ee-382m vlsi–ii flip-flops -...

48
The University of Texas at Austin EE 382M Class Notes Page # 1 / 31 Gian Gerosa, Intel Fall 2008 EE-382M VLSI–II FLIP-FLOPS

Upload: vanngoc

Post on 14-Sep-2018

232 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 1 / 31

Gian Gerosa, IntelFall 2008

EE-382M

VLSI–II

FLIP-FLOPS

Page 2: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 2 / 31

OUTLINE

• Trends

• LATCH Operation

• FLOP Timing Diagrams & Characterization

• Transfer-Gate Master-Slave FLIP-FLOP

• Merged Functions

• Clock Skew

• Other Topologies

• SCAN

• References

• Homework Discussion

Page 3: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 3 / 31

Where are we going?

• Trends in high-performance systems

– Higher clock frequency leads to …..

– Deeper pipelines or more parallelism leads to ….

– More transistors which leads to ….

– More sequentials (FLOP or LATCH) which leads to ….

• Consequences

– Increased flip-flop overhead• Cycle time in 12-15 stage pipeline uArchitectures ~22 FO4 delays

• FLOP overhead ~3 FO4 delay (D-Q delay) ~14%

– Clock uncertainty (jitter & skew) also affects cycle time

– Clock power

Page 4: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 4 / 31

Why work on Sequentials ?

In a 3.3 GHZ processor (90n CMOS) cycle=300pS

- Typical D-Q delay is ~ 90ps.

- If one can design a faster sequential, say D-Q delay of ~ 60pS, this represents ~10% processor performance improvement.

- If in addition one can absorb 15ps of clock uncertainties and/or embed one level of logic, this will yield an additional 5-10% processor performance improvement.

- Attaining a 10-20% performance improvement via architecture enhancements is very expensive (area, power, complexity, etc.)!

Page 5: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 5 / 31

Basic LATCH Operation

clock

Dout

Din

Transparent-lowclock

Dout

Din

Transparent-high

clock

transparent opaque transparent opaque

Din

Dout

clock

Din

Dout

Tsu Th Tsu Th

Tdq Tdq

Page 6: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 6 / 31

Difference between a LATCH and a FLOP

Data Q

Clock

Q

Clock

Data

F-F

Data Q

Clock

Q

Clock

Data

Latch

Edge triggered

Transparent / Opaque

Q ‘follow’s the input DATA

Q only changes at the rising edge of

the clock

Page 7: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 7 / 31

cloc

k

Dout

Din

Building a FLOP with Two Latches

Page 8: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 8 / 31

FLOP Delay

• Sum of setup time and Clk-output delay is the only true

measure of the performance with respect to the system

speed (MAXDELAY)

• Tcycle = Tcq + Tlogic + Tsu + Tskew

• Tlogic contains interconnect delay

D Q

CLK

D Q

CLK

logic

Tcq Tlogic Tsu

N loads

Page 9: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 9 / 31

FLOP Timing Diagrams

Tsu : input setup timeThold : input hold timeTcq : clock to out

Tdata to out = Tsu + Tcq

100 200 300 400 500 600 700 800 900 1000

picoseconds

volts

Din

Dout

Clock

Tsu Thold

Tcq

Page 10: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 10 / 31

Functional Pass/Failure vs. Tsu and Th

clock Master internal node

fail

pass

fail

pass

clock

Input setup time Input hold time

Page 11: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 11 / 31

-200 -150 -100 -50 0 50 100 150 200 250

Data to Clock (picoseconds)

pico

seco

nds

-250

Tsu

Tdata to out

Thold

Tcq10%

minimum Tcq

Tsu : input setup timeThold : input hold timeTcq : clock to out

Tdata to out = Tsu + Tcq

FLOP Characterization

Page 12: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 12 / 31

MAXDELAY D Q

CLK

D Q

CLK

logicD1Q1 D1’

Q1’

CLK

D1

Q1

D1’

Q1’

Tsu Tsu

Tcq Tcq

Tlogic

Tcycle

Tlogic < Tcycle – (Tcq + Tsu) Tcycle <= Tlogic + Tcq + Tsu or

Page 13: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 13 / 31

MAXDELAYwith Clock Skew

D Q

CLK

D Q

CLK

logicD1Q1 D1’

