eco/bio carbon fiber & carbon materials, hydrocarbon chemicals

53
AGDO AGDO RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT RENEWABLE CARBON MATERIALS RESEARCH PRESIDENT HASSAN AL-SHAREEF SAUDI ARABIA PROJECTMANAGER DAMIR AGIC GERMANY CONTENT TODAY / DATA CF / QUANTITY, COASTS, MARKET, RAW- MATERIAL TODAY / TECHNOLOGY CF / EQUIPMENT, MACHINES TODAY / CARBON MATERIALS / CF, CFRP, CRP, CFRTP, CFC TODAY / PROCESS CF & CFRP / MANUFACTURING, CHEMISTRY, PHYSICS AGDO / NEW PROCESS / (ECO/BIO)- HYDROCARBONS, CARBON, RAW-MATERIAL AGDO / ECONOMY / (ECO/BIO)CARBON-FIBER, CARBON-MATERIAL, RAW MATERIALS RECYCLING + TEST / AQUAPONICS BIOMASS PRODUCTION IN DESERT FOR CARBON --- (ECO/BIO)CARBON-FIBER --- --- (ECO/BIO)CARBON-FIBER --- (SHORT VERSION) (SHORT VERSION) SUSTAINABLE MATERIALS SUSTAINABLE MATERIALS + + TEST TEST AQUAPONICS BIOMASS PRODUCTION IN DESERT FOR CARBON AQUAPONICS BIOMASS PRODUCTION IN DESERT FOR CARBON 09-10 / 2015 09-10 / 2015

Upload: damir-agic

Post on 11-Apr-2017

723 views

Category:

Investor Relations


2 download

TRANSCRIPT

Page 1: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

AGDOAGDO

RESEARCH & DEVELOPMENTRESEARCH & DEVELOPMENTRENEWABLE CARBON MATERIALS RESEARCH

PRESIDENT HASSAN AL-SHAREEF SAUDI ARABIA

PROJECTMANAGER DAMIR AGIC GERMANY

CONTENT TODAY / DATA CF / QUANTITY, COASTS, MARKET, RAW- MATERIAL

TODAY / TECHNOLOGY CF / EQUIPMENT, MACHINES

TODAY / CARBON MATERIALS / CF, CFRP, CRP, CFRTP, CFC

TODAY / PROCESS CF & CFRP / MANUFACTURING, CHEMISTRY, PHYSICS

AGDO / NEW PROCESS / (ECO/BIO)- HYDROCARBONS, CARBON, RAW-MATERIAL

AGDO / ECONOMY / (ECO/BIO)CARBON-FIBER, CARBON-MATERIAL, RAW MATERIALS

RECYCLING

+ TEST / AQUAPONICS BIOMASS PRODUCTION IN DESERT FOR CARBON

--- (ECO/BIO)CARBON-FIBER ------ (ECO/BIO)CARBON-FIBER ---(SHORT VERSION)(SHORT VERSION)

SUSTAINABLE MATERIALSSUSTAINABLE MATERIALS++

TESTTESTAQUAPONICS BIOMASS PRODUCTION IN DESERT FOR CARBON AQUAPONICS BIOMASS PRODUCTION IN DESERT FOR CARBON

09-10 / 201509-10 / 2015

Page 2: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

INDEX

pageCHAPTER TITLE DATA

pdf

3 1 LETTER-OF-COOPERATION by R&D OFFICE of AGDO.org OWN

4 1 RAW MATERIALS / ELEMENTS FOR CHEMICALS INDUSTRY

4 10 2 MARKET VOLUME CARBON FIBER OTHER

11 3 CARBON FIBER COAST BREAKDOWN 2011 OTHER/OWN

12 14 4 CARBON FIBER–REINFORCED-X / CFRP, CRP, CFRTP, CFC OTHER

15 17 5 CHEMISTRY / PRODUCTION CARBON-FIBER (CF) OTHER

18 6 PROCESS CFK (CFRP) MATERIALS FROM CARBON-FIBER, EPOXY RESIN, DIISOCYANATE OTHER

19 20 7 PRODUCTION PROCESS FOR POLYACRYLONITRILE (PAN) FOR CARBON-FIBER OTHER

21 22 8 CARBON MATERIAL CFK (CFRP)/ RAW MATERIAL EPOXY RESIN / CHEMISTRY OWN

23 25 9 CARBON MATERIAL CFK (CFRP)/ RAW MATERIAL DIISOCYANATE / CHEMISTRY OWN

26 28 10 MAX. POSSIBLE PRODUCTS OF 10.000 ha Algae-Farm OWN

29 43 11 MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON OWN

44 45 12 COAST CALCULATION SYSTEM FOR 480.000 t/a (ECO/BIO) HYDROCARBONS (10.000 ha Algae-Farm) OWN

46 48 13 STRUCTURE / DESIGN GROUND PLAN FOR ALGAE-FARM, PRODUCTION HALLS + PLANTS OWN

48 14 RECYCLING OTHER

49 53 15 SPECIAL / FINANCIAL ANALYSIS AQUAPONIC FARMING / + SEAWATER GREENHOUSES PARTNER/OWN

INDEXINDEX

Page 3: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

LETTER-OF-COOPERATION by R&D OFFICE of AGDO.org

12.10.2015

Damir AgicProjectmanager

AGDO

Dear Ladys and Gentlemen,Dear friends, members and interested parties from the Club of AGDO,Dear business partners, supporters and investors of our concepts,

We write the year 2015. We still have time until 2040 / 2050. 2040 the world hunger crisis is to begin by shortage of the raw material of phosphorus for fertilizer production. 2050 an unstoppable new oil crisis and begin a new world crisis. The last was in early 2007 by exceeding the crude oil price of 125 € / barrel.

The evidence of end of our World the calculations of the Club of Rome. After their assessment, the deconstruction of our society from 2030 (in 15 years) starts. 2060 should be the doomsday for our society today with their methods of dealing with raw materials.

NO RETURN POINT FOR WORLD ECONOMOC CRISES: >125 €/BARREL CRUDE OIL PRICE!

• What is to do?

At one point, we are all safe. We have to leave the crude oil befor it leaves us. We need to start the element phosphorus

in agriculture to recycle even while it is present in sufficient quantity. Have we learned this also implement so are easy to

solve more problems coming for the world's population.

• How can we do that?

Most begin to think if it is too late. Others will never understand it. Most have little idea and the rest is not informed and

therefore not interested in the fate of our future generations. Even at the time few it has become clear that there is only

one way global hunger, wars over resources, disease, poverty and hopelessness by depletion of infrastructure to avoid. In

addition, the destruction of the climate, the environment, water and wildlife through destruction of forests for the Biofuels

Industry. Soon by Biochemicals industry. At least alleviate. COOPERATION TOGETHER...

Thus one thing is clear. Shifting to a Sustainable Society- order is possible. The oil can be replaced in quality and

quantity. For the fertilizer supply problem there is a solution too. We want to prove this with a new Concept.

As a theoretical example of our mission we have taken the new market of carbon materials. This depends by the raw

carbon from crude oil. CONCEPT (ECO/BIO) CARBON FIBER & MATERIALS , 11/2015 ...

BEST REGARDS

.Damir Agic / 12.10.2015 / Germany

--- AGDO ---R&D OFFICE

| Page 1 of 1 |

Page 4: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

     

­­­ Research and Development ­­­

NEW GREEN INDUSTRY

 

RAW MATERIALSELEMENTS

   

 

           

Calcium Ca 20      

Chlorine Cl 17      

Fluorine F 9      

Potassium K 19      

Carbon C 6      

Sodium Na 11      

Phosphorus P 15      

Oxygen O 8th      

Sulfur S 16      

Nitrogen N 7      

Hydrogen H 1      

   

Page 5: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

2. MARKET VOLUME CARBON FIBER

2.1 MAX. POSSIBLE MARKET VOLUME FOR AUTOMOTIVE

The automotive industry produces 15.000.000 cars and light trucks 1996. To replace the 985 kg of

ferrous metals in an average vehicle with one-half the wight of 60% carbon fiber resin would

require nearly 300 kg of carbon fiber. Production of 15.000.000 light vehicles would require

roughly 4.000.000 tonnes of carbon fiber to replace all of their ferrous metals.

