ee 330 lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/ee 330 lect 23 fall...

65
EE 330 Lecture 23 Small Signal Analysis SS Models for MOSFET SS Models for BJT

Upload: others

Post on 28-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

EE 330

Lecture 23

• Small Signal Analysis– SS Models for MOSFET

– SS Models for BJT

Page 2: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Exam Schedule

Exam 1 Monday Oct 5

Exam 2 Monday October 26

Exam 3 Friday November 20

Page 3: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Comparison of Gains for MOSFET and BJT Circuits

R

Q1

VIN(t)

VOUT

VCC

VEE

BJT MOSFET

R1

VIN(t)

VOUT

VDD

VSS

M1

DQ

VM

SS T

2I RA

V V

CQ 1

VB

t

I RA

V

If IDQR =ICQR1=2V, VSS+VT= -1V, Vt=25mV

0CQ 1

VB

t

I R 2VA - =-8

V 25mV

DQ

VM

SS T

2I R 4VA = - 4

V V -1V

Observe AVB>>AVM

Due to exponential-law rather than square-law model

Review from Last Lecture

Page 4: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Operation with Small-Signal Inputs

• Analysis procedure for these simple circuits was very tedious

• This approach will be unmanageable for even modestly more complicated

circuits

• Faster analysis method is needed !

Review from Last Lecture

Page 5: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-Signal Principle y

x

yQ

xQ

xSS

ySS

Q-point y=f(x)

Q

SS SS

x=x

fy x

x

• Linearized model for the nonlinear function y=f(x)

• Valid in the region of the Q-point

• Will show the small signal model is simply Taylor’s series expansion

of f(x) at the Q-point truncated after first-order terms

Small-Signal Model:

Review from Last Lecture

Page 6: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

“Alternative” Approach to small-signal

analysis of nonlinear networks

Nonlinear

Network

dc Equivalent

Network

Q-point

Values for small-signal parameters

Small-signal (linear)

equivalent network

Small-signal output

Total output

(good approximation)

Review from Last Lecture

Page 7: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-signal and simplified dc equivalent elements

Element ss equivalentSimplified dc

equivalent

VDCVDC

IDC IDC

R RR

dc Voltage Source

dc Current Source

Resistor

VACVACac Voltage Source

ac Current Source IAC IAC

Review from Last Lecture

Page 8: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-signal and simplified dc equivalent elements

C

Large

C

Small

L

Large

L

Small

C

L

Simplified

Simplified

Capacitors

Inductors

MOS

transistors

Diodes

Simplified

Element ss equivalentSimplified dc

equivalent

(MOSFET (enhancement or

depletion), JFET)

Review from Last Lecture

Page 9: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Element ss equivalent

Dependent

Sources

(Linear)

Simplified

Simplified

Bipolar

Transistors

Simplified dc

equivalent

VO=AVVIN IO=AIIIN VO=RTIIN IO=GTVIN

Small-signal and simplified dc equivalent elementsReview from Last Lecture

Page 10: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-Signal Model of BJT and MOSFET

32133

32122

32111

V,,VVfI

V,,VVfI

V,,VVfII1

I2

I3 V1

V2

V3

4-Terminal

Device

Define

3Q33

2Q22

1Q11

II

II

II

i

i

i

3Q33

2Q22

1Q11

VV

VV

VV

v

v

v

Small signal model is that which represents the relationship between the

small signal voltages and the small signal currents

Consider 4-terminal network

Review from Last Lecture

Page 11: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

32133

32122

32111

V,,VVfI

V,,VVfI

V,,VVfI

Nonlinear network characterized by 3 functions each

functions of 3 variables

Consider 4-terminal network

I1

I2

I3 V1

V2

V3

4-Terminal

Device

Review from Last Lecture

Page 12: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

32133

32122

32111

V,,VVfI

V,,VVfI

V,,VVfI

3132121111 vyyy vvi

Nonlinear Model Linear Model at

(alt. small signal model)

