL

    R2

    R1

    Vm = 0.5V

    f= 1kHz

    Vi

    Vo Vi

    Vo

    Vi,

    Vo

    (Volts)

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    37/85

    0

    5

    5

    1 k

    10 k

    0 0.5 1 1.5 2

    t (msec)

    RL

    R2

    R1

    Vm = 0.5V

    f= 1kHz

    Vi

    Vo Vi

    Vo

    Vi,

    Vo

    (Volts)

    * The gain of the inverting amplifier is R2/R1. It is called the closed-loop gain(to distinguish it from the open-loop gain of the Op Amp which is 105).

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    38/85

    0

    5

    5

    1 k

    10 k

    0 0.5 1 1.5 2

    t (msec)

    RL

    R2

    R1

    Vm = 0.5V

    f= 1kHz

    Vi

    Vo Vi

    Vo

    Vi,

    Vo

    (Volts)

    * The gain of the inverting amplifier is R2/R1. It is called the closed-loop gain(to distinguish it from the open-loop gain of the Op Amp which is 105).

    * The gain can be adjusted simply by changing R1 orR2!

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    39/85

    0

    5

    5

    1 k

    10 k

    0 0.5 1 1.5 2t (msec)

    RL

    R2

    R1

    Vm = 0.5V

    f= 1kHz

    Vi

    Vo Vi

    Vo

    Vi,

    Vo

    (Volts)

    * The gain of the inverting amplifier is R2/R1. It is called the closed-loop gain(to distinguish it from the open-loop gain of the Op Amp which is 105).

    * The gain can be adjusted simply by changing R1 orR2!

    * For the common-emitter amplifier, on the other hand, the gain gm(RC RL)depends on how the BJT is biased (since gm depends on IC).

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    40/85

    0

    5

    5

    1 k

    10 k

    0 0.5 1 1.5 2t (msec)

    RL

    R2

    R1

    Vm = 0.5V

    f= 1kHz

    Vi

    Vo Vi

    Vo

    Vi,

    Vo

    (Volts)

    * The gain of the inverting amplifier is R2/R1. It is called the closed-loop gain(to distinguish it from the open-loop gain of the Op Amp which is 105).

    * The gain can be adjusted simply by changing R1 orR2!

    * For the common-emitter amplifier, on the other hand, the gain gm(RC RL)depends on how the BJT is biased (since gm depends on IC).

    (SEQUEL file: ee101 inv amp 1.sqproj)

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    41/85

    15

    0

    15

    1 k

    10 k

    0 0.5 1 1.5 2

    t (msec)

    R

    L

    R2

    R1Vi

    Vm = 2V

    f= 1kHz

    Vo

    Vo

    ViVi,

    Vo

    (Volts)

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    42/85

    15

    0

    15

    1 k

    10 k

    0 0.5 1 1.5 2

    t (msec)

    R

    L

    R2

    R1Vi

    Vm = 2V

    f= 1kHz

    Vo

    Vo

    ViVi,

    Vo

    (Volts)

    * The output voltage is limited to Vsat.

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    43/85

    15

    0

    15

    1 k

    10 k

    0 0.5 1 1.5 2

    t (msec)

    R

    L

    R2

    R1Vi

    Vm = 2V

    f= 1kHz

    Vo

    Vo

    ViVi,

    Vo

    (Volts)

    * The output voltage is limited to Vsat.

    * Vsat

    is 1.5 V less than the supply voltageVCC

    .

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    44/85

    10 k

    1 k

    0 40 806020

    0

    10

    10

    RL

    R2

    R1Vi

    Vm = 1 V

    f= 25kHz

    Vo

    t (sec)

    Vi

    Vo

    Vo(expected)

    Vi,

    Vo

    (Volts)

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    45/85

    10 k

    1 k

    0 40 806020

    0

    10

    10

    RL

    R2

    R1Vi

    Vm = 1 V

    f= 25kHz

    Vo

    t (sec)

    Vi

    Vo

    Vo(expected)

    Vi,

    Vo

    (Volts)

    * If the signal frequency is too high, a practical Op Amp cannot keep up with theinput due to its slew rate limitation.