2.2 GLOBAL CARBON FIBER (CF) PRODUCTION, by TOW SIZE, 2012-2020

GRAPHIC-SOURCE : google-pictures: market volume carbon fiber

2.3 COASTS CARBON FIBER 2013-2017

PAN-based carbon fiber line will come online in 2013 and achieve carbon fiber unit costs of about

$19.30/kg ($11/kg = $5/lb). This will lead, by 2016, to development of precursor based on melt-spun

PAN and carbon fiber prices of $15.90/kg. By 2017, he said, assuming advances on the oxidization and

carbonization side, expect a polyolefin-based PAN and carbon fiber price potential of $10.50/kg — below

the $11/kg threshold.

| Page 1 of 6 |

Page 6: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

2. MARKET VOLUME CARBON FIBER

2.4 GLOBAL CFRP MARKET VOLUME, by RAW MATERIALS, 2012-2020 (Kilo Tons)

GRAPHIC-SOURCE : google-pictures: market volume carbon fiber

2.5 GLOBAL WEBBING MARKET VOLUME by PRODUCTS 2012-2020 (Kilo Tons)

GRAPHIC-SOURCE : google-pictures: market volume carbon fiber

| Page 2 of 6 |

Page 7: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

2. MARKET VOLUME CARBON FIBER

2.6 GLOBAL CARBON FIBER (CF) PRODUCTION, by COMPANIES, 2003-2020

Tonnes per year

GRAPHIC-SOURCE : google-pictures: market volume carbon fiber

| Page 3 of 6 |

Page 8: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

2. MARKET VOLUME CARBON FIBER

2.7 GLOBAL CARBON FIBER (CF) PRODUCTION, by INDUSTRIEL, 2011-2020

GRAPHIC-SOURCE : google-pictures: market volume carbon fiber

| Page 4 of 6 |

Page 9: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

2. MARKET VOLUME CARBON FIBER

2.8 DIISOCYANATE (MDI) / COASTS / RAW MATERIAL FOR CFRPDIISOCYANATE (MDI) DIPHENYLMETHANDIISOCYANAT (MDI)

DATA/GRAPHIC-SOURCE : INTERNET

3 € / kg

| Page 5 of 6 |

Page 10: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

2. MARKET VOLUME CARBON FIBER

2.9 EPOXY RESIN / COASTS / RAW MATERIAL FOR CFRPEPOXY RESINEPOXIDHARZ

DATA/GRAPHIC-SOURCE : INTERNET

2 € /kg

| Page 6 of 6 |

Page 11: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

3. CARBON FIBER COAST BREAKDOWN 2011

1 pound = 0,453592 kg / 1 $ = 0,88 €Coasts/kg

MANUFACTURING COASTS precursors stabilization &

oxistaioncarbonization &

graphization surcafe treatment spooling & packing

6,23 € SELF MADE 1,93 € 2,86 € 0,64 € 0,80 €

560.700.000 €

TOTAL COAST

1.121.400.000 €

• MANUFACTURING QUANTITY CARBON FIBER = 90.000 t/a

• 150.000 t/a POLYACRYLONITRILE (PAN) (60% Carbon Yield)

• INVESTMENT CARBON FIBER PLANT = 200.000.000 €

• GROSS SALES VOLUME 20 €/kg (17$/kg) = 1,8 Bill. €

• - TOTAL COAST Carbon Fiber Production 1.121.400.000 €

• - TOTAL COAST Hydrocarbons Production 480.000.000 €

• - TOTAL COAST Chemicals Plant ???

• = OVERFLOW (200.000.000 €)

| Page | Page 11 of of 11 | |

Page 12: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

4. CARBON FIBER–REINFORCED-X / CFRP, CRP, CFRTP, CFC

• 4.1 CARBON FIBER–REINFORCED POLYMER, CFRP

GRAPHIC SOURCE : GOOGLE PICTURES

• 4.2 CARBON FIBER–REINFORCED PLASTIC, CRP

GRAPHIC SOURCE : GOOGLE PICTURES

• 4.3 CARBON FIBER–REINFORCED THERMOPLASTIC, CFRTP

GRAPHIC SOURCE : GOOGLE PICTURES

| Page | Page 11 of of 33 | |

Page 13: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

4. CARBON FIBER–REINFORCED-X / CFRP, CRP, CFRTP, CFC

4.4 PROCESS / CARBON-FIBER-REINFORCED CARBON, CFC

• carbon-fiber-reinforced carbon, CFRC

• reinforced carbon-carbon, RCC

• carbon fiber carbon composite, CFC

Production

CFC materials are prepared in three steps.

First, carbon fibers are fixed in a mold with an organic binder such as plastic or other. Often

the binder carbon-rich supplements such as coke added in order to accelerate the subsequent

carbonization process.

In the second step, the bound material is heated under exclusion of air, so that pyrolyze the

organic materials to relatively pure carbon. It takes a Ausgasungsprozess and as a result

instead of a reduction in volume, which gives the material a porous structure.

In the last step, the pores by vapor deposition of carbon from a gaseous carbon source such

as, for example ethyne, at high temperatures over a period of several days to be closed. The

heat treatment also form in the material larger graphite crystals.

GRAPHIC-SOURCE: http://www.schunk-group.com

| Page | Page 22 of of 33 | |

Page 14: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

4. CARBON FIBER–REINFORCED-X / CFRP, CRP, CFRTP, CFC

4.6 PLANT-DRAWING / CARBON-FIBER-REINFORCED CARBON, CFC

GRAPHIC-SOURCE: http://www.schunk-group.com

| Page | Page 33 of of 33 | |

Page 15: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

5. CHEMISTRY / PRODUCTION CARBON-FIBER (CF)

5.1 EXPLANATION / PRODUCTION FROM POLYACRYLONITRILE (PAN)Carbon fibers are used as continuous fibers mainly based on in a two-stage process by pyrolysis at 200 to 300 ° C and then Carbonizing made at 1300 to 1600 ° C. Here, a two-dimensional graphite structure forms in the carbon fiber, leading to an almost 100 percent crystalline structure with very high orientation in longitudinal fiber direction leads (eg HT, IM carbon fiber). Depending on the desired quality the fiber may be graphitized in a further step at up to 3,000 ° C (HM, UHM carbon fiber). Through different precursor fibers and different Temperatures in the carbonization and graphitization can therefore different Properties are set and thus lead to a variety of Carbon fiber types.

5.1.1 OTHER MANUFACTURING FORMS

• RAYON

• PETROLEUM PITCH (COAL TEAR)

5.1.2 PHYSICSWith a density of only about 1.8 g / cc, and excellent mechanical properties (Young's modulus: 220-680 GPa, tensile strength: 2740-6370 MPa), they are suitable for use in lightweight structures. Are they as reinforcing fibers in plastics, which have significantly lower strength and rigidity introduced, produces a composite material with very good specific characteristics.

5.2 LIST / TYPES CARBON-FIBER

HT high strength (High Density / High Tenacity)

IM intermediate (Intermediate Modulus)

HM high rigidity (high modulus)

UM (Ultra Modulus)

UHM (Ultra High Modulus)

UMS (Ultra Strength Modulus)

HMS high rigidity / high strength

| Page | Page 11 of of 33 | |

Page 16: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

5. CHEMISTRY / PRODUCTION CARBON-FIBER (CF)

5.3 PROCESS-STEPS / PRODUCTION FROM POLYACRYLONITRILE (PAN)

MANUFACTURING Name Parameter Other

RAW MATERIAL POLYACRYLONITRILE (PAN)

First-Stage-Process PYROLYSIS 200-300 °C

Second-Stage-Process CARBONIZING 1300-1600 °C HT, IM Carbon Fiber

Other-Stage-Process GRAPHITIZED > 3000 °C HM, UHM Carbon Fiber

A) RAW MATERIAL: POLYACRYLONITRILE

B) A) B) CYCLIZATION (200-300 °C)→

C) B) C) DEHYDROGENATION→

D)

Detail of a carbon fiber

C) D) N2 ELIMINATION (1500-2000 °C)→

Graphic-Source : Wikipedia: Carbon-Fiber

Carbon yield from various precursors

Precursor Fraction carbon Expected yield Refereneces

Pitch 0,92-0,96 0,8-0,9 15

PAN 0,68 0,33-0,5 (0,4) 60% 21

| Page | Page 22 of of 33 | |

Page 17: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

5. CHEMISTRY / PRODUCTION CARBON-FIBER (CF)

5.4 PRODUCTION FROM POLYACRYLONITRILE (PAN)

Carbon-fiber as a basis initially served cellulose, and later synthetic fibers, particularly polyacrylonitrile

(PAN). PAN is first of acrylonitrile polymerized (1.) then the PAN subjected to a cyclization (2.) and then

treating the polymer with oxygen to produce, whereby the hydrogen is oxidized and removed by water

(3.). In this phase, called the product "Black Orlon" and already has technical applications, but the carbon

fiber is pending further step: The carbonization at about 1200-1500 ° C for about 1min under inert gas

(4). Already now called the product carbon fiber, more high-strength carbon fiber (carbon fiber-HT or HT-

CF). But is less important for some applications, the fiber can withstand extremely high forces: then the

carbon fiber is again at 2000-3000 ° C for 20s in an argon - graphitized atmosphere, thereby high

modulus - carbon fiber (high-modulus carbon fiber, HM-CF) is obtained.

Graphic-Source : Wikipedia: Carbon-Fiber

| Page | Page 33 of of 33 | |

Page 18: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

6. PROCESS CFK (CFRP) MATERIALS FROM CARBON-FIBER, EPOXY RESIN, DIISOCYANATE

Since CFK (CFRP) consists of 60% carbon fiber and 40% resin.As a polymer matrix for embedding the carbon fibers, the polyisocyanurate Blendur is the DLR within the project used, consisting of 80% diisocyanate (MDI) and 20% epoxy resin in. Energy consumption per kg CFK = 135 kWh (primary energy).

(german-text)Da CFK besteht zu 60 % aus Carbonfasern und zu 40 % aus Harz. Als Polymermatrix zur Einbettung der Carbonfasern wird vom DLR im Rahmen des Projektes das Polyisocyanurat Blendur(r) eingesetzt, bestehend aus 80 % Diphenylmethandiisocyanat (MDI) und 20 % Epoxidharz. Energieverbrauch pro kg CFK = 135 kWh (primäre Energie).