Q1’

CLK CLK’

Tlogic < Tcycle – (Tcq + Tsu + Tskew)

CLK’

D1

Q1

D1’

Q1’

Tsu

Tsu

Tcq

Tcq

Tcycle

CLKTskew

Tlogic’

Page 14: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 14 / 31

MINDELAY D Q

CLK

D Q

CLK

logicD1Q1 D1’

Q1’

CLK CLK

Tlogic > Thold – Tcq + Tskew

CLK

D1

Q1

D1’

Q1’

Tsu

Tcq

Tcycle

Thold

Tlogic

Page 15: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 15 / 31

DESIGN WINDOW

Thold – Tcq + Tskew < Tlogic

and

Tlogic < Tcycle – (Tcq + Tsu + Tskew)

If Tcq > Thold + Tskew, then MINDELAY hazard is removed since Tlogic >= 0 always.

Page 16: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 16 / 31

T-G Master-Slave FLOP(buffered non-inverting)

cloc

k

Dout

Din

Non time-borrowing

Time borrowing keeps the MASTER open longer by ~ 2 inverter delays;

need to be careful about MINDELAYS

Isolates SLAVE latch timing optimization/sensitivities from

output load.

TIMING:Tsu ~ 1 TG + 2 invertersTh ~ 1 inverterTcq ~ 1 TG + 1 inverter

Page 17: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 17 / 31

Merged Function inverting FLOP

cloc

k

DoutAB

Page 18: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 18 / 31

RESETABLE Master-Slave FLOP (asynchronous)

cloc

k

Dout

Din

Rb

Page 19: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 19 / 31

Clock Skew Impact to Fmax

Tcycle = Tcq + Tlogic + Tsu + Tclock_uncertainty

Tclock_uncertainty = clock skew + clock jitter clock skew = τ1 – τ2 – τ3

Din

Dout

mas

ter

clock

slav

e

mas

ter

clock

slav

e

LC

B local clock bufferL

CB

GLOBAL clock

τ2

τ1 τ3

Page 20: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 20 / 31

Other Circuit Topologies for M-S FLOPS

• C2MOS

• Hybrid Latch Flip-Flop (HLFF)

• Pulse Latch

• In Backup:• True Single-Phase Clock FLOP

• K-6 Dual-Rail ETL

• Semi-Dynamic Flip-Flop (SDFF)

Page 21: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 21 / 31

CLK

CLKB

CLKB

CLK

Din

CLKBCLK

CLKD

Q

CLKB

CLK

CLK

CLKB

C2MOS FLOPS

clk

clk

Robustness to clock slope Low power feedbackPoor driving capability

master

slave

Page 22: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 22 / 31

Hybrid Latch Flip-Flop (HLFF)(AMD K-6, Partovi, ISSCC 1996)

N

Dclk_

Din

Clk

Dout

Page 23: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 23 / 31

Hybrid Latch Flip-Flop (HLFF) waveforms

Clk

Dclk_

N

Din

Dout

valid

valid

valid

TIMING:Sampling Window ~ 3 invertersTsu ~ 0 to slightly negativeTh > sampling windowTcq ~ 2 inverters

Page 24: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 24 / 31

Pulse Latch

Din

Clock pclk

Dout

τ

Page 25: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 25 / 31

Pulse Latch Waveforms

Clock

Pclk

Din

Dout

valid

valid

TIMING:Sampling Window ~ NAND + τTsu ~ 0 to slightly negativeTh > sampling windowTcq ~ 2 inverters

Page 26: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 26 / 31

ACLK

Scan_outScan_in

BC

LK

ACLK

ACLKB

SCAN GADGETin

p

nout

FLOP with SCAN

clock

DoutDin

ACLK

ACLKB

FUNCTIONAL

Page 27: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 27 / 31

A Typical Scan Path

CLK#CLK

ACLK BCLK

QStore_en

CLK#_P

CLK#

CLK

ACLK

BCLK

CLK#

CLK

ACLK

BCLK

CLK#CLK

ACLK BCLK

QStore_en

CLK#_PCLK

ACLK

BCLK

CLK#

CLK

ACLK

BCLK

CLK#

DI

SI DO

SO

Hold_scan FLOPS(non-destructive scan)

scanable FLOPS

scanable Latches

Page 28: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 28 / 31

QUICK AREA and TIMING budgets in 130nm

Inverting FLIP-FLOP:

Area ~ 60 μm2

Tsu ~ 35psTcq ~ 65ps

Total FLOP timing overhead ~ 100ps

Scan Gadget area ~ 35 μm2

TOTAL scan inverting FLOP ~ 95 μm2

This layout does not include scan.