VQ

3232221212 vyyy vvi

3332321313 vyyy vvi

QVVj

321iij

V

V,,VVfy

where

Small Signal Model DevelopmentReview from Last Lecture

Page 13: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

QVVj

321iij

V

V,,VVfy

3232221212 vyyy vvi

3332321313 vyyy vvi

3132121111 vyyy vvi

• This is a small-signal model of a 4-terminal network and it is linear

• 9 small-signal parameters characterize the linear 4-terminal network

• Small-signal model parameters dependent upon Q-point !

where

Small Signal Model

Review from Last Lecture

Page 14: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

y11y12V2

V1

i1

y13V3

y22y21V1

V2

i2

y23V3

y33y31V1

V3

i3

y32V2

A small-signal equivalent circuit of a 4-terminal nonlinear network(equivalent circuit because has exactly the same port equations)

QVVj

321iij

V

V,,VVfy

Equivalent circuit is not unique

Equivalent circuit is a three-port network

Page 15: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

32133

32122

32111

V,,VVfI

V,,VVfI

V,,VVfI

4-terminal small-signal network summary

I1

I2

I3 V1

V2

V3

4-Terminal

Device

3232221212 vyyy vvi

3332321313 vyyy vvi

3132121111 vyyy vvi y11y12V2

V1

i1

y13V3

y22y21V1

V2

i2

y23V3

y33y31V1

V3

i3

y32V2

QVVj

321iij

V

V,,VVfy

Small signal model:

Page 16: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-Signal Model

2122

2111

,VVfI

,VVfI

I1

I2

V1

V2

3-Terminal

Device

Define

1 1 1Q

2 2 2Q

I I

I I

i

i 2Q22

1Q11

VV

VV

v

v

Small signal model is that which represents the relationship between the

small signal voltages and the small signal currents

Consider 3-terminal network

Page 17: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-Signal Model

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

, ,

, ,

, ,

g

g

g

i V V V

i V V V

i V V V

I1

I2

I3 V1

V2

V3

4-Terminal

Device

3232221212 Vyyy VVi

3332321313 Vyyy VVi

3132121111 Vyyy VVi

QVVj

321iij

V

V,,VVfy

3

Consider 3-terminal network

Page 18: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-Signal Model

2122

2111

,

,

VVi

VVi

g

g

I1

I2

V1V2

3-Terminal

Device

2221212 VVi yy 2121111 VVi yy

QVVj

21iij

V

,VVfy

y11 y22

y12V2

y21V1

V1 V2

i1i2

A Small Signal Equivalent Circuit

2Q

1Q

V

VV

Consider 3-terminal network

4 small-signal parameters characterize this 3-terminal (two-port) linear network

Small signal parameters dependent upon Q-point

Page 19: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

3-terminal small-signal network summary

Small signal model:

y11 y22

y12V2

y21V1

V1 V2

i1i2

QVVj

21iij

V

,VVfy

I1

I2

V1V2

3-Terminal

Device

2221212 VVi yy 2121111 VVi yy

2122

2111

,VVfI

,VVfI

Page 20: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-Signal Model

1 1 1I f V

I1

V1

2-Terminal

Device

Define

1 1 1QI I i

1 1 1QV V v

Small signal model is that which represents the relationship between the

small signal voltages and the small signal currents

Consider 2-terminal network

Page 21: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-Signal Model

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

, ,

, ,

, ,

g

g

g

i V V V

i V V V

i V V V

I1

I2

I3 V1

V2

V3

4-Terminal

Device

3232221212 Vyyy VVi

3332321313 Vyyy VVi

3132121111 Vyyy VVi

QVVj

321iij

V

V,,VVfy

2

Consider 2-terminal network

Page 22: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-Signal Model

1 11 1yi V

Q

1 1

11

1 V V

f Vy

V

y11V1

i1

A Small Signal Equivalent Circuit

1QV V

Consider 2-terminal network

I1

V1

2-Terminal

Device

This was actually developed earlier !

Page 23: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Nonlinear

Device

Linearized

Small-signal

Device

Linearized nonlinear devices

Page 24: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

How is the small-signal equivalent circuit

obtained from the nonlinear circuit?

What is the small-signal equivalent of the

MOSFET, BJT, and diode ?