DATA/GRAPHIC-SOURCE : INTERNET

| Page 1 of 1 |

Carbon Fiber60%

20 €/kg

Epoxy Resin8%

2 €/kg

Diisocyanate32%

3 €/kg

Carbon Yarn

FIBERPREFORM

Excipients

Polyamide Films

Synthet ic Kautschuk

Glass Fiber

Acetone

Hydrocarbons

Page 19: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

7. PRODUCTION PROCESS FOR POLYACRYLONITRILE (PAN) FOR CARBON-FIBER

C3H3N 7.1 TECHNICAL PRODUCTION POLYACRYLONITRILE (PAN) FROM ACRYLNITRILEPolyacrylonitrile is prepared by radical polymerization of acrylonitrile by the precipitation and solution process. Of particular industrial

interest has the solution in dimethylformamide, because by producing directly spinnable polymer solutions the firm Polyacrylonitrile not

to be isolated needs (Fig.). At 20 to 40 ° C and within 25 to 50 hours, about 75% of acrylonitrile set to Polyacrylonitrile. As the initiator

used for. As ammonium persulfate. The unreacted monomer is removed in vacuo and returned to the process. The polymer solution

can be spun directly in wet or dry method for polyacrylonitrile. The method is also suitable for the preparation of copolymers, eg. As

with vinyl acetate, acrylic esters, vinyl pyridine, inter alia, acrylonitrile-styrene copolymers, which still contain Vinylcarbazen, are

characterized by high hardness and serve as a replacement for metal letters. Copolymers of 40% acrylonitrile and 60% vinyl chloride

can be used as fiber material for filters and screens. When cautious heating of Polyacrylonitrile to approximately 200 ° C carried out a

cyclization of adjacent nitrile followed by dehydration; it created this ladder polymers due to their high temperature resistance and good

electrical conductivity is of great interest. Crystal clear, tensile and flexural strength polymers are obtained by copolymerization of

acrylonitrile and methacrylates. Of particular importance are acrylonitrile-butadiene copolymers as synthetic rubber.

RADICAL POLYMERIZATION

Acrylonitrile (IUPAC: Prop-2-ene nitrile) is the nitrile of acrylic acid. It is the simplest unsaturated nitrile.

C3H3N

WORLD-PRODUCTION 4.400.000 t (1996)

| Page 1 of 2 |

Page 20: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

7. PRODUCTION PROCESS FOR POLYACRYLONITRILE (PAN) FOR CARBON-FIBER

7.2 TECHNICAL PRODUCTION ACRYLONITRILE

Acrylonitrile is produced in the ammoxidation, a catalytically controlled reaction of propene with ammonia and pure oxygen. The reaction is also called ammoxidation of propene. This elimination of water produced acrylonitrile with acetonitrile and hydrocyanic acid as byproducts. The catalyst is a mixture of iron, bismuth and molybdenum.

SUBSTANCE 1 SUBSTANCE 2 SUBSTANCE 3 SUBSTANCE 4

HYDROCARBONS PROPEN AMONIAK PURE SAUERSTOFF

RAW MATERIAL C3H6 NH3 O2

SOHIO-PROCESS

Atommass

C 12

H 1

N 14

O 16

REACTION dHR= - 502 kJ/mol (exotherm)

PRODUCTS ACRYLNITRILE ACETONITRIL BLAUSÄURE WATER

90% 2-11% 15-20%

C3H3N C2H3N HCN H2O

QUANTITY 200.000 t/a 15.000 t/a 30.000 t/a

PRICE 1500-2500 €/t

WORLD PRODUCTION ACRYLNITRILE 6.000.000 t (2005)

| Page 2 of 2 |

Page 21: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

8. CARBON MATERIAL CFK (CFRP)/ RAW MATERIAL EPOXY RESIN / CHEMISTRY

EPOXY RESINEPOXIDHARZ

CHEMISTRY/ PRODUCTION EPOXY RESIN FROM BASE CHEMICALSSUBSTANCE 1 SUBSTANCE 2 SUBSTANCE 3

RAW MATERIAL Natriumchlorid Wasser

NaCl H2O

Kochsalz Element

PROCESS 1

(...) to

RAW MATERIAL Propen Chlor

C3H6 Cl

Hydrocarbon Element

Natronlauge

NaOH

PROCESS 2

to

Allylchlorid Allylchlorid

C3H5Cl C3H5Cl

(...) (...)

Salzsäure Kalilauge

HCl(aq) KOH

PROCESS 3

to

Kaliumchlorid

KCl

to

Kaliumtetraiodomercurat(II) Kalilauge

HgI4K2 KOH

PROCESS 5

to (...)

RAW MATERIAL Quecksilber(II)-oxid Chlor

HgO Cl

Element

PROCESS 6

to

RAW MATERIAL Dichlormonoxid Wasser

Cl2O H2O

Element

PROCESS 7

| Page 1 of 2 |

Page 22: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

8. CARBON MATERIAL CFK (CFRP)/ RAW MATERIAL EPOXY RESIN / CHEMISTRY

to

Hypochlorige Säure Hypochlorige Säure

HClO HClO

RAW MATERIAL Natriumchlorid Wasser

NaCl H2O

Kochsalz Element

PROCESS 8

to

Allylchlorid Natriumhydroxid

C3H5Cl NaOH

Hypochlorige Säure

HClO

PROCESS 9

(...)

RAW MATERIAL Benzol Sauerstoff

C6H6 O2

Hydrocarbon Element

Propen

C3H6

Hydrocarbon

PROCESS 10

to

Phenol Aceton

C6H6O C3H6O

PROCESS 11

to to

Bisphenol A Epichlorhydrin

C15H16O2 C3H5ClO

75%

PROCESS 12

to

Bisphenol-basierte Epoxid-Harze

Bisphenol-A-diglycidylether

C21H24O4

| Page 2 of 2 |

Page 23: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

9. CARBON MATERIAL CFK (CFRP)/ RAW MATERIAL DIISOCYANATE / CHEMISTRY

DIISOCYANATE (MDI) DIPHENYLMETHANDIISOCYANAT (MDI)

CHEMISTRY/ PRODUCTION DIISOCYANATE FROM BASE CHEMICALSSUBSTANCE 1 SUBSTANCE 2 SUBSTANCE 3

RAW MATERIAL Stickstoff Wasserstoff

N2 H2

Element Element

PROCESS 1

RAW MATERIAL Calciumcarbonat

CaCO3

kohlensaurer Kalk

PROCESS 2 Kalkbrennen

to to

RAW MATERIAL Ammoniak Natriumchlorid Calciumoxid

NH3 NaCl CaO

Kochsalz

PROCESS 3

Solvay-Verfahren

to

Natriumcarbonat Salpetersäure

Na2CO3 HNO3

PROCESS 4

to (...)

Natriumnitrat Schwefelsäure

NaNO3 H2SO4

PROCESS 5

to

Salpetersäure Natriumhydrogensulfat Salpetersäure

HNO3 NaHSO4 HNO3

RAW MATERIAL Schwefel Sauerstoff

S O2

Element Element

PROCESS 6

to

RAW MATERIAL Schwefeldioxid Sauerstoff

SO2 O2

Element

PROCESS 7

to

| Page 1 of 3 |

Page 24: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

9. CARBON MATERIAL CFK (CFRP)/ RAW MATERIAL DIISOCYANATE / CHEMISTRY

RAW MATERIAL Schwefeltrioxid Wasser

SO3 H2O

Element

PROCESS 8

to

Schwefelsäure Schwefeltrioxid

H2SO4 SO3

PROCESS 9

to

Dischwefelsäure Wasser

H2S2O7 H2O

PROCESS 10

to

Schwefelsäure Schwefelsäure

H2SO4 H2SO4

RAW MATERIAL Naphtha

C5-C12

Hydrocarbons

PROCESS 11 STEAMCRACKER

RAW MATERIAL Hexan

C6H14

Hydrocarbons

Cyclohexan

C6H12

PROCESS 12 STEAMCRACKING KATALYTISCHES REFORMING

DEHYDRATION

to to to

RAW MATERIAL Benzol Benzol Schwefelsäure

C6H6 C6H6 H2SO4

Hydrocarbons Hydrocarbons Salpetersäure

HNO3

PROCESS 13Nietrirung / Nietriesäure

to

RAW MATERIAL Nitrobenzol Wasserstoff

C6H5NO2 H2

Element

PROCESS 14

| Page 2 of 3 |

Page 25: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

9. CARBON MATERIAL CFK (CFRP)/ RAW MATERIAL DIISOCYANATE / CHEMISTRY

RAW MATERIAL Methanol Sauerstoff

CH4O O2

BASIS CHEMICAL Element

PROCESS 15

to to

Anillin Formaldehyd

C6H7N CH2O

PROCESS 16

(...)

