easy advanced global optimization

22
Easy Advanced Global Optimization A Deterministic Nonconvex Optimization Package for Julia Matthew Wilhelm, PhD Student Matthew Stuber, Assistant Professor Process Systems and Operations Research Laboratory Department of Chemical and Biomolecular Engineering UTC Institute for Advanced Systems Engineering University of Connecticut 1 https://github.com/PSORLab/EAGO.jl

Upload: others

Post on 18-Dec-2021

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Easy Advanced Global Optimization

Easy Advanced Global

Optimization

A Deterministic Nonconvex Optimization Package for Julia

Matthew Wilhelm, PhD Student

Matthew Stuber, Assistant Professor

Process Systems and Operations Research Laboratory

Department of Chemical and Biomolecular Engineering

UTC Institute for Advanced Systems Engineering

University of Connecticut

1

https://github.com/PSORLab/EAGO.jl

Page 2: Easy Advanced Global Optimization

First Things… Introductions!

2

❑ I’m Matt Wilhelm!❑ I work at UCONN on robust and global nonconvex optimization❑ Started working on EAGO, I’ve been in response to a couple things:

▪ The real test is solver performance on standard benchmarks.▪ Want to be able to easily distribute work.

JuMP

JuliaNo low-level routines in global optimization.▪ Pyomo/JuMP: great for higher level and meta-algorithms▪ Existing solvers: Not open-source or aren’t meant to be extended.▪ Academic tools: Exist as fragmented libraries across multiple languages.

Integrate with AML

Page 3: Easy Advanced Global Optimization

❑ I’m Matt Wilhelm!❑ I work at UCONN on robust and global nonconvex optimization❑ Started working on EAGO, I’ve been in response to a couple things:

First Things… Introductions!

3

▪ The real test is solver performance on standard benchmarks.▪ Want to be able to easily distribute work.

JuMP

JuliaNo low-level routines in global optimization.▪ Pyomo/JuMP are great for solving complex multi-level problems▪ Existing solvers aren’t open-source or aren’t meant to be extended.▪ Academic tools exist as fragmented libraries across multiple languages.

Integrate with AML

I. Relaxations LibraryII. Modular Global Solve AlgorithmIII.Standard ToolsIV.Access to SolverV. Problem Formulation Tools

Page 4: Easy Advanced Global Optimization

Simulation Motivation

4

Offshore Liquefied Natural Gas Production2

[1] Optimum design of chemical plants with uncertain parameters. I. E. Grossmann and R. W. H. Sargent (1978). AIChE Journal, 24(6):1021–1028.[2] Differentiable McCormick relaxations. Khan, K. et al. (2017) Journal Global Optimization, 67(4), 687-729

o Nonconvex models from block diagrams are quite common

o Typical optimization problem formulate in state-control1

p – Control variablesx – State variables

min ( ( ), )

. . ( ( ), ) 0

( ( ), ) 0

p Pf x p p

s t f x p p

g x p p

=

Page 5: Easy Advanced Global Optimization

McCormick Relaxations

5

[3] Computability of global solutions to factorable nonconvex programs: Part I-Convex underestimating problems. G. P. McCormick. Mathematical Programming, 10:147–175, 1976.

[4] McCormick envelopes.https://optimization.mccormick.northwestern.edu/index.php/McCormick_envelopes

Decomposition Method4

Calculating convex bounds on bilinear term via a McCormick relaxations3

Composition method

L U

L U

w

x

y

xy

x x

y y

=

L L L L

U U U U

U L U L

U L L U

w x y xy x y

w x y xy x y

w x y xy x y

w xy x y x y

+ −

+ −

+ −

+ −

( , ) max( , )

( , ) min( , )

cv L L L L U U U U

cc U L U L U L L U

w x y x y xy x y x y xy x y

w x y x y xy x y xy x y x y

= + − + −

= + − + −

Page 6: Easy Advanced Global Optimization

McCormick Relaxations

6

▪ Algebraic: +, -, /, *, ^, pow▪ Trigonometric: sin, cos, tan, asin, acos, atan▪ Hyperbolic: sinh, cosh, tanh, asinh, acosh, atanh▪ Nonsmooth: min, max, abs, step, sign▪ Others: exp, exp2, exp10, log, log2, log10, sqrt

