ece 6540, lecture 07ece6540/slides/2016_ece6540_class007.pdf · sufficient statistics in the end,...

37
Variations ECE 6540, Lecture 07 Cramer-Rao Lower Bounds

Upload: others

Post on 22-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Variations

    ECE 6540, Lecture 07Cramer-Rao Lower Bounds

  • Last Time Rao-Blackwell-Lehmann-Scheffe Theorem

    Complete Sufficient Statistics

    2

  • Sufficient Statistics Rao-Blackwell-Lehmann-Scheffe Theorem

    If �𝜽𝜽 is an unbiased estimator of 𝜽𝜽 and 𝑇𝑇 𝒙𝒙 is a sufficient statistic for 𝜽𝜽, then�𝜽𝜽 = E �𝜽𝜽|𝑇𝑇 𝒙𝒙 is

    1) A valid estimator for 𝜽𝜽 (not dependent on 𝜽𝜽)2) Unbiased3) Of lesser or equal variance than that of �𝜽𝜽, for all 𝜽𝜽 (each element of �𝜽𝜽 has

    lesser or equal variance)4) If the sufficient statistic is complete, then �𝜽𝜽 is the MVU estimator

    3

    𝑇𝑇 𝒙𝒙 represents more information

  • Sufficient Statistics A Complete Statistics A statistic is complete if there is only one function𝑔𝑔 ⋅ of the statistic t = 𝑇𝑇 𝑥𝑥

    that is unbiased.

    That is, A statistic is complete if only one 𝑔𝑔 ⋅ exists such that

    𝐸𝐸 𝑔𝑔 𝑇𝑇 𝒙𝒙 = 𝜽𝜽

    4

  • Sufficient Statistics In the end, Applying Neyman-Fisher factorization can be difficult…

    Proving that a statistic is complete can be difficult… (unless you have an exponential family PDF)

    Rao-Blackwell-Lehmann-Scheffe Theorem can be difficult…

    What else can we do????

    5

  • Cramer-Rao Lower Bounds

    6

  • Cramer-Rao Lower Bounds Question: How could we know if an estimator is a MVUB estimator or is close to an MVUB estimator?

    7

  • Cramer-Rao Lower Bounds The Cramer-Rao Lower Bound (CRLB) Sets a lower bound on the variance of any unbiased estimator

    As a result: An estimator that achieves the CRLB is the MVUB estimator

    The CRLB tells sets a benchmark for estimator variance. — Estimators with a variance “close” to the CRLB are almost the MVUB

    estimator. — No estimator can have a variance lower than the CRLB.

    𝜃𝜃

    Estimator variance

    Cramer Rao Lower Bound

    Common type of analysis

    8

  • Cramer-Rao Lower Bounds The Cramer-Rao Lower Bound (CRLB) Sets a lower bound on the variance of any unbiased estimator

    Warning about bounds! Bounds usually tell us what we cannot achieve, not what we can achieve.

    — i.e., we do not obtain the maximum lower bound

    In some scenarios, bounds can be very “loose” — Therefore the Cramer-Rao Lower Bound may not be achievable

    (or possibly even that informative)

    𝜃𝜃

    Estimator variance

    Cramer Rao Lower Bound

    9

  • Cramer-Rao Lower Bounds The Cramer-Rao Lower Bound (for a single parameter) is defined by

    Assume 𝐸𝐸 �̂�𝜃 − 𝐸𝐸 𝜃𝜃 = 0 (unbiased)

    Assume 𝐸𝐸 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜃𝜃𝜕𝜕𝜃𝜃

    = 0 , for all𝜃𝜃 (regularity condition)

    Then

    var �̂�𝜃 ≥1

    𝐼𝐼 𝜃𝜃 , 𝐼𝐼 𝜃𝜃 = −𝐸𝐸𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝜃𝜃

    𝜕𝜕𝜃𝜃2

    Fisher Information

    Log-Likelihood functionThe score

    10

  • Cramer-Rao Lower Bounds The Cramer-Rao Lower Bound (for a vector parameter) is defined by

    Assume 𝐸𝐸 �𝜽𝜽− 𝐸𝐸 𝜽𝜽 = 0 (unbiased)

    Assume 𝐸𝐸 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    = 0 , for all𝜃𝜃 (regularity condition)

