ece 546 lecture 16 mna and spice - university of illinois at...

37
ECE 546 – Jose SchuttAine 1 ECE 546 Lecture 16 MNA and SPICE Spring 2020 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

Upload: others

Post on 25-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • ECE 546 – Jose Schutt‐Aine 1

    ECE 546Lecture ‐16

    MNA and SPICESpring 2020

    Jose E. Schutt-AineElectrical & Computer Engineering

    University of [email protected]

  • ECE 546 – Jose Schutt‐Aine 2

    The Node Voltage method consists in determining potential differences between nodes and ground (reference) using KCL

    1 1 1 2 0mA B C

    V V V V VZ Z Z

    For Node 1:

    Nodal Analysis

  • ECE 546 – Jose Schutt‐Aine 3

    22 1 2 0nC D E

    V VV V VZ Z Z

    For Node 2:

    1 21 1 1 1 1

    mA B C C A

    V V VZ Z Z Z Z

    Rearranging the terms gives:

    1 21 1 1 1 1

    nC C D E E

    V V VZ Z Z Z Z

    Defining: 1 1 1 1 1, , , ,A B C D EA B C D E

    G G G G GZ Z Z Z Z

    Nodal Analysis

  • ECE 546 – Jose Schutt‐Aine 4

    Rearranging the terms gives:

    1

    2

    A B C C A m

    C C D E E m

    G G G G G VVG G G G G VV

    The system can be solved to yield V1 and V2.

    Nodal Analysis

  • ECE 546 – Jose Schutt‐Aine 5

    1 1 1 25 0 10 45 010 5 2 2

    V V j V Vj j

    For Node 1:

    For Node 2: 2 1 2 2 02 2 3 4 5V V V V

    j j

    Nodal Analysis

  • ECE 546 – Jose Schutt‐Aine 6

    Rearranging the terms gives:

    1 21 1 1 1 5 0 10 45

    10 5 2 2 2 2 10 5V V

    j j j j

    1 21 1 1 1 0

    2 2 2 2 3 4 5V V

    j j j

    Nodal Analysis

  • ECE 546 – Jose Schutt‐Aine 7

    1

    2

    1 1 1 1 50 05 2 4 4 5

    50 901 1 1 154 4 2 2

    j VV

    j

    Nodal Analysis

    [Y] [v]=[i]

  • ECE 546 – Jose Schutt‐Aine 8

    1

    10 0.2525 0.75 0.5 13.5 56.3 24.7 72.25

    0.45 0.5 0.25 0.546 15.950.25 0.75 0.5

    j jV V

    jj

    2

    0.45 0.5 100.25 25 18.35 37.8 33.6 53.75

    0.45 0.5 0.25 0.546 15.950.25 0.75 0.5

    jj

    V Vj

    j

    Nodal Analysis - Solution

  • ECE 546 – Jose Schutt‐Aine 9

    1 23 05

    V V 2 32 1 2 0

    5 10 5V VV V V

    3 2 3 05 10

    V V V

    Nodal Formulation

    Node 1: Node 2:

    Node 3:

  • ECE 546 – Jose Schutt‐Aine 10

    1

    2

    3

    0.2 0.2 0 30.2 0.5 0.2 00 0.2 0.3 0

    VVV

    1

    2

    3

    0.2 0.2 0 30 0.3 0.2 30 0 0.25 3

    VVV

    Solve for V1, V2 and V3 using backward substitution

    Arrange in matrix form: [G][V]=[I]

    Use Gaussian elimination to form an upper triangular matrix

    This can always be solved no matter how large the matrix is

    Nodal Solution

  • ECE 546 – Jose Schutt‐Aine 11

    Established platform

    Powerful engine

    Source code available for free

    Extensive libraries of devices

    New device installation procedure easy

    Why SPICE ?