Page 25: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of MOSFET

3-terminal device 4-terminal device

MOSFET is actually a 4-terminal device but for many applications

acceptable predictions of performance can be obtained by treating it as

a 3-terminal device by neglecting the bulk terminal

When treated as a 4-terminal device, the bulk voltage introduces one additional

term to the small signal model which is often either negligibly small or has no

effect on circuit performance (will develop 4-terminal ss model later)

In this course, we have been treating it as a 3-terminal device and in this

lecture will develop the small-signal model by treating it as a 3-terminal device

Page 26: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of MOSFET

1

GS T

DS

D OX GS T DS GS DS GS T

2

OX GS T DS GS T DS GS T

0 V V

VWI μC V V V V V V V V

L 2

WμC V V V V V V V V

2L

T

GI 0

3-terminal device

Large Signal Model

MOSFET is usually operated in saturation region in linear applications

where a small-signal model is needed so will develop the small-signal

model in the saturation region

ID

VDS

VGS1

VGS6

VGS5

VGS4

VGS3

VGS2

SaturationRegion

CutoffRegion

TriodeRegion

Page 27: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of MOSFET

Q

G

11

GS V V

Iy

V

GI 0

2 2 1 2I f V,V

Q

i 1 2

ij

j V V

f V ,Vy

V

1 1 1 2I f V,V

12

D OX GS T DS

WI =μC V V V

2L

Small-signal model:

Q

G

12

DS V V

Iy

V

Q

D

21

GS V V

Iy

V

Q

D

22

DS V V

Iy

V

G 1 GS DSI f V ,V

D 2 GS DSI f V ,V

Page 28: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of MOSFET

Q

G

11

GS V V

Iy ?

V

GI 0

12

D OX GS T DS

WI =μC V V V

2L

Small-signal model:

Q

G

12

DS V V

Iy ?

V

Q

D

21

GS V V

Iy ?

V

Q

D

22

DS V V

Iy ?

V

Page 29: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of MOSFET

0

Q

G

11

GS V V

Iy

V

GI 0

2 2 1 2I f V,V

1 1 1 2I f V,V

12

D OX GS T DS

WI =μC V V V

2L

Small-signal model:

0

Q

G

12

DS V V

Iy

V

2 1 1Q

Q

1D

21 OX GS T DS OX GSQ T DSQ

V VGS V V

I W Wy μC V V V μC V V V

V 2L L

Q

Q

2D

22 OX GS T DQ

V VDS V V

I Wy μC V V I

V 2L

21 OX GSQ T

Wy μC V V

L

Page 30: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of MOSFET

011

y GI 0

12

D OX GS T DS

WI =μC V V V

2L

012

y

22 DQy I

21 OX GSQ T

Wy μC V V

L

21 22D GS DSy y i V V

11 12G GS DSy y i V V

y22y21VGS

VGS

G D

S

An equivalent circuit

Page 31: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of MOSFET

22 DQy I

Og

21 OX GSQ T

Wy μC V V

Lm

g

y22y21VGS

VGS

G D

S

by convention, y21=gm, y22=g0

gOgmVGS

VGS

G D

S

D m GS O DSg g i V V

0Gi

Note: go vanishes when λ=0

Page 32: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of MOSFET

DQI

Og

OX GSQ T

WμC V V

Lm

g

gOgmVGS

VGS

G D

S

Alternate equivalent expressions for gm:

12 2

DQ OX GSQ T DSQ OX GSQ T

W WI =μC V V V μC V V

2L 2L

OX GSQ T

WμC V V

Lm

g

OX DQ

W2μC I

Lm

g

2DQ

m

GSQ T

Ig

V V

Page 33: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small signal analysis example

VDD

R

M1

VIN

VOUT

VSS

VIN=VMsinωt

DQ

v

SS T

2I RA

V V

Consider again:

RM1

VIN

VOUT

2

D OX GS T

WI =μC V V

2L

Derived for λ=0

gOgmVGS

VGSVIN

VOUT

R

Recall the derivation was very tedious and time consuming!

ss circuit

Page 34: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small signal analysis example

Consider again:

RM1

VIN

VOUT

For λ=0, gO= λIDQ = 0

1OUT m

V

IN O

V gA

V g R

gOgmVGS

VGSVIN

VOUT

R

OUT

V m

IN

A g R V

V

2DQ

m

GSQ T

Ig

V V

but

thus

DQ

v

SS T

2I RA

V V

VGSQ = -VSS

VDD

R

M1

VIN

VOUT

VSS

Page 35: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small signal analysis example

Consider again:

RM1

VIN

VOUT

For λ=0, gO= λIDQ = 0

1OUT m

V

IN O

V gA

V g R

gOgmVGS

VGSVIN

VOUT

R

DQ

v

SS T

2I RA

V V

Same expression as derived before

More accurate gain can be obtained if

λ effects are included and does not significantly

increase complexity of small signal analysis

Page 36: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of BJT

3-terminal device

VCE

IC

Forward Active

Cutoff

Saturation

Usually operated in Forward Active Region

when small-signal model is needed

1BE

t

V

V CE

C S E

AF

VI J A e

V

t

BE

V

V

ESB e

β

AJI

Forward Active Model:

Page 37: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of BJT

Q

B

11

BE V V

Iy

Vg

2 2 1 2I f V,V

Q

i 1 2

ij

j V V

f V ,Vy

V

1 1 1 2I f V,V

Small-signal model:

Q

B

12

CE V V

Iy

V

Q

C

22

CE V V

Iy

VO

g

t

BE

V

V

ESB e

β

AJI

1BE

t

V

V CE

C S E

AF

VI J A e

V

11 12B BE CEy y i V V

21 22C BE CEy y i V V

Nonlinear model:

Q

C

21

BE V V

Iy

Vm

g

Note: gm, gπ and go used for notational consistency with legacy terminology

Page 38: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of BJT

Q

B

11

BE V V

Iy ?

Vg

Q

i 1 2

ij

j V V

f V ,Vy

V

Small-signal model:

Q

B

12

CE V V

Iy ?

V

Q

C

22

CE V V

Iy ?

VO

g

11 12B BE CEy y i V V

21 22C BE CEy y i V V

t

BE

V

V

ESB e

β

AJI

Nonlinear model:

1BE

t

V

V CE

C S E

AF

VI J A e

V

Q

C

21

BE V V

Iy ?

Vm

g

Page 39: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of BJT

1 BE

t

QQ

V

V BQ CQS EB

11

V VBE t tV V

I IJ AIy e

V β V βVt

gV

Small-signal model:

0

Q

B

12

CE V V

Iy

V

1BE

t

Q Q

V

V CQC CE

21 S E

BE t AF tV V V V

II V1y J A e

V V V Vm

g

BE

t

Q

Q

V

V

CQC S E

22

CE AF AFV VV V

II J A ey

V V VO

g

BE

t

V

VS E

B

J AI e

β

1BE

t

V

V CE

C S E

AF

VI J A e

V

Nonlinear model:

11 12B BE CEy y i V V

21 22C BE CEy y i V V

Note: usually prefer to express in terms of ICQ

Page 40: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal Model of BJT

CQ

t

I

βVg

CQ

t

I

Vm

g CQ

AF

I

VO

g

21 22C BE CEy y i V V

11 12B BE CEy y i V V

C m BE O CEg g i V V

B BEg

i V

gOgmVBE

VBEgπ

B

E

C

An equivalent circuit

Page 41: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small signal analysis example

VIN=VMsinωt

Consider again:

Derived for VAF=0

Recall the derivation was very tedious and time consuming!

ss circuit

R

Q1

VIN(t)

VOUT

VCC

VEE

CQ

VB

t

I RA

V

R

VIN

VOUT

RVIN

VOUT

VbegmVbe

gπ g0

Page 42: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

R

VIN

VOUT

RVIN

VOUT

VbegmVbe

OUT m BE

IN BE

= -g R

=

V V

V V

OUTV m

IN

A = -g RV=V

CQIm

t

g =V

ICQV

t

RA -

V=

Note this is identical to what was obtained with the direct nonlinear analysis

Neglect VAF effects (i.e. VAF=∞) to be consistent with earlier analysis

0CQ

AF

I

V

AFO V

g

Page 43: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small Signal BJT Model – alternate

representation

t

CQm

V

Ig

t

CQ

βV

Ig

AF

CQ

V

Ig o

B

E

C

Vbe

ic

gmVbego Vce

ib

bbe iv πg

π

mm

g

gg bbe iv

β

βV

I

V

I

g

g

t

Q

t

Q

π

m

bbe iv βgm

Observe :