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    46/85

    10 k

    1 k

    0 40 806020

    0

    10

    10

    RL

    R2

    R1Vi

    Vm = 1 V

    f= 25kHz

    Vo

    t (sec)

    Vi

    Vo

    Vo(expected)

    Vi,

    Vo

    (Volts)

    * If the signal frequency is too high, a practical Op Amp cannot keep up with theinput due to its slew rate limitation.

    * The slew rate of an Op Amp is the maximum rate at which the Op Amp outputcan rise (or fall).

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    47/85

    10 k

    1 k

    0 40 806020

    0

    10

    10

    RL

    R2

    R1Vi

    Vm = 1 V

    f= 25kHz

    Vo

    t (sec)

    Vi

    Vo

    Vo(expected)

    Vi,

    Vo

    (Volts)

    * If the signal frequency is too high, a practical Op Amp cannot keep up with theinput due to its slew rate limitation.

    * The slew rate of an Op Amp is the maximum rate at which the Op Amp outputcan rise (or fall).

    * For the 741, the slew rate is 0.5 V/sec.

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    48/85

    10 k

    1 k

    0 40 806020

    0

    10

    10

    RL

    R2

    R1Vi

    Vm = 1 V

    f= 25kHz

    Vo

    t (sec)

    Vi

    Vo

    Vo(expected)

    Vi,

    Vo

    (Volts)

    * If the signal frequency is too high, a practical Op Amp cannot keep up with theinput due to its slew rate limitation.

    * The slew rate of an Op Amp is the maximum rate at which the Op Amp outputcan rise (or fall).

    * For the 741, the slew rate is 0.5 V/sec.

    (SEQUEL file: ee101 inv amp 2.sqproj)

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    49/85

    Circuit 1 Circuit 2

    RL

    RL

    R2 R2

    R1 R1Vi Vi

    Vo Vo

    What if the + (non-inverting) and (inverting) inputs of the Op Amp are

    interchanged?

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    50/85

    Circuit 1 Circuit 2

    RL

    RL

    R2 R2

    R1 R1Vi Vi

    Vo Vo

    What if the + (non-inverting) and (inverting) inputs of the Op Amp are

    interchanged?

    Our previous analysis would once again give us Vo= R2

    R1Vi.

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    51/85

    Circuit 1 Circuit 2

    RL

    RL

    R2 R2

    R1 R1Vi Vi

    Vo Vo

    What if the + (non-inverting) and (inverting) inputs of the Op Amp are

    interchanged?

    Our previous analysis would once again give us Vo= R2

    R1Vi.

    However, from Circuit 1 to Circuit 2, the nature of the feedback changes fromnegative to positive.

    Our assumption that the Op Amp is working in the linear region does not hold for

    Circuit 2, and Vo= R2

    R1Vidoes not apply any more.

    M. B. Patil, IIT Bombay

    Op Amp circuits: inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    52/85

    Circuit 1 Circuit 2

    RL

    RL

    R2 R2

    R1 R1Vi Vi

    Vo Vo

    What if the + (non-inverting) and (inverting) inputs of the Op Amp are

    interchanged?

    Our previous analysis would once again give us Vo= R2

    R1Vi.

    However, from Circuit 1 to Circuit 2, the nature of the feedback changes fromnegative to positive.

    Our assumption that the Op Amp is working in the linear region does not hold for

    Circuit 2, and Vo= R2

    R1Vidoes not apply any more.

    (Circuit 2 is also useful, and we will discuss it later.)

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    53/85

    RL

    R2

    R1

    i1

    Vi

    Vo

    * V+ V =Vi

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    54/85

    RL

    R2

    R1

    i1

    Vi

    Vo

    * V+ V =Vi

    i1 = (0 Vi)/R1 = Vi/R1.