Currently Supported Operators:

[5] McCormick-based relaxations of algorithms. Mitsos et al. (2009) SIAM Journal on Optimization, SIAM, 2009, 20, 73-601[6] MC++: A versatile library for McCormick relaxations and Taylor models. B. Chachuat. http://www3.imperial.ac.uk/people/b.chachuat/research

McCormick Relaxations Via Method Overloading

Page 7: Easy Advanced Global Optimization

Relaxation from Macros

7

▪ :convex (exp, abs, sqr)▪ :concave (log, sqrt)

▪ :convexoconcave (tanh)▪ :concavoconvex (erfc) *

*Line SegmentFunction

FunctionLine Segment

List of convexity properties for standard functions, dictionary structure for relaxations, and registration/generation via macros.

Page 8: Easy Advanced Global Optimization

McCormick Relaxations - Example

8

Page 9: Easy Advanced Global Optimization

McCormick Relaxations (Extensions)

9

[7] Multivariate McCormick relaxations. Tsoukalas, A. and Mitsos, A. (2014) Journal of Global Optimization, 633-662[2] Differentiable McCormick relaxations. Khan, K. et al. (2017) Journal Global Optimization, 67(4), 687-729[8] Tighter McCormick Relaxations through Subgradient Propagation. Najman, J. and Mitsos, A. (2017) https://arxiv.org/abs/1710.09188[9] Reverse propagation of McCormick relaxations. Wechsung, Achim, et al. (2015) Journal of Global Optimization 63(1) : 1-36.

❑ Relaxations for max and min7

❑ Differentiable McCormick relaxations.2

Tighter Interval Bound❑ Subgradient-based interval tightening method8

❑ Reverse McCormick contractors9

𝒇 𝒙 = −𝒙𝟐𝐞𝐱𝐩(𝒙) +𝒎𝒂𝒙(𝒙 − 𝟓, 𝐬𝐢𝐧(𝒙))

Page 10: Easy Advanced Global Optimization

McCormick Relaxation: Branch & Bound

10

McCormick Relaxations: • Nonsmooth NLP (Bundle Solver)• Affine Relaxation (LP Solver)

Differentiable McCormick Relaxations:• NLP solver

Full Nonconvex NLP:

Lower Problem:

Preprocessing:

( )min

. . ( )

( ) 0

y Y

cv

cv

y

s t f y UBD

g y

=

min ( )

. . ( ) 0

y Yf y

s t g y

min ( )

. . ( ) 0

cv

y Y

cv

f y

s t g y

Page 11: Easy Advanced Global Optimization

The standard EAGO solver

11

Upper Bounding Problem: - Local NLP solve via Ipopt

Lower Bounding Problem: - NLP solve via Ipopt11

- LP solve with user selected solver

Preprocessing: - Interval constraint propagation10

- LP contractor10 (NS McCormick Relaxations)

Postprocessing: - Duality-based bound tightening10.

[10] Domain reduction techniques for global NLP and MINLP optimization Puranik, Y. and Sahinidas, N. (2017) Constraints, 22: 338-376.[11] On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming A. Wächterand L. T. Biegler (2006), Mathematical Programming 106(1), 25-57.

Search Routine:- Best-first

Page 12: Easy Advanced Global Optimization

McCormick versus Interval Methods

12

Three-hump camel function via Interval Method

Three-hump camel function via McCormick Approach

❑ 432 Iterations❑ 0.1 Seconds

❑ 13442 Iterations❑ 3.09 Seconds

Swapping in a custom lower-bound

Page 13: Easy Advanced Global Optimization

Branch and Bound Implementation

13

❑ Full Customizable▪ All blocks are functions that can be reset.

❑ Common Heuristics are available via API:▪ Search Methods: Best-First Search, etc.▪ Bisection Methods: Relative Width, etc.