Page 29: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 29 / 31

QUICK AREA and TIMING budgets in 65nm

Inverting FLIP-FLOP:

Area ~ 15 μm2

Tsu ~ ? psTcq ~ ? ps

Total FLOP timing overhead ~ ? ps

Scan Gadget area ~ 9 μm2

TOTAL scan inverting FLOP ~ 24 μm2

input output

0.45 μm

0.25 μm

0.90 μm

0.50 μm

Restof

FLOP

Page 30: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 30 / 31

Design Goals

Characterization:Use worst case Tcq + Tsu for MAXDELAY analysis.Use worst case Thold for MINDELAY analysis.Take into account all sources of power dissipation

Target:Small clock loadShortest Din to Dout direct pathLow-power feedbackSimultaneously optimize both master and slave latchesHigh driving capabilityOptimize speed * power product

while:Minimizing Tsu + Thold (smallest sampling window)Reducing sensitivity to clock slew rate and skewNot allowing floating nodes

Page 31: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 31 / 31

References

1. A. Chandrakasan, W.J. Bowhill, F. Fox, Design of High-Performance Microprocessor Circuits, IEEE Press, New York, 2001. Chapter 11 “Clocked Storage Elements” by Hamid Partovi, pages 207-234.

2. V. G. Oklobdzija, The Computer Engineering Handbook, CRC Press, Boca Raton, Florida, 2002. Chapter 10.2 “Latches and Flip-Flops” by Fabian Klass, pages 10.34-10.69.

3. R. J. Baker, H.W. Li, D.E. Boyce, CMOS Circuit Design, Layout, and Simulation, IEEE Press, New York, 1998. Chapter 13, pages 255-274.

4. V. G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power Aspects, A Wiley-IEEE Press Publication, 264 pages, 2003.

Reference 2 has a very nice treatment of FLOPS/LATCHES, MIN/MAXDELAY, SKEW, etc with plenty of timing diagrams.

Page 32: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 32 / 31

BACKUP

Page 33: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 33 / 31

Transfer-Gate (T-G) Master-Slave FLOP

• Low power feedback

• Un-buffered inputs

– input capacitance depends on the phase of the clock

– over-shoot and under-shoot with long routes

– Wire length must be restricted at the input

• Buffered input addresses above issues

• Low power

• Small clk-output delay, but positive setup

• Easily embedded scan, mux, other simple functions

Page 34: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 34 / 31

Hybrid Latch Flip-Flop Highlights

• Flip-flop features:– single phase clock– edge triggered, on one clock edge

• Latch features: Soft clock edge property– brief transparency, equal to 3 inverter delays– negative setup time– allows slack passing– absorbs skew– minimum delay between flip-flops must be controlled

• Fully static• Possible to incorporate logic

Page 35: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 35 / 31

ATPG Sequence Timing

GCLK

CLK

CLK#

CLK

CLK#

1st System Cycle

2nd System Cycle

2nd

launch

CLK#CLK

ACLK

BCLK

CLK#

CLK

ACLK

BCLK

1st Capture

in Slave

BCLK BCLK

ACLKACLK

Capture at speed in master

STORE_EN

Capture at speed in slave

DI

SI DO

SO

SHIFT_EN

BCLKObserve Master

Aclk, Bclk Freq = 1/16 GCLK

ACLK

DC STUCK @

Transition Fault testing

Page 36: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 36 / 31

Merged Function MUX-FLOP

SelD

_

A

clock

B

C

D

Dout

SelC

_Se

lB_

SelA

_

Page 37: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 37 / 31

Another RESETABLE Master-Slave FLOP (synchronous)

cloc

k

Dout

Din

Rb

Page 38: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 38 / 31

True Single-Phase Clock (TSPC) FLOP

Din

clockDout

X

Y

MASTER PRE-CHARGE SLAVE

Clock power is low; no local inversion required.