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    55/85

    RL

    R2

    R1

    i1

    Vi

    Vo

    * V+ V =Vi

    i1 = (0 Vi)/R1 = Vi/R1.

    * Vo =V+ i1R2 = Vi

    Vi

    R1

    R2 =Vi

    1 +

    R2

    R1

    .

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    56/85

    RL

    R2

    R1

    i1

    Vi

    Vo

    * V+ V =Vi

    i1 = (0 Vi)/R1 = Vi/R1.

    * Vo =V+ i1R2 = Vi

    Vi

    R1

    R2 =Vi

    1 +

    R2

    R1

    .

    * This circuit is known as the non-inverting amplifier.

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    57/85

    RL

    R2

    R1

    i1

    Vi

    Vo

    * V+ V =Vi

    i1 = (0 Vi)/R1 = Vi/R1.

    * Vo =V+ i1R2 = Vi

    Vi

    R1

    R2 =Vi

    1 +

    R2

    R1

    .

    * This circuit is known as the non-inverting amplifier.* Again, interchanging + and changes the nature of the feedback from negative

    to positive, and the circuit operation becomes completely different.

    M. B. Patil, IIT Bombay

    Inverting or non-inverting?

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    58/85

    Inverting amplifier

    Noninverting amplifier

    RL

    RL

    R2

    R2

    R1

    R1

    Vs

    Vs

    RL

    RL

    Vs

    Vs

    R1

    R2i1

    R1

    R2

    Vo

    Vo

    Vi

    Vi

    AVVi

    AVVi

    Ro

    Ro

    Ri

    Ri

    Vo = R2

    R1

    Vs

    Vo =

    1+

    R2

    R1

    Vs

    * If the sign of the output voltage is not a concern, which configuration should bepreferred?

    M. B. Patil, IIT Bombay

    Inverting or non-inverting?

    http://find/
  • 5/27/2018 ee101_opamp_1

    59/85

    Inverting amplifier

    Noninverting amplifier

    RL

    RL

    R2

    R2

    R1

    R1

    Vs

    Vs

    RL

    RL

    Vs

    Vs

    R1

    R2i1

    R1

    R2

    Vo

    Vo

    Vi

    Vi

    AVVi

    AVVi

    Ro

    Ro

    Ri

    Ri

    Vo = R2

    R1

    Vs

    Vo =

    1+

    R2

    R1

    Vs

    * If the sign of the output voltage is not a concern, which configuration should bepreferred?

    * For the inverting amplifier, since V 0 V, i1 = Vs/R1 Rin =Vs/i1 =R1.

    M. B. Patil, IIT Bombay

    Inverting or non-inverting?

    http://find/
  • 5/27/2018 ee101_opamp_1

    60/85

    Inverting amplifier

    Noninverting amplifier

    RL

    RL

    R2

    R2

    R1

    R1

    Vs

    Vs

    RL

    RL

    Vs

    Vs

    R1

    R2i1

    R1

    R2

    Vo

    Vo

    Vi

    Vi

    AVVi

    AVVi

    Ro

    Ro

    Ri

    Ri

    Vo = R2

    R1

    Vs

    Vo =

    1+

    R2

    R1

    Vs

    * If the sign of the output voltage is not a concern, which configuration should bepreferred?

    * For the inverting amplifier, since V 0 V, i1 = Vs/R1 Rin =Vs/i1 =R1.

    * For the non-inverting amplifier, Rin Riof the Op Amp, which is a few M.

    Non-inverting amplifier is better if a large Rin is required.

    M. B. Patil, IIT Bombay

    Non-inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    61/85

    RL

    RL

    R2

    R1

    Vi

    Vo

    Vi

    Vo

    ConsiderR1 , R2 0 .

    M. B. Patil, IIT Bombay

    Non-inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    62/85

    RL

    RL

    R2

    R1

    Vi

    Vo

    Vi

    Vo

    ConsiderR1 , R2 0 .