    Then

    𝐂𝐂�𝜽𝜽 − 𝑰𝑰−1 𝜽𝜽 ≽ 0 , 𝐼𝐼𝑖𝑖𝑖𝑖 𝜽𝜽 = −𝐸𝐸𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽

    𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑖𝑖

    FisherInformation

    Matrix

    Log-Likelihood functionThe score

    Positive Semidefinitive

    11

  • Cramer-Rao Lower Bounds Positive Semidefinite Matrices A matrix 𝑴𝑴 is positive semidefinite if

    𝒙𝒙𝐻𝐻𝑴𝑴𝒙𝒙 ≥ 0 , for all 𝑥𝑥 ∈ ℂ𝑁𝑁

    Also, A matrix 𝑴𝑴 is positive semidefinite if every eigenvalue of 𝑴𝑴≥ 0

    Therefore,

    𝐂𝐂�𝜽𝜽 − 𝑰𝑰−1 𝜽𝜽 ≽ 0 is equivalent to x𝐻𝐻𝐂𝐂�𝜽𝜽𝑥𝑥 ≥ x𝐻𝐻𝑰𝑰−1 𝜽𝜽 𝑥𝑥 for all 𝑥𝑥 ∈ ℂ𝑁𝑁

    Or the eigenvalues of 𝐂𝐂�𝜽𝜽 − 𝑰𝑰−1 𝜽𝜽 are all ≥ 0

    12

  • Cramer-Rao Lower Bounds A Looser Cramer-Rao Lower Bound (for a vector parameter) is defined by

    Assume 𝐸𝐸 �𝜽𝜽− 𝐸𝐸 𝜽𝜽 = 0 (unbiased)

    Assume 𝐸𝐸 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    = 0 , for all𝜃𝜃 (regularity condition)

    Then

    var �𝜽𝜽𝑖𝑖 ≥ 𝑰𝑰−1 𝜽𝜽 𝑖𝑖𝑖𝑖, 𝐼𝐼𝑖𝑖𝑖𝑖 𝜽𝜽 = −𝐸𝐸𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽

    𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑖𝑖

    FisherInformation

    Matrix

    Log-Likelihood functionThe score

    13

  • Cramer-Rao Lower Bounds A efficient estimator An estimator is said to be efficient if it meets the Cramer-Rao lower bound.

    — Covariance matrix = the inverse Fisher information matrix— 𝐂𝐂�𝜽𝜽 = 𝑰𝑰−1 𝜽𝜽

    14

  • Cramer-Rao Lower Bounds Cramer-Rao Lower Bound Proof (for one parameter)

    Assume �̂�𝜃 is unbiased and has a PDF 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝐸𝐸 �̂�𝜃 𝑥𝑥 = �−∞

    �̂�𝜃 𝑥𝑥 𝑝𝑝 𝑥𝑥;𝜃𝜃 𝑑𝑑𝑥𝑥 = 𝜃𝜃

    �−∞

    �̂�𝜃 𝑥𝑥𝜕𝜕𝑝𝑝 𝑥𝑥;𝜃𝜃𝜕𝜕𝜃𝜃 𝑑𝑑𝑥𝑥 =

    𝜕𝜕𝜃𝜃𝜕𝜕𝜃𝜃

    �−∞

    �̂�𝜃 𝑥𝑥𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃 𝑝𝑝 𝑥𝑥;𝜃𝜃 𝑑𝑑𝑥𝑥 = 1

    �−∞

    �̂�𝜃 𝑥𝑥 − 𝜃𝜃𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃 𝑝𝑝 𝑥𝑥;𝜃𝜃 𝑑𝑑𝑥𝑥 = 1

    �−∞

    �̂�𝜃 𝑥𝑥 − 𝜃𝜃 2𝑝𝑝 𝑥𝑥;𝜃𝜃 𝑑𝑑𝑥𝑥 �−∞

    ∞𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃

    2

    𝑝𝑝 𝑥𝑥;𝜃𝜃 𝑑𝑑𝑥𝑥 ≥ 1

    𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃𝜕𝜕𝜃𝜃

    =𝜕𝜕𝑝𝑝 𝑥𝑥; 𝜃𝜃𝜕𝜕𝜃𝜃

    1𝑝𝑝 𝑥𝑥; 𝜃𝜃

    Express as integral

    Take derivative of both sides

    Cauchy-SchwartzInequality

    Apply regularity condition [new term is equal to 0]