❑ Typical output templates available▪ Convergence plots▪ CSV data for batch runs▪ Solver progress output to console

Console display with solver progress

julia> EAGO.set_Branch_Scheme!(a,"breadth")

Setting search to a breadth-first style

Page 14: Easy Advanced Global Optimization

Transform MINLP to nonconvex NLP

14[2] Differentiable McCormick relaxations. Khan, K. et al. (2017) Journal Global Optimization, 67(4), 687-729

Offshore Liquidfied Natural Gas Production2

, ,

H C

min{ }

( ) ( )

p p

H C cp P

in out in out

H p i i i C p j j j

i j

EBP EBP Q

Q Fc T T Q Fc T T

− = −

+ − = + −

Objective:

Constraints:

Pinch-Point Energy Balances

1 2 2 1( 1) ln( ) ln( ) ( 1) ln( ) ln( )s sP T P T − + = − +

Polytropic Gas

min

in

ip

in

j

T p i HT

T T p j C

= =

+ =

2minx

F

Mass Balances + Process Models AND the below:

min max

,

max min

, min min min min

max 0, max 0, max 0, max 0,

max 0, ( ) max 0, ( ) max 0, ( ) max 0, ( )

p p out p in p p

H p i i i i i

i H

p p in p out p p

C p j j j

j C

EBP Fc T T T T T T T T p P

EBP Fc T T T T T T T T t t T T p P

= − − − − − + −

= − − − − − − − − + − −

Page 15: Easy Advanced Global Optimization

Transform MINLP to nonconvex NLP

15[2] Differentiable McCormick relaxations. Khan, K. et al. (2017) Journal Global Optimization, 67(4), 687-729

Offshore Liquidfied Natural Gas Production1

, ,

H C

min{ }

( ) ( )

p p

H C cp P

in out in out

H p i i i C p j j j

i j

EBP EBP Q

Q Fc T T Q Fc T T

− = −

+ − = + −

Objective:

Constraints:

Pinch-Point Energy Balances

1 2 2 1( 1) ln( ) ln( ) ( 1) ln( ) ln( )s sP T P T − + = − +

Polytropic Gas

min

in

ip

in

j

T p i HT

T T p j C

= =

+ =

2minx

F

min max

,

max min

, min min min min

max 0, max 0, max 0, max 0,

max 0, ( ) max 0, ( ) max 0, ( ) max 0, ( )

p p out p in p p

H p i i i i i

i H

p p in p out p p

C p j j j

j C

EBP Fc T T T T T T T T p P

EBP Fc T T T T T T T T t t T T p P

= − − − − − + −

= − − − − − − − − + − −

Mass Balances + Process Models AND the below:MINLP:- 173 Continuous Variables- 363 Binary Variables- 143 Equality Constraints- 1101 Inequality Constraints

Nonsmooth NLP:- 10 Continuous Variables- 5 Equality Constraints- 4 Inequality Constraints

Page 16: Easy Advanced Global Optimization

Branching on Implicit Functions

16

( ) ( )A p x b p=

McCormick relaxations can bound functions via fixed-point methods:

▪ Theoretically, well-behaved relaxations of state variables that aren’t factorable.▪ Applicable to process units containing nonlinear equations that require nonlinear solve.▪ Assumes the existence of an implicit function y = x(p).

Linear Parametric System: ( )

( )( )

( )( )

( )

2 3

2 3

3

3

2

2

1 2

1 2 3 5

1

3 4

1

2

1

1

1

1

2

2

2

( ) 0

0

( , ) 0

0

0

f f

f

f

k ki i i i i i i i

f f K K

ki i i i

f K

ki i i i

f K

i i i i

s

i i i i

o

o

o

t k k k k

t k k

t k

t k

t k

c

c

c

=

− + − + + + − =

− + − + =

− + − =

− + − =

− + − =

A A Y Z A D B A

B B A B

D D A D

Y Y Y Z

Z Z Y Z

c c c c c c c c

c c c c

h z p c c c c

c c c c

c c c c

[12] Convex and concave relaxations of implicit functions. Stuber, M.D. et al. (2015) Optimization Methods and Software, 30, 424-460[5] McCormick-based relaxations of algorithms. Mitsos et al. (2009) SIAM Journal on Optimization, SIAM, 2009, 20, 73-601[13] Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, J. W. Taylor, et al. Phys. Chem. A, 108 (2004), pp. 7193–7203.