RAW MATERIAL Kohlenstoffmonoxid Chlor

CO Cl2

Synthesegas Element

PROCESS 17

to to

Diaminodiphenylmethan Phosgen

C13H14N2 CCl2O

PROCESS 18

to

Diisocyanat (MDI)

C15H10N2O2

Diphenylmethan-2,2 -diisocyanat′

Diphenylmethan-2,4 -diisocyanat′

Diphenylmethan-4,4 -diisocyanat′

| Page 3 of 3 |

Page 26: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

10. MAX. POSSIBLE PRODUCTS OF 10.000 ha Algae-Farm

10.1 BASE CHEMICALS FROM MAIN PRODUCTS

60% 8% 32%

POLYACRYLONITRILE (PAN) EPOXY RESIN DIISOCYANAT (MDI)

RAW MATERIALS RAW MATERIALS RAW MATERIALSPROPYLENE Natriumchlorid Stickstoff

C3H6 NaCl N2

AMMONIA Propen Wasserstoff

NH3 C3H6 H2

PURE OXYGEN Chlor Calciumcarbonat

O2 Cl CaCO3

PROCESS 1 Sauerstoff Natriumchlorid

SOHIO-PROCESS O2 NaCl

MAIN-PRODUCT Benzol Schwefel

ACRYLONITRILE C6H6 S

90% PROCESS Sauerstoff

C3H3N 1-12 O2

PROCESS 2 MAIN-PRODUCT Benzol

RADICAL-POLYMERIZATION Bisphenol-A-diglycidylether C6H6

MAIN-PRODUCT C21H24O4 Methanol

POLYACRYLONITRILE CH4O

( C3H3N )n Kohlenstoffmonoxid

CO

Chlor

Cl2

PROCESS

1-18

MAIN-PRODUCTDiisocyanat (MDI)

C15H10N2O2

• HYDROCARBONS

• ALCOHOL

• SYNTHESEGAS

| Page 1 of 3 |

Page 27: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

10. MAX. POSSIBLE PRODUCTS OF 10.000 ha Algae-Farm

10.2 CALCULATION RAW PRODUCTS RANGE

Pos. QUANTITY [ t ] PROCESSING QUANTITY [ t ] MARKET PRICE

1 33.600 SYNTHESEGAS

2 24.000 POLYETHYLEN 50.000 800-1500 €/t

3 100.000 POLYACRYLONITRILE, EPOXY RESIN 150.000 1500-2500 €/t

4 91.200 ETHENE 41.000 2-5€ /kg

5 52.800 CFC-FREE REFRIGERANTS (R601) 50.000 Isopentene 2000 €/t

6 43.200 BENZOL 50.000 1200-2000 €/t

7 72.000 ETHENE, PROPENE, BENZOL, OTHER

8 60.000 DIESEL BIOFUEL 60.000 1 €/kg

9 3.200 PARAFFIN

SUM 480.000 401.000 112 MW

84%

| Page 2 of 3 |

CALORIFIC VALUE ( BIOFUEL )11,30

DENSITY1,20 Liter/ kg (15°C)0,83 kg/ Liter (15°C)

TOTAL480.000.000 NET kg/a

3.637.190578.313.253 NET Liter/a

TYPE HYDROCARBON PROPORTION QUANTITY UNIT

1 C1 ( METHANE ) 7,00% 33.600.000 kg/a

40.481.928 Liter/a

2 C2 ( ETHANE ) 5,00% 24.000.000 kg/a

28.915.663 Liter/a

3 C3 ( PROPANE ) 21,00% 100.800.000 kg/a

121.445.783 Liter/a

4 C4 ( BUTANE ) 19,00% 91.200.000 kg/a

109.879.518 Liter/a

5 C5 11,00% 52.800.000 kg/a

63.614.458 Liter/a

6 C6 9,00% 43.200.000 kg/a

52.048.193 Liter/a

7

C7 6,00% 28.800.000 kg/a

34.698.795 Liter/a

C8 5,00% 24.000.000 kg/a

28.915.663 Liter/a

C9 4,00% 19.200.000 kg/a

23.132.530 Liter/a

8

C10 3,50% 16.800.000 kg/a

20.240.964 Liter/a

C11 3,00% 14.400.000 kg/a

17.349.398 Liter/a

C12 2,00% 11.566.265 kg/a

11.566.265 Liter/a

C13 1,50% 7.200.000 kg/a

8.674.699 Liter/a

C14 1,00% 4.800.000 kg/a

5.783.133 Liter/a

C15++ 2,00% 9.600.000 kg/a

11.566.265 Liter/a

9 ++ AREA 10000

PRODUCTIVITY 57.831

kWh/ kg

NET bbl./a

ha

NET Liter /ha

Page 28: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

10. MAX. POSSIBLE PRODUCTS OF 10.000 ha Algae-Farm

10.3 WAYS OF PRE-PROCESSING (ECO/BIO) HYDROCARBONS FOR CHEMICALS

DATA/GRAPHIC SOURCE : INTERNET

| Page 3 of 3 |

HYDROCARBONS

Page 29: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.1 OVERVIEW INDEXPROJECT (ECO) HYDROCARBONS-PLANT Biopower 1,750 GW

+ ALGAE FARM 10.000 ha (10x10)km

MAIN PRODUCTS HYDROCARBONS FOR CHEMICALS FOR CARBON MATERIALS

ORGANIZATOR AGDO & PARTNER

INVESTOR SEARCH ON

OPERATION TIME 8000 h/a (Mo.-Fr. / 3-shift operation)

TYP (COMBINATION) 3rd GENERATION / BIOMASS

4th GENERATION / AIR,WATER

ALGAE (BIOMASS) PRODUCTION 1.000.000 t/a dry ; 100 t/ha (AGDO-Photobioreactor Version 3)

ALGAE (BIOMASS) CARBON CONTENT 60%

TECHNOLOGY / CARBON EFFICIENCY 85%

MAX. CARBON PRODUCTION 510.000 t/a

AVERAGE HYDROCARBONS PRODUCTION > 480.000 t/a ( nC + (n+1)H2--> CnH2n+2 )

SPECIALS (NEW) ALGAE ELECTRO-MECHANICAL FILTRATION MACHINE

ALGAE DECOMPOSITION MACHINE

CARBONATOR SYSTEM (Hydrothermal Carbonization)

FISCHER-TROPSCH SYNTHESIS

BIOGAS + CLEANING / METHANE

STEAMREFORMING

CO2-RECYCLING

DISTILLATION

TANKS

KPP-ENERGY

11.2 SHORT SUMMARY / DESCRIPTION

| Page 1 of 15 |

Page 30: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.3 OVERVIEW PLANT Biopower 175MW FOR (ECO/BIO) HYDROCARBONS PRODUCTION

11.4 DESIGN STUDY11.4 DESIGN STUDY

ALGAE FARM

1 CARBONATOR SYSTEMS

2 FISCHER-TROPSCH SYNTHESIS

3 TANKS

4 BIOGAS

5 BIOGAS CLEANING / STEAMREFORMING

6 CO2-RECYCLING

KPP ENERGY

graphic source : AGDO

| Page 2 of 15 |

Page 31: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.5 SPEZIFICATION-DATA ALGAEGROWTH RATE (0,04 VOL.-% CO2 IN AIR ) 30 g / m²*d

0,75 g dry/Liter*d (solid)

SIZE Min. 1 µm

PROTEIN 50%

FAT, OIL 10%

CARBOHYDRATES 33%

OTHER SUBSTANCES 7%

ALGAE + WATER 0,06 % solid (growing 0,001 % solid/Liter*d)

WITHDRAWAL FROM NITROGEN IN WATER AND AIR (N2)GROWTH RATE (0,04 VOL.-% CO2 IN AIR ) ? g / m²*d

? g dry/Liter*d

PROTEIN 28%

FAT, OIL 20%

CARBOHYDRATES 40%

OTHER SUBSTANCES 7%data source : average / internet

data source : SUBITEC

| Page 3 of 15 |

Page 32: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.6 AGDO PHOTOBIOREACTOR VERSION 3 (03.09.2015)

AIM LIFETIME GLASS-CONSTRUCTION 100 years

VOLUME 1 m³ / 1000 Liter

GLASS SURFACE FRONT AND BACK

GLASS WEIGHT SUM 1000 kg

DISTANCE TO THE NEXT PHOTOBIOREACTOR 4 m

MAX. GROWTH RATE (0,04 VOL.-% CO2 IN AIR ) 30 g dry / m²*d

STANDARD GROWTH RATE (0,04 VOL.-% CO2 IN AIR ) 0,5-1 g dry /Liter*d

data source : SUBITEC

NUMBER AGDO PHOTOBIOREACTORS Version 3 / 1ha 24 x 25 / 600

MANUFACTORING COASTS + MONTAGE 1ha 2,5 Mio. € / DEPRECIATION 200 years*

SUM VOLUME 1ha 600 m³

AIM ALGAE- BIOMASS PRODUCTION 100 t dry/a*ha

NEED ELECTRICAL POWER 60 kW

NEES ELECTRICAL ENERGY 525.000 kWh

NEED ELECTRICAL POWER COOLING 20 kW

NEES ELECTRICAL ENERGY COOLING 175.000 kWh

graphic source : AGDO

|*COMPONENT OF GLASS/CARBON FIBER-REINFORCED COMPOSITE MATERIAL WITH A PROTECTIVE LAYER AGAINST EROSION AND LIGHTNING: + 500.000 €/ha

| Page 4 of 15 |

Page 33: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.7 DRAWING ALGAE-FARM 10.000 ha (10x10)km / GROUNDPLAN - PERSPECTIVE

graphic source : AGDO

graphic source : AGDO

• GOOD-STRUCTURE/DESIGN PLAN FOR ALGAE-FARM + PRODUCTION HALLS IN NEXT CHAPTER 12

| Page 5 of 15 |

Page 34: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.8 SPEZIFICATION DATA / CARBONATOR MODUL