    15

  • Cramer-Rao Lower Bounds Cramer-Rao Lower Bound Proof (for one parameter)

    Assume �̂�𝜃 is unbiased and has a PDF 𝑝𝑝 𝑥𝑥;𝜃𝜃

    �−∞

    �̂�𝜃 − 𝜃𝜃 2𝑝𝑝 𝑥𝑥;𝜃𝜃 𝑑𝑑𝑥𝑥 �−∞

    ∞𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃

    2

    𝑝𝑝 𝑥𝑥;𝜃𝜃 𝑑𝑑𝑥𝑥 ≥ 1

    var �̂�𝜃 𝐸𝐸𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃

    2

    ≥ 1

    var �̂�𝜃 ≥1

    𝐸𝐸𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃

    2

    var �̂�𝜃 ≥1

    𝐸𝐸𝜕𝜕2 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃2

    Express as expectations

    Simplify

    See next slide for this proof

    16

  • Cramer-Rao Lower Bounds

    𝐸𝐸𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃= 0

    �−∞

    ∞𝜕𝜕 ln 𝑝𝑝 𝑥𝑥; 𝜃𝜃

    𝜕𝜕𝜃𝜃𝑝𝑝 𝑥𝑥;𝜃𝜃 = 0

    𝜕𝜕𝜕𝜕𝜃𝜃

    �−∞

    ∞𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃𝑝𝑝 𝑥𝑥;𝜃𝜃 = 0

    �−∞

    ∞𝜕𝜕2 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃

    𝜕𝜕𝜃𝜃2𝑝𝑝 𝑥𝑥; 𝜃𝜃 +

    𝜕𝜕 ln 𝑝𝑝 𝑥𝑥; 𝜃𝜃𝜕𝜕𝜃𝜃

    𝜕𝜕𝑝𝑝 𝑥𝑥; 𝜃𝜃𝜕𝜕𝜃𝜃

    = 0

    �−∞

    ∞𝜕𝜕2 ln 𝑝𝑝 𝑥𝑥; 𝜃𝜃

    𝜕𝜕𝜃𝜃2𝑝𝑝 𝑥𝑥;𝜃𝜃 +

    𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃𝜕𝜕𝜃𝜃

    𝜕𝜕 ln 𝑝𝑝 𝑥𝑥; 𝜃𝜃𝜕𝜕𝜃𝜃

    𝑝𝑝 𝑥𝑥; 𝜃𝜃 = 0

    𝐸𝐸𝜕𝜕2 ln 𝑝𝑝 𝑥𝑥; 𝜃𝜃

    𝜕𝜕𝜃𝜃2+ 𝐸𝐸

    𝜕𝜕 ln 𝑝𝑝 𝑥𝑥; 𝜃𝜃𝜕𝜕𝜃𝜃

    2

    = 0

    𝐸𝐸𝜕𝜕2 ln 𝑝𝑝 𝑥𝑥; 𝜃𝜃

    𝜕𝜕𝜃𝜃2= −𝐸𝐸

    𝜕𝜕 ln 𝑝𝑝 𝑥𝑥; 𝜃𝜃𝜕𝜕𝜃𝜃

    2

    Regularity condition

    Express as integral

    Take derivative of both sides

    Evaluate derivative

    𝜕𝜕 ln 𝑝𝑝 𝑥𝑥;𝜃𝜃𝜕𝜕𝜃𝜃 =

    𝜕𝜕𝑝𝑝 𝑥𝑥;𝜃𝜃𝜕𝜕𝜃𝜃

    1𝑝𝑝 𝑥𝑥; 𝜃𝜃

    Express as expectation

    17

  • Cramer-Rao Lower Bounds Example: DC signal in Gaussian noise Consider a length 𝑁𝑁 signal defined by

    𝒚𝒚 = 𝐴𝐴𝟏𝟏+𝒘𝒘𝒘𝒘~𝒩𝒩 0,𝜎𝜎2𝑰𝑰

    Determine the Cramer-Rao Lower Bound.