Can replace the voltage dependent current source

with a current dependent current source

Page 44: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

B

E

C

Vbe

ic

gmVbego Vce

ib

t

CQm

V

Ig

t

CQ

βV

Ig

AF

CQ

V

Ig o

t

CQ

βV

Ig

AF

CQ

V

Ig o

B

E

C

Vbe

ic

go Vce

ib

gπbiβ

Alternate equivalent small signal model

Small Signal BJT Model – alternate

representation

Page 45: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Bi-Linear Relationship between

i1 ,i2, v1, v2

i1

Linear Two Port

v1

i2

v2

Small-Signal Model Representations

Have developed small-signal models for the MOSFET and BJT

Models have been based upon arbitrary assumption that v1, v2 are independent

variables

Have already seen some alternatives for parameter definitions in these models

(3-terminal network – also relevant with 4-terminal networks)

Alternative representations are sometimes used

Page 46: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Bi-Linear Relationship between

i1 ,i2, v1, v2

i1

Linear Two Port

v1

i2

v2

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

i1

Linear Two Port

v1

i2

v2

y-parameters

1 11 1 12 2y y i V V

2 21 1 22 2y y i V V

i1

Linear Two Port

v1

i2

v2

y-parameters

1 1 2mrg g i V V

2 1 2m og g i V V

i1

Linear Two Port

v1

i2

v2

H-parameters

(Hybrid Parameters)

1 11 1 12 2h h V i v

2 21 1 22 2h h i i v

i1

Linear Two Port

v1

i2

v2

H-parameters

(Hybrid Parameters)

1 1 2ie reh h V i v

2 1 2fe oeh h i i v

what we have developed:

The hybrid parameters:

Page 47: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Bi-Linear Relationship between

i1 ,i2, v1, v2

i1

Linear Two Port

v1

i2

v2

Small-Signal Model Representations

The z-parameters

The ABCD parameters:i1

Linear Two Port

v1

i2

v2

ABCD-parameters

1 2 2A Bv V i

1 2 2C D i v i

i1

Linear Two Port

v1

i2

v2

z-parameters

1 11 1 12 2z z V i i

2 21 1 22 2z z V i i

Page 48: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Bi-Linear Relationship between

i1 ,i2, v1, v2

i1

Linear Two Port

v1

i2

v2

Small-Signal Model Representations

The S-parameters

The T parameters:

i1

Linear Two Port

i2

v2

S-parameters

v1

i1

Linear Two Port

i2

v2

T-parameters

v1

(embedded with source and load impedances)

(embedded with source and load impedances)

Page 49: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Bi-Linear Relationship between

i1 ,i2, v1, v2

i1

Linear Two Port

v1

i2

v2

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

i1

Linear Two Port

v1

i2

v2

y-parameters

1 11 1 12 2y y i V V

2 21 1 22 2y y i V V

i1

Linear Two Port

v1

i2

v2

y-parameters

1 1 2mrg g i V V

2 1 2m og g i V V

i1

Linear Two Port

v1

i2

v2

H-parameters

(Hybrid Parameters)

1 11 1 12 2h h V i v

2 21 1 22 2h h i i v

i1

Linear Two Port

v1

i2

v2

H-parameters

(Hybrid Parameters)

1 1 2ie reh h V i v

2 1 2fe oeh h i i v

i1

Linear Two Port

v1

i2

v2

z-parameters

1 11 1 12 2z z V i i

2 21 1 22 2z z V i i

i1

Linear Two Port

v1

i2

v2

ABCD-parameters

1 2 2A Bv V i

1 2 2C D i v i

i1

Linear Two Port

i2

v2

S-parameters

v1

i1

Linear Two Port

i2

v2

T-parameters

v1

• Equivalent circuits often given for each representation

• All provide identical characterization

• Easy to move from any one to another

Page 50: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Bi-Linear Relationship between

i1 ,i2, v1, v2

i1

Linear Two Port

v1

i2

v2

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

As of Oct 16, 2015

Page 51: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Bi-Linear Relationship between

i1 ,i2, v1, v2

i1

Linear Two Port

v1

i2

v2

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

As of Oct 28, 2013

Page 52: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Active Device Model Summary

Simplified

Simplified

MOS

transistors

Diodes

Simplified

Simplified

Simplified

Bipolar

Transistors

Element ss equivalent dc equivalnet

What are the simplified dc equivalent models?