Page 17: Easy Advanced Global Optimization

Special Forms from General Functions

17

Convex.jl

Find Standard FormsLP, QP, MILP, MIQP

EAGO.jl

Separate Standard Forms from Expression Graph Identify Convex

Components and Separate

𝑓 𝑥 = 𝑓𝑛𝑙(𝑥) +

𝑖

𝑎𝑖𝑥𝑖 + 𝑓𝑐𝑣(𝑥) +

𝑖

𝑗

𝑏𝑖𝑗𝑥𝑖𝑥𝑗

𝑔𝑘 𝑥 = 𝑔𝑘𝑛𝑙(𝑥) +

𝑖

𝑎𝑖𝑥𝑖 + 𝑔𝑘𝑐𝑣(𝑥) +

𝑖

𝑗

𝑏𝑖𝑗𝑥𝑖𝑥𝑗

…and Mixed-Integer Forms (Coming Soon)

Can we formulate a global solver with as low a barrier to entry as low solvers with AD methods?

Espresso.jl

Page 18: Easy Advanced Global Optimization

Reformulation Architecture

18

Julia Script

x

exp

x

-

JuMP.jlEspresso.jl

y

Expression Transformation

Introduce Auxiliary Variables

Special Form Detection

exp

𝐞𝐱𝐩 𝒙 𝐞𝐱𝐩(−𝒚)

Expression Graph

exp

x

-

y

x

-

y z

exp-

Page 19: Easy Advanced Global Optimization

Further Software Development

19

Current Limitations Main Development Schemes

▪ Weaker bounds than AVM methods7.▪ Implicit function bounding is complex.

▪ Auxiliary Variable Oracle.▪ Add Implicit Function Detection.

▪ Upper bounding NLP solvers may not support non-smooth problems.

▪ Add Lexicographic AD scheme14.

▪ Currently can’t handle general MINLP problems.

▪ Add a Branch-And-Cut Library.

[7] Multivariate McCormick relaxations. Tsoukalas, A. and Mitsos, A. (2014) Journal of Global Optimization, 633-662[14] Branch-locking AD techniques for nonsmooth composite functions and nonsmooth implicit functions Khan, K. et al. (2017) Optimization Methods and Software, 0, 1-29

Page 20: Easy Advanced Global Optimization

Acknowledgements

20

PSOR lab at UCONN (https://psor.uconn.edu/)

• Professor Matthew Stuber• Chenyu Wang• William Hale

University of Connecticut

Page 21: Easy Advanced Global Optimization

21

Fin…

Page 22: Easy Advanced Global Optimization

SIP Solvers

[9] Global optimization of semi-infinite programs via restriction of the right-hand side. Mitsos, A. (2011). Optimization 60:10-11, 1291-1308[4] Semi-Infinite Optimization with Implicit Functions. Stuber, M.D., Barton, P.I. (2015) Industrial & Engineering Chemistry Research, 54, 307-317[10] Evaluation of process systems operating envelopes. Stuber, M.D., (2013) Ph.D Thesis.

*min ( )

( ) 0, (ˆs.t. , , , )

,ˆ( , ) , ( ),

X

f f

g Y P

Y P

x

y x p y p

h p yy x p0

x

=

=

o EAGOSemiInfinite implements implicit and explicit meta-algorithms

Explicit SIP

*min ( )

(s.t. ( , ), ) 0,,

X

f

g P

fx

y x p x p p

x

=

Implicit SIP

o Solved generally via restriction of right-hand side method9,4

• Discretization of uncertainty set for upper/lower bounds.• Finite convergence (if Slater point arbitrarily near minimizer).

o Problem size and complexity dramatically increased with equality constraints4,9,10

Flowchart for restriction of RHS method4

Lower Bounding Problem (explicit) for restriction of RHS method4

min (

ˆ( , , ) 0 ( , )

ˆ( , , ) (

)

s.t.

, )

LBD

LBD

SIP

X

LBD

LBD

LBD

f

g Y P

Y P

f

=

=

x

y x p y p

x y p

x

h y p 022