    18

  • Cramer-Rao Lower Bounds Example: DC signal in Gaussian noise Consider a length 𝑁𝑁 signal defined by

    𝒚𝒚 = 𝐴𝐴𝟏𝟏+𝒘𝒘𝒘𝒘~𝒩𝒩 0,𝜎𝜎2𝑰𝑰

    Determine the Cramer-Rao Lower Bound.

    ln 𝑝𝑝 𝒙𝒙;𝐴𝐴 = − ln 2𝜋𝜋 𝑁𝑁𝜎𝜎2 − 12𝜎𝜎2

    𝒙𝒙 − 𝐴𝐴𝟏𝟏 𝑇𝑇𝑰𝑰 𝒙𝒙− 𝐴𝐴𝟏𝟏

    ln 𝑝𝑝 𝒙𝒙;𝐴𝐴 = − ln 2𝜋𝜋 𝑁𝑁𝜎𝜎2 − 12𝜎𝜎2

    𝒙𝒙𝑇𝑇𝒙𝒙− 2𝐴𝐴𝒙𝒙𝑇𝑇𝟏𝟏+ 𝐴𝐴2𝟏𝟏𝑇𝑇𝟏𝟏

    𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝐴𝐴

    𝜕𝜕𝐴𝐴2= − 1

    2𝜎𝜎22𝟏𝟏𝑇𝑇𝟏𝟏 = −𝑁𝑁/𝜎𝜎2

    var �̂�𝐴 ≥ 1−𝐸𝐸 𝜕𝜕

    2 ln 𝑝𝑝 𝒙𝒙;𝜃𝜃𝜕𝜕𝐴𝐴2

    = 𝜎𝜎2

    𝑁𝑁

    19

  • Cramer-Rao Lower Bounds Example: DC signal in Gaussian noise Consider a length 𝑁𝑁 signal defined by

    𝒚𝒚 = 𝐴𝐴+𝒘𝒘𝒘𝒘~𝒩𝒩 0,𝜎𝜎2𝑰𝑰

    Consider the estimation

    �̂�𝐴 =1𝑁𝑁�𝑛𝑛=1

    𝑁𝑁

    𝑦𝑦𝑛𝑛

    Is this an efficient estimator of 𝐴𝐴?

    20

  • Cramer-Rao Lower Bounds Example: DC signal in Gaussian noise Consider a length 𝑁𝑁 signal defined by

    𝒚𝒚 = 𝐴𝐴+𝒘𝒘𝒘𝒘~𝒩𝒩 0,𝜎𝜎2𝑰𝑰

    Consider the estimation

    �̂�𝐴 =1𝑁𝑁�𝑛𝑛=1

    𝑁𝑁

    𝑦𝑦𝑛𝑛

    Is this an efficient estimator of 𝐴𝐴?

    var �̂�𝐴 = var1𝑁𝑁�𝑛𝑛=1

    𝑁𝑁

    𝑦𝑦𝑛𝑛 =1𝑁𝑁2

    �𝑛𝑛=1

    𝑁𝑁

    var 𝑦𝑦𝑛𝑛 =1𝑁𝑁2

    𝑁𝑁𝜎𝜎2 =𝜎𝜎2

    𝑁𝑁

    The variance matches the Cramer-Rao Bound, so the estimator is efficient

    21

  • Cramer-Rao Lower Bounds Example: Two values with Gaussian noise Consider a length 2 signal defined by

    𝒚𝒚 = 𝑨𝑨+𝒘𝒘 , 𝑨𝑨 = 𝐴𝐴1 𝐴𝐴2 𝑻𝑻

    𝒘𝒘~𝒩𝒩 0,𝑪𝑪 , 𝑪𝑪 = 2 11 3𝜎𝜎2

    5 Determine the Cramer-Rao Lower Bound.

    22

  • Cramer-Rao Lower Bounds Example: Two values with Gaussian noise Consider a length 2 signal defined by

    𝒚𝒚 = 𝑨𝑨+𝒘𝒘 , 𝑨𝑨 = 𝐴𝐴1 𝐴𝐴2 𝑻𝑻

    𝒘𝒘~𝒩𝒩 0,𝑪𝑪 , 𝑪𝑪 = 2 11 31

    5𝜎𝜎2, 𝑪𝑪−𝟏𝟏 =

    1𝜎𝜎2

    3 −1−1 2

    Determine the Cramer-Rao Lower Bound.

