ece 802-604: nanoelectronics prof. virginia ayres electrical & computer engineering michigan...

47
ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University [email protected]

Upload: gloria-wolaver

Post on 14-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

ECE 802-604:Nanoelectronics

Prof. Virginia AyresElectrical & Computer EngineeringMichigan State [email protected]

Page 2: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Lecture 02, 03 Sep 13

In Chapter 01 in Datta:

Two dimensional electron gas (2-DEG)DEG goes down, mobility goes up

Define mobility (and momentum relaxation)

One dimensional electron gas (1-DEG)Special Schrödinger eqn (Con E) that accommodates:

Confinement to create 1-DEGUseful external B-field

Experimental measure for mobility

Page 3: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Lecture 02, 03 Sep 13

Two dimensional electron gas (2-DEG):

Datta example: GaAs-Al0.3Ga0.7As heterostructure HEMT

Page 4: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Sze

MOSFET

Page 5: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

IOP Science website;Tunnelling- and barrier-injection transit-time mechanisms of terahertz plasma instability in high-electron mobility transistors2002 Semicond. Sci. Technol. 17 1168

HEMT

Page 6: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

For both, the channel is a 2-DEG that is created electronically by band-bending

MOSFET

2 x Bp =

Page 7: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

HEMT

For both, the channel is a 2-DEG that is created electronically by band-bending

Page 8: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

= 1.798 eV= 1.424 eVEg1

EC1

EF1EV1

EC2EF2

EV2

Eg2

p-type GaAs

Heavily doped

n-type Al0.3Ga0.7As

Moderately doped

Example: Find the correct energy band-bending diagram for a HEMT made from the following heterojunction.

Page 9: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

= 1.798 eV= 1.424 eVEg1

EC1

EF1EV1

EC2EF2

EV2

Eg2

p-type GaAs

Heavily doped

n-type Al0.3Ga0.7As

Moderately doped

Page 10: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Eg1

EC1

Evac

qm1

EF1EV1

q1

Evac

qm2q2

EC2EF2

EV2

Eg2

Page 11: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Eg1

EC1

Evac

qm1

EF1EV1

q1

Evac

qm2q2

EC2EF2

EV2

Eg2

Electron affinities q for GaAs and AlxGa1-xAs can be found on Ioffe

Page 12: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

True for all junctions: align Fermi energy levels: EF1 = EF2.This brings Evac along too since electron affinities can’t change

Eg1

EC1

Evac

qm1

EF1EV1

q1Evac

qm2q2

EC2EF2

EV2

Eg2

Page 13: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Put in Junction J, nearer to the more heavily doped side:

Junction J

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Page 14: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Join Evac smoothly:

J

Eg1

EC1

Evac

qm1

EF1EV1

q1

Page 15: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Anderson Model: Use q1 “measuring stick” to put in EC1:

J

Page 16: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Use q1 “measuring stick” to put in EC1:

J

Page 17: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Result so far: EC1 band-bending:

J

Page 18: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Use q2 “measuring stick” to put in EC2:

J

Page 19: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Use q2 “measuring stick” to put in EC2:

J

Page 20: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Results so far: EC1 and EC2 band-bending:

J

Page 21: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Put in straight piece connector:

J

EC

Page 22: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Keeping the electron affinities correct resulted in a triangular quantum well in EC (for this heterojunction combination):

J

In this region: a triangular quantum well has developed in the conduction band

EC

Page 23: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Use the energy bandgap Eg1 “measuring stick” to relate EC1 and EV1:

J

EC

Page 24: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Use the energy bandgap Eg1 “measuring stick” to relate EC1 and EV1:

J

EC

Page 25: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Result: band-bending for EV1:

J

EC

Page 26: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Use the energy bandgap Eg2 “measuring stick” to put in EV2:

J

EC

Page 27: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Use the energy bandgap Eg2 “measuring stick” to put in EV2:

J

Page 28: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Results: band-bending for EV1 and EV2:

J

EC

Page 29: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Put in straight piece connector:

J

Note: for this heterojunction:EC > EV

EC

EV

Page 30: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Put in straight piece connector:

J

EC

EV

EC = (electron affinities) = q2 – q1

(Anderson model)

EV = ( E2 – E1 ) - EC => Egap = EC + EV

Page 31: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Put in straight piece connector:

J

EC

EV

“The difference in the energy bandgaps is accommodated by amount EC in the conduction band and amount EV in the valence band.”