Page 53: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Active Device Model SummaryWhat are the simplified dc equivalent models?

Simplified

Simplified

Simplified

Simplified

Simplified

0.6V

dc equivalent

G D

S

VGSQ 2OX

GSQ TnμC W

V -V2L

G D

S

VGSQ 2OX

GSQ TpμC W

V -V2L

B C

E

BQβI0.6V

IBQ

B C

E

BQβI0.6V

IBQ

Page 54: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits

Page 55: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Recall:

1. Linearize nonlinear devices(have small-signal model for key devices!)

2. Replace all devices with small-signal

equivalent

3. Solve linear small-signal network

Alternative Approach to small-signal

analysis of nonlinear networks

Remember that the small-signal model is operating point dependent!

Thus need Q-point to obtain values for small signal parameters

Page 56: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

M1

M2

VIN

VOUT

VDD

VSS

Example:

Determine the small signal voltage gain AV=VOUT/VIN. Assume M1 and M2

are operating in the saturation region and that λ=0

Page 57: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

M1

M2

VIN

VOUT

VDD

VSS

Example: Determine the small signal voltage gain AV=VOUT/VIN. Assume M1 and M2

are operating in the saturation region and that λ=0

VIN

VOUT

M1 M2

Small-signal circuit

Page 58: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

M1

M2

VIN

VOUT

VDD

VSS

Example: Determine the small signal voltage gain AV=VOUT/VIN. Assume M1 and M2

are operating in the saturation region and that λ=0

VIN

VOUT

M1 M2

Small-signal circuit

gmVGSVGS

G

S

D

Small-signal MOSFET model for λ=0

Page 59: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Example: Determine the small signal voltage gain AV=VOUT/VIN. Assume M1 and M2

are operating in the saturation region and that λ=0

VIN

VOUT

M1 M2

Small-signal circuit

Small-signal circuit

VGS1 gm1VGS1VIN

VOUT

VGS2 gm2VGS2

Page 60: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Example:

Small-signal circuit

VGS1 gm1VGS1VIN

VOUT

VGS2 gm2VGS2

Analysis:

By KCL

1 1 2 2m GS m GSg gV V

but

1GS INV V

2GS OUT-V V

thus:

1

2

OUT m

V

IN m

gA

g V

V

Page 61: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Example:

Small-signal circuit

VGS1 gm1VGS1VIN

VOUT

VGS2 gm2VGS2

Analysis:

1

2

OUT m

V

IN m

gA

g V

V

1

1 1 2

2 12

2

2

2

D OX

V

D OX

WI C

L W LA

W LWI C

L

Recall: 1

1

2m D OX

Wg I C

L

Page 62: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Example:

Small-signal circuit

VGS1 gm1VGS1VIN

VOUT

VGS2 gm2VGS2

Analysis:1

2

OUT m

V

IN m

gA

g V

V

1 2

2 1

V

W LA

W L

Recall:

If L1=L2, obtain

1 2 1

2 1 2

V

W L WA

W L W

The width and length ratios can be accurately set when designed in a standard

CMOS process

Page 63: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

Example:Obtain the small signal model of the following circuit. Assume

MOSFET is operating in the saturation region

Page 64: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

ExampleObtain the small signal model of the following circuit. Assume

MOSFET is operating in the saturation region

Solution:

gmvgsvgsg0

G D

V

I

0mV g g I

0

1 1EQ

m m

Rg g g

Page 65: EE 330 Lecture 23 - class.ece.iastate.educlass.ece.iastate.edu/ee330/lectures/EE 330 Lect 23 Fall 2015.pdf · Small-Signal Principle y x y Q x Q x SS y SS Q-point y=f(x) Q S x f yx

End of Lecture 23