ecrys 2011

36
ECRYS 2011 Anomalous behavior of ultrasonic properties near 50K in A 0.30 MoO 3 (A=K, Rb) and Rb 0.30 (Mo 1-x V x )O 3 M. Saint-Paul, J. Dumas, J. Marcus Institut Néel, CNRS/UJF, Grenoble, France

Upload: marnin

Post on 09-Jan-2016

22 views

Category:

Documents


0 download

DESCRIPTION

Anomalous behavior of ultrasonic properties near 50K in A 0.30 MoO 3 (A=K, Rb) and Rb 0.30 (Mo 1-x V x )O 3 M. Saint-Paul, J. Dumas, J. Marcus Institut Néel, CNRS/UJF, Grenoble, France. ECRYS 2011. Outline Anomalies at ~50K in the CDW conductor K 0.30 MoO 3 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ECRYS 2011

ECRYS 2011

Anomalous behavior of ultrasonic

properties near 50K in A0.30MoO3

(A=K, Rb) and Rb0.30(Mo1-xVx)O3

M. Saint-Paul, J. Dumas, J. MarcusInstitut Néel, CNRS/UJF, Grenoble, France

Page 2: ECRYS 2011

Outline

1. Anomalies at ~50K in the CDW conductor K0.30MoO3

2. Ultrasonic properties of Rb0.30MoO3, K0.30MoO3

Velocities of longitudinal modes

Ultrasonic Attenuation

Role of disorder : Rb0.30Mo1-xVxO3

3. CDW glassy behavior

4. Conclusion

Page 3: ECRYS 2011

J.P. Pouget et al.

K0.30MoO3 Quasi-1D conductor; Tp = 180K

Chains along b (a,c) plane

Page 4: ECRYS 2011

Nonlinear conductivity at low temperature

• Large and abrupt threshold field at low T.• Very low damping due to freezing of

normal carriers

• T < 50K• Rigid CDW in the low temperature• Insulating state

• G.X. Tessema, L. Mihaly, (1987)• G. Mihaly, P. Beauchêne et al., (1988)

G. Mihaly, P. Beauchêne

Page 5: ECRYS 2011

Temperature dependence of the threshold fields Et1, Et2

Two different regimes: T > 50K : Et1 ≈ 0.1V/cm: Strong damping T < 50K : Et2 ≈10 V/cm: Low damping

P. Beauchêne, G. Mihaly et al. (1988); J. Dumas, C. Schlenker (1993).

H. Li, J. Wang et al., Mod. Phys. Lett. B 18, 697 (2004).

Tp

T>50K:Deformable CDW

T<50K: Rigid CDW

Page 6: ECRYS 2011

Proton channeling at low temperature

Proton Beam perpendicular to cleavage plane:

Backscattering yield Xmin increases below 40K.

No effect for beam // [102] direction and perp. b

(in the cleavage plane)

Structural Disorder at low T.

CDW defects

B. Daudin, J. Dumas et al., Synth. Metals (1989)

Page 7: ECRYS 2011

Mingliang Tian et al. Phys. Rev. B (2000)

Lattice parameters

T(K)

Noticeable change T ~ 50K

Interlayer distance d [-201]

chain axis

Page 8: ECRYS 2011

-0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250T (K)

[102]

Tp

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

L/L

4K (

10-3

)

T (K)

Normalized thermal expansion

along [102] along the transverse direction [-201]

L/L4K <0 below 50K L/L4K [-201] larger than that along the layers [102]

G. Remenyi, J. Dumas (2009)

-Change in phason behaviour near 40K: S. Ravy et al., Phys. Rev. B (2004)

Page 9: ECRYS 2011

J. Dumas, B. Layadi et al. Phys. Rev. B (1989)

Ratio of the Mo5+ (S=1/2) EPR lines intensities:

slow cooling / fast cooling

Role of the cooling rate: Rapid change of relative EPR intensities near 50K.