Page 32: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

J

NO quantum well in EV

NO quantum well for holes

EC

EV

Page 33: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Evac

qm2q2

EC2EF2

EV2

Eg2

Eg1

EC1

Evac

qm1

EF1EV1

q1

Correct band-bending diagram:

J

EC

EV

Page 34: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

HEMT

Is the Example the same as the example in Datta?

Page 35: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

No. The L-R orientation is trivial but the starting materials are different

= 1.798 eV = 1.424 eVEg1

EC1

EF1EV1

EC2EF2

EV2

Eg2

p-type GaAs

Heavily doped

n-type Al0.3Ga0.7As

Moderately doped

= 1.798 eV = 1.424 eVEg1

EC1EF1

EV1

EC2EF2

EV2

Eg2

intrinsic GaAs

undoped

n-type Al0.3Ga0.7As

Moderately doped

Our example

Datta example

Page 36: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Orientation is trivial. The smaller bandgap material is always “1”

= 1.798 eV = 1.424 eVEg1

EC1

EF1EV1

EC2EF2

EV2

Eg2

p-type GaAs

Heavily doped

n-type Al0.3Ga0.7As

Moderately doped

= 1.798 eV = 1.424 eVEg1

EC1EF1

EV1

EC2EF2

EV2

Eg2

intrinsic GaAs

undoped

n-type Al0.3Ga0.7As

Moderately doped

Our example

Datta example

Page 37: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

HEMT

In this region: a triangular quantum well has developed in the conduction band.2-DEG Allowed energy levels

Physical region

Page 38: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Example: Which dimension (axis) is quantized? zWhich dimensions form the 2-DEG? x and y

In this region: a triangular quantum well has developed in the conduction band.2-DEG Allowed energy levels

Physical region

Page 39: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Example: Which dimension is quantized?Which dimensions form the 2-DEG?

In this region: a triangular quantum well has developed in the conduction band.2-DEG Allowed energy levels

Physical region

Page 40: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Example: approximate the real well by a one dimensional triangular well in z

Using information from ECE874 Pierret problem 2.7 (next page), evaluate the quantized part of the energy of an electron that occupies the 1st energy level

Page 41: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Page 42: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

U(z) = az

z

Page 43: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

n = ?

m = ?

a = ?

Page 44: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

n = 0 for 1st

m = meff for conduction band e- in GaAs. At 300K this is 0.067 m0

a = ?

Page 45: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Your model for a = asymmetry ?

z

U(z) = 3/2 z

U(z) = 1 z

Page 46: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

D. L. Mathine, G. N. Maracas, D. S. Gerber, R. Droopad, R. J. Graham, and M. R. McCartney. Characterization of an AlGaAs/GaAs asymmetric triangular quantum well grown by a digital alloy approximation. J. Appl. Phys. 75, 4551 (1994)

An asymmetric triangular quantum well was grown by molecular‐beam epitaxy using a digital alloy composition grading method. A high‐resolution electron micrograph (HREM), a computational model, and room‐temperature photoluminescence were used to extract the spatial compositional dependence of the quantum well. The HREM micrograph intensity profile was used to determine the shape of the quantum well. A Fourier series method for solving the BenDaniel–Duke Hamiltonian [D. J. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 (1966)] was then used to calculate the bound energy states within the envelope function scheme for the measured well shape. These calculations were compared to the E11h, E11l, and E22l transitions in the room‐temperature photoluminescence and provided a self‐consistent compositional profile for the quantum well. A comparison of energy levels with a linearly graded well is also presented

Page 47: ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

VM Ayres, ECE802-604, F13

Jin Xiao ( 金晓 ), Zhang Hong ( 张红 ), Zhou Rongxiu ( 周荣秀 ) and Jin Zhao ( 金钊 ). Interface roughness scattering in an AlGaAs/GaAs triangle quantum well and square quantum well. Journal of Semiconductors Volume 34 072004, 2013

We have theoretically studied the mobility limited by interface roughness scattering on two-dimensional electrons gas (2DEG) at a single heterointerface (triangle-shaped quantum well). Our results indicate that, like the interface roughness scattering in a square quantum well, the roughness scattering at the AlxGa1−xAs/GaAs heterointerface can be characterized by parameters of roughness height Δ and lateral Λ, and in addition by electric field F. A comparison of two mobilities limited by the interface roughness scattering between the present result and a square well in the same condition is given