40% CARBOHYDRATES = 400.000 t/a dry CARBOHYDRATES

HTK-PROCESS = 200.000 t/a STANDARD BIOCOAL (solid- & liquid- phase)• + 17.500 t/a CO2 (GAS-PHASE)• + 150.000 t/a H2O (WASTE-WATER FROM HTK-REACTION)• + 1.140.000 t/a H2O (PROCESS-WATER FOR HTK)

STANDARD HTK-PROCESS WITH COMPLET ALGAETemp. [°C] Time,h % Solids %C Mass % Yield %C Algae Coal

200 0,5 25 65 42 60

5,5 kWh/kgdata source : Steven M. Heilmann / University of Minnisttov

PLANNING AGDO HTK-PROCESS WITH CARBOHYDRATES FROM ALGAETemp. [°C] Time,h % Solids %C Mass % Yield %C Algae Coal

200 0,5 25 65 95

9,6 kWh/kg

RESULT OF HYDROTHERMAL CARBONIZATION OF CARBOHYDRATES

data source : average / HTC/HTK – LITERATUR / Internet

AVERAGE CARBON-EFFICIENCY SOLID-PHASE LIQUID-PHASE GAS-PHASE

63% 30% 7%

STANDARD BIOCOAL (dry) C6-Liquid IN PROCESS-WATER CO2

data source : average / HTC/HTK – LITERATUR / Internet

PARTICLE SIZE 99% STANDARD BIOCOAL < 300 mikro 10^-6 m

• SOLUTION: ELECTRO-MECHANICAL SEPARATION OF CARBON-LIQUID

• CARBON IN LIQUID-PHASE MEANS LOSSES AND POLLUTION (TOC)

| Page 6 of 15 |

Page 35: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.9 CARBONATOR SYSTEM 1750 kW 140 Units 140 x 8000 h/a

TO PROCESS ALGAE-Carbohydrates dry 400.000 t/a 8000 h/a

50.000 kg/h 8000 h/a

HTK-PROCESS TIME 1h

INPUT ALGAE-Carbohydrates dry 320 kg/h 1 x 8000 h/a

INPUT ALGAE-Carbohydrates 20% dry 1920 kg/h 1 x 8000 h/a

OUTPUT STANDARD BIOCOAL 12% dry 1920 kg/h 1 x 8000 h/a

OUTPUT STANDARD BIOCOAL (liq.+dry) 180 kg/h 1 x 8000 h/a

1440 t/a 1 x 8000 h/a

OUTPUT STANDARD BIOCOAL dry SUM 200.000 t/a Max. 140 x 8000 h/a

ELECTRICAL POWER RATING 2 kW_elec. 16.000 kWh_elec.

TOTAL THERMAL POWER RATING 40 kW_th. 320.000 kWh_th.

CATALYST 800 Kg/ a (100) mL/h 1.585 € COSTSdata source : AGDO CALCULATIONS / SIMULATIONS

11.10 UNIT THERMO DRYERHORIZONTAL THIN FILM DRYER 150 Units

INPUT BIOCOAL 30% dry 670.000 t/a

83.000 kg/h

MACHINE TIME 8000 h / a

ELECTRICAL DRIVE POWER 45 kW

TOTAL ELEC. CONSUMPTION x kWh

MASS CONVERSION 1 Unit 585 kg / h

4.690 t/a

OPERATING 275°C Thermal oil

GEOMETRY DATA DIMEN. 1,3 x 8 m D x L

WEIGHT 9 t Empty

11,5 t Full

INPUT PARAFFIN LIQUEFIED / SULFUR SEPARATION ? Kg / h OUT SH2

UTILIZATION x

RATED POWER THERMAL OIL 600 kW

EVAPORATED WATER 1 Unit 310 Kg / h 275°C

x t/a

THERMAL OIL PLANT / HYDROGEN 150 Units

MACHINE TIME 2880 h / a

RATED GROSS POWER THERMAL OIL 600 kW

SURFACE LOOSES 5 kW

THERMAL OIL TOTAL CONTENT 1,74 m³ Mobiltherm 594

VOLUME FLOW 230 °C 8,36 m³ /h

VOLUME FLOW 85 °C 7,39 m³ /h

ROTARY PUMP 2,3 kW 16 bar

kWh_e

ENERGY EFFICIENCY TH. OIL SYSTEM 80%

RATED NET POWER THERMAL OIL 700 kW

GEOMETRY DATA DIMEN. 1,5 x 2,5 m D x L

FUEL x kWh_th. HYDROGEN

x Nm³ / hdata source : AGDO CALCULATIONS

| Page 7 of 15 |

Page 36: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.11 STEAMREFORMING / FROM BIOGAS TO SYNGAS TO HYDROCARBONS

11.11.1 SPECIFICATION LIST / QUANTITY BIOMASS (SUBSTRATE) - METHANEknow source :NES GmbH / Michael Burow

• ALGAE Protein + Oil = 50% = 500.000 t/a dry

• TO SEE AS ORGANIC WASTE

• 900.000 Nm³ /d Methan (CH4) <=> 370 MW BIOGAS-POWER

• OPERATION TIME 365/24, 8760 h/a

• WE NEED 6200 NESGAZ BIOGAS PLANTS Á 60kW

| Page 8 of 15 |

DATA NESGAZ-BIOGAS-MODUL 15 kW

SUBSTRATE NEED SOLID USE BIOGAS METHAN / dKg / Tag % % m3CH4

1030 8 80 0,55 36

330 25 80 0,55 36

470 21 91 0,4 36

MARKET-WASTE 400 25 90 0,4 36

FRUIT-WASTE 400 25 90 0,5 36

FOOD-WASTE 185 40 98 0,5 36

FISCH-WASTE 270 30 90 0,5 36

PARK,GARDEN-WASTE 175 42 97 0,5 36

ORGANIC W ASTE 90 75 90 0,6 36

67,5 100 36

1 100 0,8 0,7

m3CH4/kgVB

CATTLE MANURE (liq.)

CATTLE MANURE (sol.)

GRASS (fresh)

Page 37: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.11.2 DIFFERENT BIOMASS-PHASES IN SAME BIOGAS-MODUL NESGAZ 60kWINPUT I HYDROLYSE Oil, Protein 85 kg/h 20% solid 80% liquid

INPUT II HYDROLYSE Liquid medium B 57 kg/h 2% solid 98% liquid

INPUT I+II (MIX) HYDROLYSE Substrat 142 kg/h 12% solid 88% liquid

Biogas - 5%

INPUT I+II (MIX) ENDSTORE Liquid medium 7% solid

INPUT SEPERATOR Liquid medium 7% solid 150 Liter / h

OUTPUT I SEPERATOR Liquid medium B 2% solid

OUTPUT II SEPERATOR Biomass-Waste 30% solidknow source : AGDO CALCULATIONS

• This design is only possible because of water conten 88% in substrat.

• Such design means less time, material and logistics for the construction of these facilities and less energy

consumption for greater performance.

graphic source : google-pictures / internet

11.11.3 BIOGAS CLEANING / SPECIFICATION DATA EQUIPMENT

know source : COMPANY / EMAIL CONTACT

| Page 9 of 15 |

NESGAZ BIOGAS MODULS 60 kW 10 6.200BIOGAS POWER 0,60 MW 372

1 625BIOGAS RAW 2.400 Nm3/d 1.500.000BIOGAS RAW 100 Nm3/h 62.500BIOGAS RAW 875.000 Nm3/a 546.875.000

0,030

26.250

3 kW 1.8750,75

656.250

75 kW 46.875106 – 110 °C

BIOGAS CLEAN / METHAN 99,9% 60 Nm3/h 37.500

52.500 €/a 32.812.500

Factor

Spez. Elec. Energy Cons. kWh/Nm3

Electrical Energy Consumption kWh/a

Electrical Power Consumption

Spez. Thermal Energy Cons. kWh/Nm3

Thermal Energy Consumption kWh/a

Thermal Energy Power

Working Temperature

INVESTMENT (0,01 €/kWh)

Page 38: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.11.4 STEAMREFORMER / US PATENT No. 2579843 FROM CHARLES K. MADER 1951

graphic source : PATENT 1951

1. INPUT OXYGEN / O2

2. INPUT

1. STEAM / H2O

2. METHANE / CH4

3. CARBON DIOXID / CO2

3. a/b OUTPUT SYNTHESEGAS / H2 + CO

POSSIBLE REACTIONS IN STEAMREFORMINGCH4 + 0,5O2 <=> CO + 2H2 dH = -110 kJ/mol CH4- Verbrennung / partielle Oxidation

CH4 + CO2 <=> 2CO + 2H2 dH = +247 kJ/mol Trockene Reformierung

CH4 + H2O <=> CO + 3H2 dH= +206 kJ/mol Steam Reforming

• FROM SYNTHESEGAS IT IS PRODUCE HYDROCARBONS

| Page 10 of 15 |

Page 39: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.12 FISCHER-TROPSCH SYNTHESIS PRODUCTS

11.12.1 THE PRODUCTS FROM THE BIOCOAL-TO- LIQUID PROCESS OF 10.000 ha Algae-Farmknow source : fischer-tropsch-archive.org

• THE HYDROCARBONS CAN BE SEPARATED BY DISTILLATION.

| Page 11 of 15 |

MASS Tonnen[ % ] TOTAL OLE. BOILING DENSITY PAR. BOILING DENSITY AROM.