No effect on V-doped samples

probe the CDW state through interaction between the defects and the CDW modulation

Measuring Temperature

Page 10: ECRYS 2011

D. Staresinic et al. Phys. Rev. B (2004)

Dielectric spectroscopy

Glassy behavior for

the CDW

at low temperature

50K

Page 11: ECRYS 2011

Relative change of the velocity of the longitudinal modes (15MHz) propagating along b, [102], [-201] directions

Large increase of the velocity below ~50K in the three directions.

Pronounced softening at Tp along [102].

Pronounced stiffening below ~50K.

//b

Platelets 5x4x2mm3

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 50 100 150 200 250

TP

T (K)

[010]

[102]

[-201]

Rb0.3

MoO3

V = (C/

Page 12: ECRYS 2011

-0.04

-0.03

-0.02

-0.01

0

0.01

-5

0

5

10

15

0 20 40 60 80 100

[102]

T (K)

(a)

(b)

Velocity of the longitudinal mode along [102] and attenuation

Anharmonic contribution

Attenuation :

Additional contribution T<50K Disorder in CDW superlattice

TV

TC

V

V2

0

2

2

)(

2

2

)(1

)(

2

)(

R

Ru

V

VV

V

V

2

2

2 )(1

)(

4

1

R

Ru

V

VV

Arrhenius law:

= 0exp(325/T) 0 =10 -11 s

V/V = -AT

Linear term T<20K: V/V= -AT. « Bellessa effect », common feature of glasses.

Page 13: ECRYS 2011

A

Bellessa effect V/V = - AT

Amorphous and disordered materials; Bellessa et al. PRL (1978); Nava et al. PRB (1994).

( , ) our results

Nava et al.

Page 14: ECRYS 2011

-0.04

-0.03

-0.02

-0.01

0

0.01

0

1

2

3

4

5

6

7

0 20 40 60 80 100

T (K)

[-201]

Longitudinal mode along the transverse direction [-201]

Anharmonic contribution

= 0 exp(325/T)0 =10 -11 ssame activation energy

Ea=325K : low temperature -relaxational process in dielectric measurements

(D. Staresinic et al.)

Page 15: ECRYS 2011

-0.015

-0.01

-0.005

0

0.005

0.01

-5

0

5

10

15

20

10 20 30 40 50 60 70T (K)

15MHz

1MHz

15MHz

1MHz

[102] Relative change in velocity and Plateau in the attenuation shifted to lower T when the frequency is decreased.

Velocity of the longitudinal mode along [102] at 15MHz and 1MHz

Frequency dependent anomaly

Ea = 325K at 15 MHz

Ea = 360K at 1MHz

Page 16: ECRYS 2011

K0.30MoO3:

Relative change of the sound velocity : Longitudinal mode along [-201]

Similar activated behavior near 50K.

Ea= 325K

-0.02

-0.015

-0.01

-0.005

0

0.005

0

5

10

15

0 50 100 150 200

T (K)

K0.3

MoO3

[-201]

The alkaline element K/Rb plays no important role in the anomaly.

J. De Boer (100K)

K Rb

A (Å) 18.162 18.536

b 7.554 7.556

c 9.816 10.035

117.3 118.5

Page 17: ECRYS 2011

-0.015

-0.01

-0.005

0

0.005

0.01

0 20 40 60 80 100

T (K)

[102]

(a)

(b)

Role of disorder : Rb0.30 (Mo1-x Vx) O3 x = 0.4 at %Relative change of the velocity of the longitudinal mode propagating along [102] direction.

● V, non isoelectronic impurity; substitution V5+ / Mo6+. Strong pinning centers. Short range CDW order.

S. Ravy et al., Phys. Rev. B (2006).

Smearing out of the anomaly and shift towards higher temperature ~70K

V/V=-AT

Anharmonic contribution

Ea ~ 500K

15 MHz

Page 18: ECRYS 2011

-0.01

-0.005

0

0.005

0 20 40 60 80 100T (K)

(a)

(b)

Ea=500K

Ea= 330K

[-201]

Rb0.30 (Mo1-x Vx)O3 x = 0.4 at % along the transverse direction [-201]

Smearing out of the anomaly and shift towards higher temperature.