    Vo

    Vi 1 +

    R2

    R1 1 , i.e.,Vo=Vi.

    M. B. Patil, IIT Bombay

    Non-inverting amplifier

    http://goforward/http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    63/85

    RL

    RL

    R2

    R1

    Vi

    Vo

    Vi

    Vo

    ConsiderR1 , R2 0 .

    Vo

    Vi 1 +

    R2

    R1 1 , i.e.,Vo=Vi.

    This circuit is known as unity-gain amplifier/voltage follower/buffer.

    M. B. Patil, IIT Bombay

    Non-inverting amplifier

    http://find/
  • 5/27/2018 ee101_opamp_1

    64/85

    RL

    RL

    R2

    R1

    Vi

    Vo

    Vi

    Vo

    ConsiderR1 , R2 0 .

    Vo

    Vi 1 +

    R2

    R1 1 , i.e.,Vo=Vi.

    This circuit is known as unity-gain amplifier/voltage follower/buffer.

    What has been achieved?

    M. B. Patil, IIT Bombay

    Loading effects

    http://find/
  • 5/27/2018 ee101_opamp_1

    65/85

    Vs RL

    Rs

    VoViAV Vi

    Ro

    Ri

    Consider an amplifier of gain AV. We would like to have Vo=AV Vs.

    M. B. Patil, IIT Bombay

    Loading effects

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    66/85

    Vs RL

    Rs

    VoViAV Vi

    Ro

    Ri

    Consider an amplifier of gain AV. We would like to have Vo=AV Vs.

    However, the actual output voltage is,

    Vo= RL

    Ro+RL AV Vi = AV

    RL

    Ro+RL

    Ri

    Ri+RsVs.

    M. B. Patil, IIT Bombay

    Loading effects

    http://find/
  • 5/27/2018 ee101_opamp_1

    67/85

    Vs RL

    Rs

    VoViAV Vi

    Ro

    Ri

    Consider an amplifier of gain AV. We would like to have Vo=AV Vs.

    However, the actual output voltage is,

    Vo= RL

    Ro+RL AV Vi = AV

    RL

    Ro+RL

    Ri

    Ri+RsVs.

    To obtain the desired Vo, we need Ri and Ro 0 .

    M. B. Patil, IIT Bombay

    Loading effects

    http://find/
  • 5/27/2018 ee101_opamp_1

    68/85

    Vs RL

    Rs

    VoViAV Vi

    Ro

    Ri

    Consider an amplifier of gain AV. We would like to have Vo=AV Vs.

    However, the actual output voltage is,

    Vo= RL

    Ro+RL AV Vi = AV

    RL

    Ro+RL

    Ri

    Ri+RsVs.

    To obtain the desired Vo, we need Ri and Ro 0 .

    The buffer (voltage follower) provides this feature (next slide).

    M. B. Patil, IIT Bombay

    Op Amp buffer

    http://find/
  • 5/27/2018 ee101_opamp_1

    69/85

    A

    B

    Op Amp

    RL

    Vs

    RL

    Vs

    VoViAV Vi

    Ro

    R

    RiVo

    * The current drawn from the source (Vs) is small (since Riof the Op Amp islarge) the buffer has a large input resistance.

    M. B. Patil, IIT Bombay

    Op Amp buffer

    http://find/
  • 5/27/2018 ee101_opamp_1

    70/85

    A

    B

    Op Amp

    RL

    Vs

    RL

    Vs

    VoViAV Vi

    Ro

    R

    RiVo

    * The current drawn from the source (Vs) is small (since Riof the Op Amp islarge) the buffer has a large input resistance.

    * As we have seen earlier, AV is large Vi 0 V VA = VB =Vs.

    M. B. Patil, IIT Bombay

    Op Amp buffer

    http://find/
  • 5/27/2018 ee101_opamp_1

    71/85

    A

    B

    Op Amp

    RL

    Vs

    RL

    Vs

    VoViAV Vi

    Ro

    R

    RiVo

    * The current drawn from the source (Vs) is small (since Riof the Op Amp islarge) the buffer has a large input resistance.