Page 39: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 39 / 31

True Single-Phase Clock FLOP Waveforms

TIMING:Tsu ~ 2 invertersTh ~ 2 invertersTcq ~ 3 inverters

clock

X

Din

Dout

valid

valid

Y valid

valid

Page 40: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 40 / 31

Semi-Dynamic Flip-Flop (SDFF)

• Soft edge conditioned by data since first stage is pre-charged - cross-coupled latch is added for robustness

• Small penalty for adding logic• Latch has one transistor less in stack - faster than HLFF, but 1-1 glitch exists

N

K

Dclk

Page 41: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 41 / 31

Semi-Dynamic Flip-Flop Waveforms

TIMING:Sampling Window ~ 2 inverters + 1 NANDTsu ~ 0 to slightly negativeTh > sampling windowTcq ~ 2 inverters

Clk

Dclk

N

D

Q

valid

valid

valid

K valid

Page 42: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 42 / 31

K-6 Dual-Rail ETL

Dclk_

A B

Pch

Determines A, B, Q,and Q_ pulse widths

Page 43: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 43 / 31

Clk

Dclk_

A

D

valid

valid

TIMING:Sampling Window ~ 3 invertersTsu ~ 0 to slightly negativeTh > sampling windowTcq ~ 2 inverters

K-6 Dual-Rail Waveforms

B

Pch

Q valid

Q_ valid

valid

T is determined by 4 inversions

T

Page 44: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 44 / 31

HMK#3 Problem 1.For both Din transitions (0->1 and 1->0), determine the input setup Tsu, input hold Thold, and

clock to out Tcq for the following 4 FLIP FLOPS (a, b, c, d). Use 70ps slew rate (full rail) for Din and clock; use the 130 nm CMOS transistor models. These designs are all driving a 4.2/2.1 inverter.

Show ALL your work; also answer the following questions pertaining to each design:

a. List 3 deficiencies with this design. Hint: look at b, c designs. Will this design work for a cycle time of 450ps? Why or why not?

b. Is the Din input capacitance lower than design a.? What about the clock capacitance?

c. What are the benefits of placing the slave latch off to the side? Is this a time-borrowing FLOP? Is the clock capacitance lower than design b? Any benefit in clocking the master LATCH feedback?

d. This design is a pulsed LATCH. Describe it’s behaviour with timing diagrams; Compared to a traditional FLIP-FLOP scheme, list ONE advantage and ONE disadvantage.

Simulation Tips:• Use HSPICE ic statements to properly initialize these sequential circuits.

Page 45: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 45 / 31

Homework # 3, Problem #1FLOP design A

cloc

k

Din Out4.2

2.118.0

clock

din dout

0.28/0.6

0.13/0.6

1.4

0.7

0.56

0.28

0.28

0.28

0.28/0.6

0.13/0.6

0.28 0.28

Page 46: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 46 / 31

cloc

k

Din Out4.2

2.118

clock

din Dout_b

0.28/0.6

0.13/0.6

1.4

0.7

0.56

0.28

0.560.56

0.28/0.6

0.13/0.6

0.28 0.28

0.56

0.28

0.280.28

Homework # 3, Problem #1FLOP design B

Page 47: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 47 / 31

cloc

k

Din Out4.2

2.118.0

Homework # 4, Problem #2FLOP design C

clock

din Dout_b

0.28/0.6

0.13/0.6

1.4

0.7

0.56

0.28

0.13

0.13

0.28 0.28

0.56

0.28

0.280.28

0.28

0.13

0.13

0.13

0.280.28

0.28

0.28

0.28

0.28

0.28

0.28

Page 48: EE-382M VLSI–II FLIP-FLOPS - users.ece.utexas.eduusers.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_6.pdf · G. Oklobdzija et. al. , Digital System Clocking: High-Performance and Low-Power

The University of Texas at AustinEE 382M Class Notes Page # 48 / 31

Homework # 4, Problem #2FLOP design D

clock

Din Out4.2

2.118.0

pclk

din Dout

0.28/0.6

0.13/0.6

1.4

0.7

0.28

0.13

0.28

0.56

0.28

0.28

0.28

0.13

0.280.56

0.56

0.56

0.13

0.13

0.28

0.13

clock0.13

0.13

0.28

0.13