C 100% 480.000 80% °C Kg / Liter 20% °C Kg / Liter

1 7,2% x CH4 -161 0,07

2 5,0% C2H4 104 0,18 C2H6 -88 0,12

GAS 24,0% 115.200 kg/ a 9.-13

3 12,0% 13.824 C3H6 -48 C3H8 -42 0,51

4 10,0% C4H8 N-Butan C4H10 -1 0,58

-6 -12

4

1

-7

LPG 30,0% 144.000 Liter/ a 12,87

5 x C5H10 0,65 C5H12 36 0,63

30 28

37 10

36

31

39

20

6 x C6H12 0,67 C6H14 69 0,66

1-Hexen [ 3 ] 63 60 0,65

[ 7 ] 54 63 0,66

50 0,65

[ 3 ] 58 0,66

7 x C7H14 94 0,70 C7H16 98 0,68

[ 4 ]

8 x C8H16 121 0,71 C8H18 126 0,72

[ 3 ]

[ 6 ]

[ 4 ]

[ 2 ]

9 x C9H18 147 0,73 C9H20 151 0,73

[ 34 ]

10 x C10H20 172 0,74 C10H22 174 0,73

BENZIN 35,0% 168.000 Liter / a 11.-11,6

11 x C11H22 193 0,75 C11H24 196 0,74

12 x C12H24 216 0,75 C12H26 216 0,75

13 x C13H26 232 0,77 C13H28 234 0,76

14 x C14H28 C14H30 268 0,77

15 x C15H30 C15H32 287 0,77

DIESEL 8,0% 38.400 Liter / a 11,8

S.-PAR.32

2,0% 9.600 Kg / a300 0,81

H.-PAR.75

1,0% 4.800 Kg / a800 0,89

10000 haAlgae-Farm

Methan

Ethen Ethan kWh / kg

Propen Propan

Butene

n-Buten Isobutan

cis-2-Buten

trans-2-Buten

Isobuten kWh / kg

Pentene N-Pentan

Pent-1-en Isopentan

cis-Pent-2-en Neopentan

trans-Pent-2-en

2-Methyl-but-1-en

Isopenten

3-Methyl-but-1-en

Hexene N-Hexan

2-Methylpentan

4-Methyl-1-penten 3-Methylpentan

2,2-Dimethylbutan

2,3-Dimethyl-1-buten 2,3-Dimethylbutan

1-Hepten N-Heptan

2-Methylhexan

3-Methylhexan

X-Dimethylpentan

3-Ethylpenthan

2,2,3-Trimethylbutan

1-Octen N-Octan

2/3/4-Methylheptan

X-Dimethylhexan

3-Ethylhexan

Y-Trimethylpentan

3-Ethyl-2/3-methylpen.

2,2,3,3-Tetramethylbut.

1-Nonen N-Nonan

1-Decen N-Decan

kWh / kg

1-Undecen N-Undecan

N-Dodecan N-Dodecan

1-Tridecen N-Tridecan

Pendecen N-Pendecan

Hexedecen N-Hexedecan kWh / kg

Page 40: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.12.2 DATA OF REAL FISCHER-TROPSCH MINIPLANTknow source : fischer-tropsch-archive.org

| Page 12 of 15 |

Page 41: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.13 PROCESS- TECHNOLOGY/ DISTILLATION OF CRUDE HYDROCARBONS

graphic source : google-pictures / internet

| Page 13 of 15 |

Page 42: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.14 KPP-ENERGY / KINETIC POWERPLANT / ENERGY FOR COMPLET PLANT

CALCULATION FORMULA WITH DIFFERENT SIZES FOR OUTPUT LEVELSknow-graphic source : Rosch GmbH / Inventor

| Page 14 of 15 |

Ermittlung der erreichbaren Leistung aus der Auftriebskraft:

POWER

h [m] V [l] A F [N] d [m] P [W]

Leistung

28 25 140 34335 1,0 17168 0,4 43125

P = 12.000 W ?geht schon, bei einer Bauhöhe von 200m,

Graue und rote Felder werden errechnet und sind gesperrt setzen Sie das einmal ein (zur Erheiterung)

P = V * A * 9,81 * d/2 * 2pi * n

A: Anzahl der Auftriebskörper ergibt sich aus der Bauhöhe h bei einem angenommenen senkrechten Abstand der Auftriebskörper von 0,2 m: A = h/0,2

F: die gesamte Auftriebskraft ergibt sich aus dem Auftrieb eines Körpers mal der Anzahl der Körper (für Wasser = 1 x 9,81 N).

Leistung an der oberen Rolle und Welle (von dort geht es dann zum Generator - über ein filigranes Kettengetriebe):

d

V

h

g = 9,81m/s 2

M [Nm] n [s -1]

Bauhöhe gesamt

Volumen eines Auftriebskörpers

[Liter]

Anzahl der Auftriebs-

körper

gesamte Auftriebskraft

Durchmesser Umlenkrolle

oben

Drehmoment an der Rolle

Drehzahl der Rolle

Hellgrüne Felder sind einzusetzen,

V: Volumen des Auftriebkörpers in Litern ergibt die Auftriebskraft in Kilopond

M: das Drehmoment an der Rolle ergibt sich aus der gesamten Auftriebskraft F mal Radius der Umlenkrolle d/2P: die mech. Leistung P an der Welle ergibt sich aus Drehmoment x Drehzahl x 2pi

1kp = 9,81N (Unser Physikprofessor an der TU: "Ein Newton ist ungefähr eine Knackwurscht".)

20 cmangenommen

F

P

Page 43: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

11. MOST IMPORTANT MACHINES & EQUIPMENT FOR (ECO/BIO) HYDROCARBONS PRODUCTION& CARBON

11.15 CO2- RECYCLING SYSTEM

CARBON DIOXIDE CO2 AS A RAW MATERIAL SOURCE FOR THE SYNGAS PRODUCTION.

• THE WATER-GAS SHIFT REACTION AND ELECTROLYSIS OF HYDROGEN MAKE IT POSSIBLE.

With the addition of water vapor, the CO reacts to form CO2 and H2. The reaction enthalpy of -41.2 kJ / mol is quite low. With increasing temperature, the chemical equilibrium of the reaction products is shifted to the reaction educts. At about 700 ° C, the negative free enthalpy rises to 0 kJ / mol, at higher temperatures, the reaction proceeds no longer spontaneous.

At higher temperatures, there is a rapid kinetics, but an unfavorable chemical equilibrium. Iron (III) oxide catalysts accelerate the reaction at low temperatures of 250 to 450 ° C. In chemical reactors, the shift reaction is often carried out in two stages: in a high temperature and low temperature shift step (short: HT and LT Shift). The CO content may be so, depending on the operation of the reactor .-% lower at 0.6 to 1.5 vol.

CARBON DIOXIDE CO2 FROM HTK-PROCESS / 10.000 ha Algae-Farm

• 7% = 13.600 t/a

CARBON DIOXIDE CO2 FROM BIOGAS-PROCESS / 10.000 ha Algae-Farm

• 30% = 132.000 t/a

CARBON DIOXIDE CO2 FROM RAW SYNTHESEGAS / 10.000 ha Algae-Farm

• 20% = 108.000 t/a

• SUM 252.000 t/a = 30% OF TOTAL BIOMASS-PRODUCTION-ALGAE / 10.000 ha Algae-Farm

• RESULT• The transformation of CO2 using hydrogen excess of synthesis gas could increase productivity by max.

30% increase. Since energy costs by Kinetic - Power generator are much lower than the cost of biomass (energy Content- comparison) to expand so it would be worth the investment to this part.

CARBON DIOXIDE CO2 IN AIR

• 0,04 % Vol. = 48 g / Nm³ AIR

• AIR Density 1,2 kg / m³

know source : Chemistry / Watergas-Shift-Reaction

| Page 15 of 15 |

Page 44: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

12. COAST CALCULATION SYSTEM FOR 480.000 t/a (ECO/BIO) HYDROCARBONS (10.000 ha Algae-Farm)

12.1 MAIN CALCULATION / INVESTMENTplus-factor fluctuation

MAIN LOCATIONS

EQUIPMENT AND MACHINERY (Lifecyclus 50 Years/ Maintenance 20%) 1,00 1,1 Bill. €

[ALGAE-FARM 10.000 ha (10x10)km (Lifecyclus 200 Years)] non [25 Bill. €]

CARBONATOR + DRYER 100 Mio. €

FISCHER-TROPSCH PLANT (2000 €/t) + DISTILLATION + TANKS 800 Mio. €

BIOGAS + STEAMREFORMING 200 Mio. €

[ BIOGAS CLEANING ] [35.000.000 €/a]

[ENERGY PRODUCTION KPP 1 GW] non [4 Bill. €]

DIRECT BESIDE LOCATIONS

EQUIPMENT INSTALLATION 0,15 0,165 Bill. €

PIPES AND FITTINGS 0,60 0,66 Bill. €

MEASUREMENT AND CONTROL TECHNOLOGY 0,35 0,385 Bill. €

ELECTRICAL 0,2 0,22 Bill. €

CONSTRUCTION (BUILDINGS, FOUNDATIONS, SCAFFOLDING) 0,65 0,715 Bill. €

MISCELLANEOUS (INSULATION, FIRE PROTECTION, TERMINAL SERVICES FOR ENERGY)