    ln 𝑝𝑝 𝒙𝒙;𝑨𝑨 = − ln 2𝜋𝜋 𝑪𝑪 − 12𝜎𝜎2

    𝒙𝒙 − 𝑨𝑨 𝑇𝑇𝑪𝑪−𝟏𝟏 𝒙𝒙− 𝑨𝑨

    ln 𝑝𝑝 𝒙𝒙;𝑨𝑨 = − ln 2𝜋𝜋 𝑪𝑪 − 12𝜎𝜎2

    𝒙𝒙𝑇𝑇𝑪𝑪−1𝒙𝒙− 2𝐴𝐴𝒙𝒙𝑇𝑇𝑪𝑪−1𝑨𝑨+𝑨𝑨𝑇𝑇𝑪𝑪−1𝑨𝑨

    𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝑨𝑨

    𝜕𝜕𝐴𝐴12= −3/𝜎𝜎2

    𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝑨𝑨

    𝜕𝜕𝐴𝐴1𝜕𝜕𝐴𝐴2= 1

    𝜎𝜎2

    𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝑨𝑨

    𝜕𝜕𝐴𝐴22= −2/𝜎𝜎2

    3𝐴𝐴12 − 2𝐴𝐴1𝐴𝐴2 + 2𝐴𝐴22

    𝑰𝑰 𝑨𝑨 = 3/𝜎𝜎2 −1/𝜎𝜎2

    −1/𝜎𝜎2 2/𝜎𝜎2

    𝑰𝑰−1 𝑨𝑨 = 2 11 3𝜎𝜎2

    523

  • Cramer-Rao Lower Bounds Example: Two values with Gaussian noise Consider a signal defined by

    𝒚𝒚 = 𝑨𝑨+𝒘𝒘

    𝒘𝒘~𝒩𝒩 0,𝑪𝑪 , 𝑪𝑪 = 2 11 3𝜎𝜎2

    5 Consider the estimator

    �𝑨𝑨 = 𝒚𝒚

    Is this an efficient estimator of 𝑨𝑨?

    24

  • Cramer-Rao Lower Bounds Example: Two values with Gaussian noise Consider a signal defined by

    𝒚𝒚 = 𝑨𝑨+𝒘𝒘

    𝒘𝒘~𝒩𝒩 0,𝑪𝑪 , 𝑪𝑪 = 2 11 3𝜎𝜎2

    5 Consider the estimator

    �𝑨𝑨 = 𝒚𝒚

    Is this an efficient estimator of 𝑨𝑨?

    𝐂𝐂�̂�𝐴 = 𝐂𝐂𝒚𝒚 = 𝑪𝑪 =2 11 3

    𝜎𝜎2

    5The co-variance matrix matches the Cramer-Rao Bound, so the estimator is efficient

    25

  • Cramer-Rao Lower Bounds and Linear Models

  • Cramer-Rao Lower Bounds and Linear Models Relationship between the score function and the MVUB estimator

    Score function: 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    Regularity condition: E 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    = 0

    Fisher Information: 𝑰𝑰 𝜽𝜽 = E 𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽𝜕𝜕𝜽𝜽𝑻𝑻

    Score function + efficient estimator: 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    = 𝑰𝑰 𝜽𝜽 𝒈𝒈 𝒙𝒙 − 𝜽𝜽

    IF the score function can be represented in this way, then 𝒈𝒈 𝒙𝒙 is the MVUB estimator

    27

  • Cramer-Rao Lower Bounds and Linear Models Consider the standard linear model signal of length N 𝒙𝒙 = 𝑯𝑯𝜽𝜽+𝒘𝒘 , 𝒘𝒘~𝒩𝒩 0,𝜎𝜎2𝑰𝑰

    Determine the Cramer-Rao Lower Bound for 𝜽𝜽.

    28

  • Cramer-Rao Lower Bounds and Linear Models Consider the standard linear model signal of length N 𝒙𝒙 = 𝑯𝑯𝜽𝜽+𝒘𝒘 , 𝒘𝒘~𝒩𝒩 0,𝜎𝜎2𝑰𝑰

    Determine the Cramer-Rao Lower Bound for 𝜽𝜽.