    * As we have seen earlier, AV is large Vi 0 V VA = VB =Vs.

    * The resistance seen by RL is R

    Ro, which is small the buffer has a smalloutput resistance. (To findR, deactivate the input voltage source (Vs) AVVi= 0 V.)

    M. B. Patil, IIT Bombay

    Op Amp buffer

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    72/85

    amplifier

    buffer

    buffer

    source

    load

    RL

    Vs

    Rs

    ViAVVi

    Ro

    Ri

    Vo2

    i1

    i2

    VoVo1

    M. B. Patil, IIT Bombay

    Op Amp buffer

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    73/85

    amplifier

    buffer

    buffer

    source

    load

    RL

    Vs

    Rs

    ViAVVi

    Ro

    Ri

    Vo2

    i1

    i2

    VoVo1

    Since the buffer has a large input resistance, i1 0 A,

    and V+ (on the source side) = Vs Vo1 = Vs.

    M. B. Patil, IIT Bombay

    Op Amp buffer

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    74/85

    amplifier

    buffer

    buffer

    source

    load

    RL

    Vs

    Rs

    ViAVVi

    Ro

    Ri

    Vo2

    i1

    i2

    VoVo1

    Since the buffer has a large input resistance, i1 0 A,

    and V+ (on the source side) = Vs Vo1 = Vs.

    Similarly, i2 0 A, and Vo2 =AVVs.

    M. B. Patil, IIT Bombay

    Op Amp buffer

    http://find/
  • 5/27/2018 ee101_opamp_1

    75/85

    amplifier

    buffer

    buffer

    source

    load

    RL

    Vs

    Rs

    ViAVVi

    Ro

    Ri

    Vo2

    i1

    i2

    VoVo1

    Since the buffer has a large input resistance, i1 0 A,

    and V+ (on the source side) = Vs Vo1 = Vs.

    Similarly, i2 0 A, and Vo2 =AVVs.

    Finally, Vo= Vo2 =AVVs, as desired, irresepectiveofRS and RL.

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/
  • 5/27/2018 ee101_opamp_1

    76/85

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R2

    i2

    R1 i1

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    http://find/http://goback/
  • 5/27/2018 ee101_opamp_1

    77/85

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R2

    i2

    R1 i1

    V V+ = 0 V i1 = Vi1/R1, i1 = Vi2/R2, i1 =Vi3/R3.

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    V

    http://find/
  • 5/27/2018 ee101_opamp_1

    78/85

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R

    2

    i2

    R1 i1

    V V+ = 0 V i1 = Vi1/R1, i1 = Vi2/R2, i1 =Vi3/R3.

    i=i1+ i2+ i3 =

    Vi1

    R1+

    Vi2

    R2+

    Vi3

    R3

    .

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    V

    http://find/
  • 5/27/2018 ee101_opamp_1

    79/85

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R

    2

    i2

    R1 i1

    V V+ = 0 V i1 = Vi1/R1, i1 = Vi2/R2, i1 =Vi3/R3.

    i=i1+ i2+ i3 =

    Vi1

    R1+

    Vi2

    R2+

    Vi3

    R3

    .

    Because of the large input resistance of the Op Amp, ii 0 if = i, which gives,

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    Vi3

    http://find/
  • 5/27/2018 ee101_opamp_1

    80/85

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R

    2

    i2

    R1 i1

    V V+ = 0 V i1 = Vi1/R1, i1 = Vi2/R2, i1 =Vi3/R3.

    i=i1+ i2+ i3 =

    Vi1

    R1+

    Vi2

    R2+

    Vi3

    R3

    .

