ece 330: power circuits and electromechanics · 2019-12-04 · ece 330: power circuits and...

26
ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04

Upload: others

Post on 20-Jul-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

ECE 330: Power Circuits

and ElectromechanicsLecture 25

2019-12-04

Page 2: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Previously

• Rotating Magnetic Fields

• Synchronous Machines

Page 3: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Today

• Induction Machines

• Equivalent Circuit for Induction Machines

Page 4: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

2-Phase Machine

x.

!x

."#$

"#%

x

.

x

.

"&%

"&$

'&$'#$'&%'#%

=

)$0

+cos(!)−+sin(!)

0)$

+sin(!)+cos(!)

+cos(!)+sin(!))%0

−+sin(!)+cos(!)

0)%

"&$"#$"&%"#%

Same equations for flux linkage as before.

Page 5: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

2-Phase Machine (Continued)

x.

!x

."#$

"#%

x

.

x

.

"&%

"&$

For an induction

machine, we short

the rotor windings.

Page 6: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

2-Phase Machine (Continued)

• Stator still produces rotating magnetic field

• Rotor is now a conductor in a changing

magnetic field

Induced currents in the rotor!

• Induced currents flow in direction to

oppose changing magnetic field

Lenz’s law

• Stator and rotor magnetic fields act to

produce torque causing rotor to rotate in

the same direction as stator field

x.

!x

."#$

"#%

x

.

x

.

"&%

"&$

Page 7: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Pop Can Induction Motor

https://www.youtube.com/watch?v=z-oue39E5PA&list=WL&index=19&t=0s

Page 8: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

2-Phase Machine (Continued)

• Need stator field to be changing

relative to rotor to induce current

• Rotor spins at a speed slightly slower

than synchronous speed

• Slip: 4 = 5675856

• s is usually very small

x.

!x

."#$

"#%

x

.

x

.

"&%

"&$

Page 9: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

2-Phase Machine (Continued)

• Frequency condition:

9: = 9$ − 9%• From slip definition:

9: = 1 − 4 9$• Rotor AC frequency:

9% = 49$

x.

!x

."#$

"#%

x

.

x

.

"&%

"&$

Page 10: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Deriving Equivalent Circuit

• Assume

"&$ = <$ cos(9$=)"#$ = <$ sin(9$=)"&% = <% cos(49$= + ?)"#% = <% sin(49$= + ?)! = 1 − 4 9$ + !@

• A&$ = "&$B$ +CDE6CF

• A&% = "&$B% +CDEGCF

x.

!x

."#$

"#%

x

.

x

.

"&%

"&$

Page 11: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Deriving Equivalent Circuit (Continued)

• H$ cos(9$= + !$) = B$<$ cos(9$=) + 9$)$<$ cos(9$= + 90°) +9$+<% cos(9$= + (!@ + ? + 90°))

• H% cos(49$= + !%) = B%<% cos(49$= + ?) +49$)%<% cos(49$= + (? + 90°) ) + 49$+<% cos(49$= + (90° − !@))

Page 12: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Deriving Equivalent Circuit (Continued)

• Recall: + = KLM%NO6OGPQ

• Can use this to write: )$ = )N$ +O6O%

+, )% = )N% +OGO6

+

• Can also write rotor values referenced from the stator (similar to

transformer circuit)

<%S = <%T%T$

, H%S = H%T$T%

B%S = B%T$T%

P

, )N%S = )N%T$T%

P

Page 13: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Deriving Equivalent Circuit (Continued)

Page 14: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous
Page 15: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous
Page 16: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Two types of Machines

• Wound Rotor: connect something to H&%S

• Squirrel cage: H&%S = 0• For H&%S = 0UGV

$= B%S + B%S

W7$$

Page 17: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous
Page 18: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Example

What is the frequency of the rotor current?

a) 57 Hz c) 3 Hz

b) 57 rad/s d) 3 rad/s

Page 19: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Example

What is the frequency of the rotor current?

a) 57 Hz c) 3 Hz

b) 57 rad/s d) 3 rad/s

Page 20: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Example

What is the 3-phase power supplied to the machine?

a) 336.02∠28.72° kVA c) 194.0∠28.72° kVA

b) 336.02∠ − 28.72° kVA d) 194.0∠ − 28.72° kVA

Page 21: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Example

What is the 3-phase power supplied to the machine?

a) 336.02∠28.72° kVA c) 194.0∠28.72° kVA

b) 336.02∠ − 28.72° kVA d) 194.0∠ − 28.72° kVA

Page 22: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous
Page 23: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Definitions

• Input real power: ab = Bc{3H&e <&$∗}

• Stator copper loss: hij = 3B$ k<$ P

• Rotor copper loss: Uij = 3B%S k<%SP

• Power across the gap: &Q = 3UGV

$k<%S

P

• Mechanical Power: : = (1 − 4) &Q

• Multipole system: 9: = 1 − 4 9$Pl

• Torque: mn =W7$ oEpW7$ 56

qr

=oEp56

qr

Page 24: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Example

What is the torque?

a) 822.7 Nm

b) 742.5 Nm

c) 781.6 Nm

d) 4910.9 Nm

Page 25: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous

Example

What is the torque?

a) 822.7 Nm

b) 742.5 Nm

c) 781.6 Nm

d) 4910.9 Nm

Page 26: ECE 330: Power Circuits and Electromechanics · 2019-12-04 · ECE 330: Power Circuits and Electromechanics Lecture 25 2019-12-04. Previously •Rotating Magnetic Fields •Synchronous