  • ECE 546 – Jose Schutt‐Aine 12

    spice3f4

    conf examples lib doc

    helpdir scripts

    bjt

    utiltmppatches srcnotesman

    man1 man3 man5 unsuppobin include lib skeleton

    ckt cp dev fte hlp inp mfb mfbpc misc ni sparse mac

    asrc bsim1 bsim2 cap cccs ccvs csw dio disto ind isrc mes

    mos1

    ltrajfet

    mos2 mos3 mos6 res sw tra urc vccs vcvs vsrc

    lib

    Parser StampFromNetlist I=YV

    Device ToSolver

    SPICE Directory Structure

    SPICE

  • ECE 546 – Jose Schutt‐Aine 13

    Symbol Description Value Units

    Ldrawn Device length (drawn) 0.35 m

    Leff Device length (effective) 0.25 m

    tox Gate oxide thickness 70 A

    Na Density of acceptor ions in NFET channel 1.0 1017 cm-3

    Nd Density of donor ions in PFET channel 2.5 1017 cm-3

    VTn NFET threshold voltage 0.5 V

    VTp PFET threshold voltage -0.5 V

    Channel modulation parameter 0.1 V-1

    Body effect parameter 0.3 V1/2

    Vsat Saturation velocity 1.7 105 m/s

    n Electron mobility 400 cm2/Vs

    p Hole mobility 100 cm2/Vs

    kn NFET process transconductance 200 A/V2

    kp PFET process transconductance 50 A/V2

    Cox Gate oxide capacitance per unit area 5 fF/m2

    CGSO,CGDO Gate source and drain overlap capacitance 0.1 fF/m

    CJ Junction capacitance 0.5 fF/m2

    CJSW Junction sidewall capacitance 0.2 fF/m

    Rpoly Gate sheet resistance 4 /square

    Rdiff Source and drain sheet resistance 4 /square

    MOS SPICE Parameters

  • ECE 546 – Jose Schutt‐Aine 14

    • Nonlinear DevicesDiodes, transistors cannot be simulated in the frequency domainCapacitors and inductors are best described in the frequency domainUse time‐domain representation for reactive elements (capacitors and inductors)

    • Circuit SizeMatrix size becomes prohibitively large

    Problems

  • ECE 546 – Jose Schutt‐Aine 15

    - Loads are nonlinear- Need to model reactive elements in the time domain- Generalize to nonlinear reactive elements

    Zo

    Zo C

    Motivations

  • ECE 546 – Jose Schutt‐Aine 16

    dvi Cdt

    For linear capacitor C with voltage v and current i which must satisfy

    Using the backward Euler scheme, we discretize time and voltage variables and obtain at time t = nh

    '1 1n n nv v hv

    Time-Domain Model for Linear Capacitor

  • ECE 546 – Jose Schutt‐Aine 1717

    11' nn

    ivC

    11

    nn n

    iv v hC

    1 1 - n n nC Ci v vh h

    After substitution, we obtain

    so that

    The solution for the current at tn+1 is, therefore,

    Time-Domain Model for Linear Capacitor

  • ECE 546 – Jose Schutt‐Aine 18

    i

    v C

    Backward Euler companion model at t=nh Trapezoidal companion model at t=nh

    Time-Domain Model for Linear Capacitor

  • ECE 546 – Jose Schutt‐Aine 19

    Step response comparisons

    0 10 20 30 40 50 600.0

    0.1

    0.2

    0.3

    0.4

    ExactBackward EulerTrapezoidal

    Time (ns)

    Vo (v

    olts

    )

    Time-Domain Model for Linear Capacitor

  • ECE 546 – Jose Schutt‐Aine 20

    div Ldt

    1 1Backward Euler : n n ni i hi

    11

    nn

    viL

    1 1n n nL Lv i ih h

    Time-Domain Model for Linear Inductor

  • ECE 546 – Jose Schutt‐Aine 21

    1 12n n n nhi i i i

    1 12 2

    n n nL Lv i vh h

    If trapezoidal method is applied

    Time-Domain Model for Linear Inductor

  • ECE 546 – Jose Schutt‐Aine 22

    • Diode Properties– Two-terminal device that conducts current freely in one direction but blocks

    current flow in the opposite direction.– The two electrodes are the anode which must be connected to a positive voltage

    with respect to the other terminal, the cathode in order for current to flow.

    +

    -

    V

    I

    The Diode

  • ECE 546 – Jose Schutt‐Aine 23

    out DV V

    / 1D TV VD SI I e

    ( )S D D D D DV RI V RI V V

    Nonlinear transcendental system Use graphical method

    Vs/R

    VD

    ID

    VSVout

    Load line(external characteristics)

    Diode characteristics

    Solution is found at itersection of load line characteristics and diode characteristics

    Diode Circuits

  • ECE 546 – Jose Schutt‐Aine 24

    NPN Transistor

    // 1 1BC TBE T v Vv V SC SR

    Ii I e e

    // 1 1BC TBE T v Vv VSE SF

    Ii e I e

    // 1 1BC TBE T v Vv VS SBF R

    I Ii e e

    1F

    FF

    1

    RR

    R

    Describes BJT operation in all of its possible modes

    24

    B

    C

    E

    BJT Ebers-Moll Model

  • ECE 546 – Jose Schutt‐Aine 25

    Problem: Wish to solve for f(x)=0

    Use fixed point iteration method:

    ( ) ( ) ( )Define F x x K x f x

    1: ( ) ( ) ( )k k k k kx F x x K x f x

    With Newton Raphson:1

    1( ) [ ( )] dfK x f xdx

    therefore, 11: [ ( )] ( )k k k kx x f x f x

    Newton Raphson Method

  • ECE 546 – Jose Schutt‐Aine 26

    Newton Raphson Method(Graphical Interpretation)

  • ECE 546 – Jose Schutt‐Aine 27

    11: k k k kN R x x A f x

    1 ( ) .k k k k k kA x A x f x S

    xk+1 is the solution of a linear system of equations. LU factk kA x S

    Forward and backward substitution.

    Ak is the nodal matrix for Nk

    Sk is the rhs source vector for Nk.

    Newton Raphson Algorithm

  • ECE 546 – Jose Schutt‐Aine 28

    0 00. 0, ,

    voltage controlled current controlled

    k gives V i1. , mod .k kFind V i compute companion els

    , , ,c c

    k k k k

    V C

    G I R E

    2. , .k kObtain A S

    3. .k k kSolve A x S

    14. kx Solution 15. .k kCheck for convergence x x

    , .If they converge then stop6. 1 , 1.k k and go to step

    Newton Raphson Algorithm

  • ECE 546 – Jose Schutt‐Aine 29

    It is obvious from the circuit that the solution must satisfyf(V) = 0 We also have

    /1'( ) tV Vst

    If V eR V

    The Newton method relates the solution at the (k+1)thstep to the solution at the kth step by

    1( )- '( )

    kk k

    k

    f VV Vf V

    / 11

    /- 1

    V Vk t

    k t

    k es

    k kV Vs

    t

    V E IRV V I eR V

    Newton Raphson - Diode

  • ECE 546 – Jose Schutt‐Aine 30

    After manipulation we obtain

    11 -k k k

    Eg V JR R

    / k tV Vskt

    Ig eV

    / ( -1) -k tV Vk s k kJ I e V g

    Newton Raphson

  • ECE 546 – Jose Schutt‐Aine 31

    out DV V

    /( ) 1 0D TV VD SD SV Vf V I eR

    Newton-Raphson Method

    Procedure is repeated until convergence to final (true) value of VD which is the solution. Rate of convergence is quadratic.

    1( 1) ( ) ( ) ( )'( ) ( )k k k kx x f x f x

    /1'( ) D TV VSDT

    If V eR V

    ( )( )

    ( )/

    ( 1) ( )

    /

    1

    1

    kTD D

    kTD

    kV VS

    Sk k

    D D V VS

    T

    V VI e

    RV V I eR V

    Where        is the value of VD at the kth iteration( )k

    DV

    11 '( ) ( )k k k kx x f x f x

    Use:

    Diode Circuit – Iterative Method

  • ECE 546 – Jose Schutt‐Aine 32

    Newton-Raphson representation of diode circuit at kth iteration

    /k tV Vsk

    t

    Ig eV

    / ( -1) - Vk Vtk s k kJ I e V g

    Newton Raphson for Diode

  • ECE 546 – Jose Schutt‐Aine 33

    Companion

    ( )

    k

    ki i

    dh iRdi

    ( )k k k kE h i R i

    Current Controlled

  • ECE 546 – Jose Schutt‐Aine 34

    Let x = vector variables in the network to be solved for. Let f(x) = 0 be the network equations. Let xk be the present iterate, and define

    Let Nk be the linear network where each non-linear resistor is replaced by its companion model computed from xk.

    ( )k k kA f x Jacobian of f at x x

    ( )j j jI g V

    General Network

  • ECE 546 – Jose Schutt‐Aine 35

    jk j k j kV P P

    ( )

    k

    kV V

    dg VGdV

    k k k kI g V G V

    Companionmodel

    General Network

  • ECE 546 – Jose Schutt‐Aine 36

    C(v) Jk Jngk

    +

    -

    V Vn+1

    +

    -

    in+1in+1

    Vn+1

    +

    -

    q(V)h

    Jn

    ( ) , dqq f v idt

    1

    1n

    n nt t

    dqq q hdt

    1 11 1 1

    ( ), ( )n n nn n nq q f vor i i vh h h

    Nonlinear Reactive Elements

  • ECE 546 – Jose Schutt‐Aine 37

    General Element