0,15 0,165 Bill. €

SUBTOTAL Z.1 3,10 3,4 Bill. €

INDIRECT BESIDE LOCATIONS

PLANNING (ENGINEERING) 0,40 0,44 Bill. €

UNFORESEEN 0,20 0,22 Bill. €

TOTAL FACTOR 3,70 2,9...4,5 4 Bill. €

TOTAL INVESTMENT 200 Years Lifecyclus [++] 40 Bill. €

| Page 1 of 2 |

Page 45: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

12. COAST CALCULATION SYSTEM FOR 480.000 t/a (ECO/BIO) HYDROCARBONS (10.000 ha Algae-Farm)

12.2 MAIN CALCULATION / ECONOMY / MANUFACTURING PRICE BARREL (159 Liter)

| Page 2 of 2 |

CALCULA TION M A NUFA CTURING PRICE (ECO) HYDROCARBONS

% % 1 t

PROD UCT REVENUES

RA W M A TERIA LS & S UPPLIES

CARBO N QUANTITY 600.000 t/a0,00 € 0 € 0 0 € 0%

77 € 7,7 36.960.000 € 9%

EX PEN D ITURE

Jobs 99 € 9,9 47.520.000 € 11%

27 € 2,7 12.960.000 € 3%200 € 20 96.000.000 € 23%

45 € 4,5 21.600.000 € 5%8 € 0,8 3.840.000 € 1%

SUM I 456 € 59,3 218.880.000 € 52%

417 € 40,7 200.000.000 € 48%INVESTM ENT 40.000.000.000 €SUM II 873 € 100 418.880.000 € 100%

REV EN UES

N ET PROD UC TION H YD ROC A R BONS [t] 1 480.000N ET PROD UC TION H YD ROC A R BONS [Barre l / 1 5 9 Lite r] 3.924.528

873 € 87 418.880.000 €107 €

1.000 €120 €

OV ER FLOW 61.120.000 €

Q uantity P ric e C o as ts C oas tson

Chem icalsCatalystsRaw Materials & SUPPLIES

Maintenance-Expense – JobsMaintenance-Expense – Material (Plant-Renew al every 50 Years)

Base-Taxes, InsurancesInterest fo r W orking Cap ital ( 5 % )

Repayment 200 years

Manufacturing Coast 1 t HydrocarbonsManufacturing Coast 1 Barrel (159 L iter) Hydrocarbons

Sel l ing Price 1 t HydrocarbonsSel l ing Price 1 Barrel (159 L iter) Hydrocarbons

Page 46: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

13. STRUCTURE / DESIGN GROUND PLAN FOR ALGAE-FARM, PRODUCTION HALLS + PLANTS

13.1 3D-VIEW 2500 ha from 20.000 ha USABLE AREA

• (8) x 1 ROUND -UNIT

• CIRCLE DIAMETER 5,7 km

• CIRCULAR AREA 2514 ha; 25 km²

• LENGTH SQUARE 5,7 km x 5,7 km

• SQUARE AREA 3300 ha; 33 km²

• PRODUCTION HALL GROUNDLEVEL 14 ha; 140.000 m²

• ALGAE-FARM 1250 ha

• SEAWATER GREENHOUSES + AQUAPONICS

• SUGAR-TO-CARBON-(FOOD) PRODUCTION AREA GROSS 1250 ha

• SUGAR-TO-CARBON-(FOOD) PRODUCTION AREA NET 625 ha

GRAPHIC-SOURCE: AGDO

| Page | Page 11 of of 22 | |

5,7 km

Page 47: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

13. STRUCTURE / DESIGN GROUND PLAN FOR ALGAE-FARM, PRODUCTION HALLS + PLANTS

13.2 3D-VIEW 8 x 2500 ha SUM 20.000 ha USABLE AREA

GRAPHIC-SOURCE: AGDO

13.3 LOCATION / ZONE / NEW GREEN INDUSTRY

GRAPHIC-SOURCE: AGDO

| Page | Page 22 of of 22 | |

Space for coast-effective expansion

Page 48: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

14. RECYCLING

SHORT-SUMMARY

The development of lightweight structures has been promoted in recent years, primarily by optimizing existing material concepts taking into account manufacturing technically feasible designs. A very interesting group of materials with respect to the combination of light yet high-strength and stiffeners component structures are carbon fiber reinforced plastics (CFRP). Therefore, the very high potential for lightweight construction leads increasingly used in all areas of traffic engineering, the wind power generation, the sporting goods industry, mechanical engineering and medical technology. Although CFRP represented by the combination of materials and the solid connection between carbon fibers and a polymer matrix in itself is not just recycling material recycling processes are possible and based on the price of newly manufactured carbon fibers and economically.

CFK Valley Recycling touts an automated process that enables the company to offer RCF customers high-quality, customizable products, such as mats and veils. Process steps include:

• (1) sorting• (2) pyrolysis• (3) tailored surface treatment • (4) cutting to tailored length• (5) distribution

| Page | Page 11 of of 11 | |

Page 49: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

15. SPECIAL / FINANCIAL ANALYSIS AQUAPONIC FARMING / + SEAWATER GREENHOUSES

15.1 3D VIEW AQUAPONICS FARMING + SEAWATER GREENHOUSES

graphic-source: AGDO• INVESTMENT SEAWATER COOLING GREENHOUSES 0,5 ha : 750.000 €• INVESTMENT INSIDE EQUIPMENT (AQUAPONICS) NET AREA 0,27 ha : 2.500.000 €

• 18 x 150 m² = 2700 m² = 0,27 ha

THE FISH EXCREMENTS ARE EXCELLENT FERTILIZER

| Page 1 of 5 |

FISH-TANK

SUMP

WATER-CIRCULATION

Page 50: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

15. SPECIAL / FINANCIAL ANALYSIS AQUAPONIC FARMING / + SEAWATER GREENHOUSES

15.2 CALCULATION ECONOMIC / AQUAPONICS FARMING + SEAWATER GREENHOUSES

Instantly Organic (Pty) Ltd / Refilwe Sorinyane

Instantly Organics TM Aquaponics & Aquaponics Industrial Hardware Store

THE BUSINESS PLAN 1st April 2015 / INFO-DATA:

1ha glasshouse produces the same as 9.4ha field

0.2736 hectares (four x 684m sq.) produces 486,400 lettuce and 218.880kg of fish per year.

| Page 2 of 5 |

F inancia l Ana ly sisBudget F ore ca st

Home-Based Aquaponic F arm ing : One Pum p Two Sump F lood and Dra in Sy ste m (Patent Pending) 9:900 m .sq.with T ilapia , Swiss Chard and Sugar Beet 3

Year (9) 0 (27) 1 (126) 2 (702) 3 (900) 4 (2700 m ² )5Land 0 0 0 0 0Building 0,00 36.000,00 36.000,00 36.000,00 36.000,00Liner (Pla stic)IBC/Tote 380 1.140,00 5.320,00 29.640,00 38.000,00Pum p 29,5 88,5 413 2.301,00 29.500Pip ing 258 774 3.612,00 20.124,00 25.800,00F ish Thermom eter 6,4 19,2 89,6 499,2 6.400,00Grow Lights 219,9 659,7 3.078,60 17.152,20 219.900,00Perm its 0 125 125 125 125Refrigera tor 500 1.500,00 7.000,00 39.000,00 50.000,00Other Equipm ent 14.161,40 42.484,20 198.259,60 1.104.589,20 1.416.140,00

TOTAL CAPITAL EXPENDITURE (USD) 15.555,20 82.790,60 253.897,80 1.249.430,60 1.821.865,00 5.465.595,00Labour 0 540 2.520,00 14.040,00 180.000,00Wa te rSeeds 135,2 405,6 1.892,80 10.545,60 13.520,00F ish F ood 235,2 705,6 23.520,00F ish Stock 260 0 0 0 0Site Prep 823,2 2.469,60 11.524,80 64.209,60 82.320,00Plum bing and E lectrica l 258 774 3.612,00 20.124,00 25.800,00Incorpora ttion Costs 0 400 400 400 400Lega l 0 400 400 400 400Tax Expert 0 400 400 400 400We bsite 2000 1000 1000 1000 1000

TOTAL WORKING CAPITAL COSTS (USD) 3.711,60 7.094,80 21.749,60 111.119,20 327.360,00 982.080,00TOTAL BUDGET COSTS (USD) 19.266,80 89.885,40 275.647,40 1.360.549,80 2.149.225,00 6.447.675,00

Instantly Organic (Pty) Ltd (copyright)

Financial A nalysis Sales and Product ion Forecast

Home-Based A quaponics Farming : One Pump Two Sump Flood and Drain System (Patent-Pending) 9:900 m.sq.

with Tipalia, Swiss Chard and Sugar Beet

Year 0 (9)1 (27) 2 (126) 3 (702) 4 (900) 5 (2700 m² )

Harvest # of Units USD/kg Product

12 1 6 0 0 1 ,6 C hard 2 0 .8 8 9 ,6 0 6 2 .6 6 8 ,8 0 2 9 2 .4 5 4 ,4 0 1 .6 2 9 .3 8 8 ,8 0 2 .0 8 8 .9 6 0 ,0 0