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽 =

    𝜕𝜕𝜕𝜕𝜽𝜽 − ln 2𝜋𝜋𝜎𝜎

    2 𝑁𝑁.2 −1

    2𝜎𝜎2 𝒙𝒙 −𝑯𝑯𝜽𝜽𝑇𝑇 𝒙𝒙−𝑯𝑯𝜽𝜽

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜃𝜃𝜕𝜕𝜽𝜽 =

    12𝜎𝜎2

    𝜕𝜕𝜕𝜕𝜽𝜽 𝒙𝒙

    𝑇𝑇𝒙𝒙− 2𝒙𝒙𝑇𝑇𝑯𝑯𝜽𝜽+ 𝜽𝜽𝑇𝑇𝑯𝑯𝑇𝑇𝑯𝑯𝜽𝜽

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽 =

    12𝜎𝜎2

    −2𝑯𝑯𝑇𝑇𝒙𝒙+ 2𝑯𝑯𝑇𝑇𝑯𝑯𝜽𝜽

    𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽𝜕𝜕𝜽𝜽𝑇𝑇 = 𝑰𝑰 𝜽𝜽 =

    1𝜎𝜎2𝑯𝑯

    𝑇𝑇𝑯𝑯

    Score function: Gradient of the likelihood function

    Hessian of the likelihood function

    29

  • Cramer-Rao Lower Bounds and Linear Models Relationship between the score function and the MVUB estimator

    Score function: 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    = 1𝜎𝜎2

    −𝑯𝑯𝑇𝑇𝒙𝒙+𝑯𝑯𝑇𝑇𝑯𝑯𝜽𝜽

    Regularity condition: E 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    = 0

    Fisher Information: 𝑰𝑰 𝜽𝜽 = E 𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽𝜕𝜕𝜽𝜽𝑻𝑻

    = 1𝜎𝜎2𝑯𝑯𝑇𝑇𝑯𝑯

    Score function + efficient estimator:

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽 = 𝑰𝑰 𝜽𝜽 𝒈𝒈 𝒙𝒙 − 𝜽𝜽

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    =1𝜎𝜎2𝑯𝑯

    𝑇𝑇𝑯𝑯 𝒈𝒈 𝒙𝒙 − 𝜽𝜽𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽

    𝜕𝜕𝜽𝜽 =1𝜎𝜎2𝑯𝑯

    𝑇𝑇𝑯𝑯 𝑯𝑯𝑇𝑇𝑯𝑯 −1𝑯𝑯𝑇𝑇𝒙𝒙− 𝜽𝜽

    30

  • Cramer-Rao Lower Bounds and Linear Models The MVUB Estimator is therefore

    �𝜽𝜽 𝒙𝒙 = 𝑯𝑯𝑇𝑇𝑯𝑯 −1𝑯𝑯𝑇𝑇𝒙𝒙 = 𝑯𝑯†𝒙𝒙

    Question: What is this above? Have we seen it before?

    31

  • Cramer-Rao Lower Bounds and Linear Models Consider the standard linear model signal of length N 𝒙𝒙 = 𝑯𝑯𝜽𝜽+𝒘𝒘 , 𝒘𝒘~𝒩𝒩 0,𝑪𝑪

    Determine the Cramer-Rao Lower Bound for 𝜽𝜽.

    32

  • Cramer-Rao Lower Bounds and Linear Models Consider the standard linear model signal of length N 𝒙𝒙 = 𝑯𝑯𝜽𝜽+𝒘𝒘 , 𝒘𝒘~𝒩𝒩 0,𝑪𝑪

    Determine the Cramer-Rao Lower Bound for 𝜽𝜽.

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽 =

    𝜕𝜕𝜕𝜕𝜽𝜽 − ln 2𝜋𝜋𝜎𝜎

    2 𝑁𝑁.2 −1

    2𝜎𝜎2 𝒙𝒙 −𝑯𝑯𝜽𝜽𝑇𝑇𝑪𝑪−1 𝒙𝒙−𝑯𝑯𝜽𝜽

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜃𝜃𝜕𝜕𝜽𝜽 =

    12

    𝜕𝜕𝜕𝜕𝜽𝜽 𝒙𝒙

    𝑇𝑇𝒙𝒙− 2𝒙𝒙𝑇𝑇𝑪𝑪−1𝑯𝑯𝜽𝜽+ 𝜽𝜽𝑇𝑇𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯𝜽𝜽