Smaller size of domains of coherence of the CDW.

Page 19: ECRYS 2011

Vogel-Fulcher empirical law : = 0exp[ U/(T-T0 ] ; T>T0

glass - like behaviour

Average activation energy U = 220K

Freezing temperature

T0 = 16K

our results

Thermoelectric power , Kriza et al.

() K. Biljakovic

et al.

Dynamic effect rather than thermodynamic phase transition

= 1

Vogel-Fulcher law

Page 20: ECRYS 2011

Rb0.3MoO3 Longitudinal sound velocities and elastic constants

T=300K

Along b 5300m/s C22 = 1.2x1011 N/m2

Along [102] 4800 m/s C// = 1011

Along [-201] 3300m/s C = 4.6x1010

Velocities comparable to those of K0.3MoO3

M. Saint-Paul, G.X. Tessema (1989)

Water: 1480m/s ; Pb: 1960m/s; Cu: 5010m/s

Page 21: ECRYS 2011

Conclusions

-Large elastic anomalies at T~50K along b, [102], [-201] :

-Stiffening of longitudinal waves T<50K, along b, [102], [-201]

-Linear term T<30K

-Increase of the attenuation T ~ 50K followed by a plateau

-Anomaly in Rb0.30 Mo1-xVxO3 shifted towards higher temp.

-Dynamic effect rather than thermodynamic transition

-Consistent with CDW glassy-like state

Page 22: ECRYS 2011

-0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250T (K)

[102]

Tp

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

L/L

4K (

10-3

)

T (K)

Normalized thermal expansion along [102]

L/L4K < 0 below ~ 50K

Page 23: ECRYS 2011

Normalized thermal expansion along the

transverse direction [-201]

L/L4K

two times larger than that along the layers [102].

L/L4K < 0 below ~50K.

Anharmonic phonon dynamics.

n < 0 for some low energy modes

Page 24: ECRYS 2011
Page 25: ECRYS 2011

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

T (K)

[102]

Thermal expansion coefficient along [102]

Page 26: ECRYS 2011

-0.02

-0.01

0

0.01

0.02

0.03

0 25 50 75 100

V/V

T (K)

Attenuation Shear mode W

ave

Am

pli

tud

e

Echogram

[-201]

Large attenuation on the plateau

Page 27: ECRYS 2011

Thermal history : Shear mode along [-201], transverse direction

-0.02

-0.01

0

0.01

0.02

0.03

0 25 50 75 100

T (K)

[-201]

Page 28: ECRYS 2011

smectic nematic

atte

nu

atio

n

Analogy with smectic - nematic transition ?

F. Kiry, P. Martinoty, J. Phys. 1978

Page 29: ECRYS 2011

Magnetic susceptibility

B.T. Collins, K.V. Ramanujachary, M. Greenblatt,

Solid State Comm. 56, 1023 (1985).

Tl0.3MoO3 K0.3MoO3

L.F. Schneemeyer, F.J. DiSalvo, R.M. Fleming, J.V. Waszczak, J. Solid State Chem. 54, 358 (1984)

Page 30: ECRYS 2011

Order Parameter

J.P. Pouget et al. (1985)

Page 31: ECRYS 2011

Thermally stimulated depolarization current

R.J. Cava, R.M. Fleming et al., Phys. Rev. Lett (1984).

Page 32: ECRYS 2011
Page 33: ECRYS 2011
Page 34: ECRYS 2011

F.Nad et al., ECRY93. J. Phys. IV C2, Vol.3, 343 (1993).

Page 35: ECRYS 2011

J. Yang, N.P. Ong, Phys. Rev. B (1991)

Page 36: ECRYS 2011

B. Zawilski et al. Solid State Comm. 124, 395 (2002)