7 ,8 8 0 0 2 ,5 Sugar Beet 1 5 .6 0 0 ,0 0 4 6 .8 0 0 ,0 0 2 1 8 .4 0 0 ,0 0 1 .2 4 8 .0 0 0 ,0 0 1 .5 6 0 .0 0 0 ,0 0

1 ,3 4 0 0 2 ,5 T ilapia 2 .3 4 0 ,0 0 7 .0 2 0 ,0 0 3 2 .7 6 0 ,0 0 1 8 2 .5 2 0 ,0 0 2 3 4 .0 0 0 ,0 0

2 1 3 .2 0 0 8 Fingerlings 6 .3 3 6 ,0 0 1 9 .0 0 8 ,0 0 8 8 .7 0 4 ,0 0 4 9 4 .2 0 8 ,0 0 6 3 3 .6 0 0 ,0 0

GROSS INCOME 45.165,60 135.496,80 632.318,40 3.554.116,80 4.516.560,00 13.549.680,00

* 4 c rops per fis h

* 1 kg per s ugar beet

* 0 .6 8 kg per head c hard

* 0 .6 kg per fingerl ing

* exc udling V A T

TOTA L GROSS INCOME 45.165,60 135.496,80 632.318,40 3.554.116,80 4.516.560,00 13.549.680,00

I ns tantly O rganic (P ty) L td (c opyright)

Page 51: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

15. SPECIAL / FINANCIAL ANALYSIS AQUAPONIC FARMING / + SEAWATER GREENHOUSES

15.3 ROI / RETURN OF INVESTMENT / FOOD PRODUCTION 0,25 ha

Expenditure Fish Food 1,5 €/kg := 460.000 €

Mass Balance Food : Fish = 1,4

Expenditure Water: 2,5 €/ m³; 8 Liter/ d * m² is used := 20.000 €

Expenditure electrical Energy: 0,05 €/kWh; 125.000 kWh/a := 7000 €/a

Expenditure Seeds := 150.000 €/a

table-source: AGDO

| Page 3 of 5 |

698.000 P1 200.000 kgTOM A TOS & FIS H

2.196.000 €698.000 P2 200.000 kg

769.960 €= 400.000 P3 100.000 kg

5 0 -5 0 400.000 P4 100.000 kgHA RVE ST 200HA RVE ST 1600

167.943 €€ 600 t/a S U M

8 - 100.000 €

719.710 € 50.250 €878.400 € 40%

167.943 €- - 250.000 €

m arginal variable 197.640 € 9%

21,8% 167.943 €/

0 €+ 280.000 € 20.250 €

+383.825 €

+ 3,0%

769.960 €- + 50.000 € 30.000 €

7,7% 0% ++ 10.125 €

ROI 1,5% 0 €+ 43.700 € +

50 a

35,2% 769.960 €+ 0 €

* / 0%

+410.000 € 280.000 € 30.000 € 100.000 €

2.185.000 €= + +

510.000 €2.185.000 €

+

+

675.000 € 100.000 €+ +

1.000.000 €+ - = +

SHOP SW AREHOUSE

0,25 hagross

t/ha Field net sales volum e productst/ha A quaponics sales volum e

Fac tor pack ingprofit com m is ion

logist icstaxes

profit contribut ion cos ting

win capital profitsales volum e f is hf ood+s eeds m aintenance

o u ts id e ca p ita linterest quick jobs water

sales volum e costs energyinsurances

restdeprec iation

interes tcapital sales volum e

envelopeequity capital o uts ide cap ita l

stocks f is h f ood+s eeds water pack ingtotal capital energy

working supportsinves ted ca pita lcapital

Gre e nhouse cashAquaponic s

discount paym ent interes t 5%capital

Page 52: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

15. SPECIAL / FINANCIAL ANALYSIS AQUAPONIC FARMING / + SEAWATER GREENHOUSES

15.4 ROI / RETURN OF INVESTMENT / CARBON BLACK PRODUCTION on 10.000 ha

Worldwide Carbon Black Market Over 12 Million Metric Tons by 2015CARBON BLACK (from OHG Ruos, dark, dirt-colored) is a black, powdery solid which is depending on the quality and

use of 80 to 99.5 percent of carbon. For this reason, in the industry as a technical term for the manufacture as a raw

material of the English concept of carbon black, sometimes even the slightly older term carbon black, prevailed.

• PROCESS• BEET-TO-SUGAR 15% := 480.000 t/a• SUGAR-TO-CARBON 0,6 := 288.000 t/a

• SALES PRICE• BLACK CARBON := 2000 €/t• FISCH / FISHMEAL := 4 €/kg

table-source: AGDO

| Page 4 of 5 |

288.000.000 P1 1.600.000 t/aB EET & FIS H

16.576 .000 .000 €288.000.000 P2 1.600.000 t/a

7 .124.960 .000 €= 8.000 .000 .000P3 2.000.000 t/a

5 0 -5 0 8.000 .000 .000P4 2.000.000 t/aHA RVE ST 80HA RVE ST 640

749 .537.000 €€ 7 .200.000t/a S U M

8 - 828.800.000 € 5%

6.179 .960.000 € 945.000.000 €6 .630 .400.000 € 40%

749 .537.000 €- - 500.000.000 € 3%

m arginal variable 1 .491 .840.000 € 9%

10,5% 749.537 .000 €/

0 €+ 4 .000.000 .000 € 405.000 .000 €

+4 .680 .886.000 €

+ 3,0%

7.124 .960 .000 €- + 96 .000 .000 € 540.000 .000 €

3,9% 0% ++ 202 .500.000 €

ROI 1,5% 0 €+ 382 .386.000 € +

50 a

37,3% 7.124 .960 .000 €+ 0 €

* / 0%

+5 .368.800 .000 € 4 .000 .000.000 € 540.000.000 € 828.800 .000 €

19 .119 .300.000 €= + +

5.369 .300.000 €

19.119 .300 .000 €+

+

13 .500.000.000 € 500.000 €+ +

250.000 .000 €+ - = +

SHOP SW AREHOUSE

NET 5000 hagross

t/ha F ield net sales volum e produc tst/ha A quaponics sales volum e

Fac tor pack ingprofit com m ision

logis ticstaxes

profit contribution cos ting

win capital profitsales volum e f is hf ood+s eeds m aintenance

outs ide c ap ita l

in te res t quick jobs watersales volum e cos ts energy

insurancesres t

deprec iation

interes tcapital sales volum e

envelopeequity capital o uts ide cap ita l

stocks f is hf ood+s eeds water pack ingtotal capital energy

work ing supportsinves ted ca pita lcapital

Gre e nhouse cashAquaponic s

discount paym ent interes t 5%capital

Page 53: ECO/BIO CARBON FIBER & CARBON MATERIALS, HYDROCARBON CHEMICALS

15. SPECIAL / FINANCIAL ANALYSIS AQUAPONIC FARMING / + SEAWATER GREENHOUSES

15.5 BUSINESS RESEARCH & DEVELOPMENTApples Golden Delicious 3.49 € / kgApples Cripps Pink 3.99 € / kgPineapple 3.99 € / kgApricot 0.69 € / 100 gAvocado Hass 1.99 € / St.Banana yellow 2.99 € / kgBasil 1.99 € / PotCauliflower 2.99 € / St.Pear 4.79 € / kgBroccoli 4.99 € / kgBuschbohnen 6.99 € / 100 gButternut squash 4.89 € / kgChampignon 2.69 € / cupDate tomatoes 0.69 € / 100 gCocktail / date tomatoes 0.59 € / 100 gCocktail tomatoes 0.69 € / 100gFennel 3.99 € / kgCucumber 2.49 € / St.Urgurke 1.99 € / St.Melon Piel de 2.99 € / St.Ginger 0.99 € / 100gTomatoes, vine tomatoes 0.59 € / 100 gWhite cabbage 2.69 € / kgOnion red 2.49 € / kgOnion yellow 2.59 € / kgBall zucchini 2.99 € / kgZucchini 2.99 € / kgLemons Verdello € 2.99 / kgZwetschen 5.99 € / kg

Baby Potato Potato 3.59 € / 2kg bagPotato baked potato 2.29 € / 2 kg bagNew potato Karlena mk 2.79 € / kgNew Potato Rosara vfk 2.79 € / kgKiwi 0.79 € / 100 gGarlic 1.29 € / 100gKohlrabi 1.49 € / St.Coconuts 1.99 € / St.Lettuce 1.49 € / St.Turmeric 1.59 € / 100 gMango 2.69 € / St.Carrots 2,39 / 1 kg bagNectarines yellow 5.29 € / kgOranges Valencia 4.80 € / kgOlive green with almonds filled the glass 2.80 € / 100 gPaprika red, green peppers 3.99 € / bagPaprika red 5.99 € / kgPaprika yellow 5.59 € / kgParsley smooth 1.69 € / Bund veracktPeach Vineyard Peaches knows 0.79 € / 100 gLeeks 3.99 € / KgRed beets 3.29 € / kgCabbage 3.49 € / kgSpinach, baby spinach 2.69 € / baggage.Spinach 6.99 € / 100gCelery, potato 2.79 € / St.Celery 2.99 € / pieceTomatos 3,49 €/kg

moch more products...

| Page 5 of 5 |