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽 =

    12−2𝑯𝑯𝑇𝑇𝑪𝑪−1𝒙𝒙+ 2𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯𝜽𝜽

    𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽𝜕𝜕𝜽𝜽𝑇𝑇 = 𝑰𝑰 𝜽𝜽 = 𝑯𝑯

    𝑇𝑇𝑪𝑪−1𝑯𝑯

    Score function: Gradient of the likelihood function

    Hessian of the likelihood function

    33

  • Cramer-Rao Lower Bounds and Linear Models Relationship between the score function and the MVUB estimator

    Score function: 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    = 12−2𝑯𝑯𝑇𝑇𝑪𝑪−1𝒙𝒙+ 2𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯𝜽𝜽

    Regularity condition: E 𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽

    = 0

    Fisher Information: 𝑰𝑰 𝜽𝜽 = E 𝜕𝜕2 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽𝜕𝜕𝜽𝜽𝑻𝑻

    = 𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯

    Score function + efficient estimator:

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽 = 𝑰𝑰 𝜽𝜽 𝒈𝒈 𝒙𝒙 − 𝜽𝜽

    𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽𝜕𝜕𝜽𝜽 =

    1𝜎𝜎2𝑯𝑯

    𝑇𝑇𝑪𝑪−1𝑯𝑯 𝒈𝒈 𝒙𝒙 − 𝜽𝜽𝜕𝜕 ln 𝑝𝑝 𝒙𝒙;𝜽𝜽

    𝜕𝜕𝜽𝜽=

    1𝜎𝜎2𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯 𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯 −1𝑯𝑯𝑇𝑇𝑪𝑪−1𝒙𝒙− 𝜽𝜽

    34

  • Cramer-Rao Lower Bounds and Linear Models The MVUB Estimator is therefore

    �𝜽𝜽 𝒙𝒙 = 𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯 −1𝑯𝑯𝑇𝑇𝑪𝑪−1𝒙𝒙

    Question: This is an interesting result. How are some ways we can interpret this?

    35

  • Cramer-Rao Lower Bounds and Linear Models The MVUB Estimator is therefore

    �𝜽𝜽 𝒙𝒙 = 𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯 −1𝑯𝑯𝑇𝑇𝑪𝑪−1𝒙𝒙

    Question: What is our problem when 𝑯𝑯 = 𝟏𝟏 = 1 1 … 1 𝑇𝑇?

    36

  • Cramer-Rao Lower Bounds and Linear Models The MVUB Estimator is therefore

    �𝜽𝜽 𝒙𝒙 = 𝑯𝑯𝑇𝑇𝑪𝑪−1𝑯𝑯 −1𝑯𝑯𝑇𝑇𝑪𝑪−1𝒙𝒙

    Question: What is our problem when 𝑯𝑯 = 𝟏𝟏 = 1 1 … 1 𝑇𝑇? 𝒙𝒙 = 𝟏𝟏𝜃𝜃 = 𝒘𝒘

    �̂�𝜃 𝒙𝒙 =𝟏𝟏𝑇𝑇𝑪𝑪−1𝒙𝒙𝟏𝟏𝑇𝑇𝑪𝑪−1𝟏𝟏

    =𝟏𝟏𝑇𝑇𝑫𝑫𝑇𝑇𝑫𝑫𝒙𝒙𝟏𝟏𝑇𝑇𝑫𝑫𝑇𝑇𝑫𝑫𝟏𝟏

    =𝑫𝑫𝟏𝟏 𝑇𝑇𝑫𝑫𝒙𝒙𝑫𝑫𝟏𝟏 𝑇𝑇𝑫𝑫𝟏𝟏

    =𝑫𝑫𝟏𝟏 𝑇𝑇𝒙𝒙𝒙𝑫𝑫𝟏𝟏 𝑇𝑇𝑫𝑫𝟏𝟏

    =𝒅𝒅𝑇𝑇𝒙𝒙𝒙𝒅𝒅 𝟐𝟐

    Now a scalar value! Pre-whitenedSince C is symmetric, it has a square root

    An averaging operation

    37

    VariationsLast TimeSufficient Statistics Sufficient Statistics Sufficient Statistics Slide Number 6Cramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsCramer-Rao Lower BoundsSlide Number 26Cramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear ModelsCramer-Rao Lower Bounds and Linear Models