    Because of the large input resistance of the Op Amp, ii 0 if = i, which gives,

    Vo=V if Rf = 0

    Vi1

    R1

    + Vi2

    R2

    + Vi3

    R3

    Rf =

    Rf

    R1

    Vi1+ Rf

    R2

    Vi2+ Rf

    R3

    Vi3

    ,

    i.e., Vo is a weighted sum ofVi1, Vi2, Vi3.

    M. B. Patil, IIT Bombay

    Op Amp circuits (linear region)

    Vi3

    http://find/
  • 5/27/2018 ee101_opamp_1

    81/85

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R

    2

    i2

    R1 i1

    V V+ = 0 V i1 = Vi1/R1, i1 = Vi2/R2, i1 =Vi3/R3.

    i=i1+ i2+ i3 =

    Vi1

    R1+

    Vi2

    R2+

    Vi3

    R3

    .

    Because of the large input resistance of the Op Amp, ii 0 if = i, which gives,

    Vo=V if Rf = 0

    Vi1

    R1

    + Vi2

    R2

    + Vi3

    R3

    Rf =

    Rf

    R1

    Vi1+ Rf

    R2

    Vi2+ Rf

    R3

    Vi3

    ,

    i.e., Vo is a weighted sum ofVi1, Vi2, Vi3.

    IfR1 = R2 = R3 =R , the circuit acts as a summer, giving

    Vo= K(Vi1+ Vi2+ Vi3) with K =Rf/R.

    M. B. Patil, IIT Bombay

    Summer example

    1.2

    V

    http://find/
  • 5/27/2018 ee101_opamp_1

    82/85

    1

    2

    3

    0.6

    0.6

    0

    t (msec)

    0 1 2 3 4

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R2 i2

    R1 i1

    R1= R2= R3= 1 k

    Rf= 2 k

    Vo= 2 (Vi1 + Vi2 + Vi3)

    Vo

    Vi2

    Vi1

    Vi3

    M. B. Patil, IIT Bombay

    Summer example

    1.2

    Vi1

    http://find/
  • 5/27/2018 ee101_opamp_1

    83/85

    1

    2

    3

    0.6

    0.6

    0

    t (msec)

    0 1 2 3 4

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R2 i2

    R1 i1

    R1= R2= R3= 1 k

    Rf= 2 k

    Vo= 2 (Vi1 + Vi2 + Vi3)

    Vo

    Vi2

    Vi1

    Vi3

    * Note that the summer also works with DC inputs. This is true about theinverting and non-inverting amplifiers as well.

    M. B. Patil, IIT Bombay

    Summer example

    1.2

    Vi1

    http://find/
  • 5/27/2018 ee101_opamp_1

    84/85

    1

    2

    3

    0.6

    0.6

    0

    t (msec)

    0 1 2 3 4

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R2 i2

    R1 i1

    R1= R2= R3= 1 k

    Rf= 2 k

    Vo= 2 (Vi1 + Vi2 + Vi3)

    Vo

    Vi2

    Vi1

    Vi3

    * Note that the summer also works with DC inputs. This is true about theinverting and non-inverting amplifiers as well.

    * Op Amps make life simpler! Think of adding voltages in any other way.

    M. B. Patil, IIT Bombay

    Summer example

    1.2

    Vi1

    http://find/
  • 5/27/2018 ee101_opamp_1

    85/85

    1

    2

    3

    0.6

    0.6

    0

    t (msec)

    0 1 2 3 4

    RL

    Vo

    if

    iii

    Vi1

    Vi2

    Vi3

    Rf

    R3 i3

    R2 i2

    R1 i1

    R1= R2= R3= 1 k

    Rf= 2 k

    Vo= 2 (Vi1 + Vi2 + Vi3)

    Vo

    Vi2

    Vi1

    Vi3

    * Note that the summer also works with DC inputs. This is true about theinverting and non-inverting amplifiers as well.

    * Op Amps make life simpler! Think of adding voltages in any other way.

    (SEQUEL file: ee101 summer.sqproj)

    M. B. Patil, IIT Bombay

    http://find/