earth magnetotail current sheet: observations vs. model

30
Earth magnetotail current sheet: observations vs. models Anton Artemyev IGPP/UCLA in collaborations with: Vassilis Angelopoulos (IGPP/UCLA), San Lu (IGPP/UCLA), Anatoliy Petrukovich (IKI/RAS), Andrei Runov (IGPP/UCLA), Ivan Vasko (SSL/UCB), Lev Zelenyi (IKI/RAS).

Upload: others

Post on 16-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Earth magnetotail current sheet: observations vs. model

Earth magnetotail current sheet: observations vs. models

Anton Artemyev

IGPP/UCLA

in collaborations with: Vassilis Angelopoulos (IGPP/UCLA), San Lu (IGPP/UCLA), Anatoliy Petrukovich (IKI/RAS), Andrei Runov (IGPP/UCLA), Ivan Vasko (SSL/UCB), Lev Zelenyi (IKI/RAS).

Page 2: Earth magnetotail current sheet: observations vs. model

Solar wind: b~1, M>>1

magnetotail: b>>1, M≤1

Inner magnetosphere: b<<1, M<<1

solar flare: b≥1, M>1

Location and plasma parameters

Plasma b – ratio of plasma and magnetic field pressuresMach number M – ratio of plasma bulk velocity and magnetosonic speed

Page 3: Earth magnetotail current sheet: observations vs. model

The simplest current sheet configuration

x

z

Diamagnetic plasma current

y

x

T dnj c

B dz

z

plasma density (pressure)

magnetic field

Page 4: Earth magnetotail current sheet: observations vs. model

Self-consistent fields and plasma motion

4 1

4

1

0

c c t

c t

EB j

E

BE

B

Stationary Maxwell equations

,

,

q f r d

q f r d

j v v v

v v

Currents and charged density

+0

f f f

t m

Fv

r v

+

Vlasov equation

Lorentz force

1

qc

F E v B

Nonlinear equations for electromagnetic fields

An example of solutions: 1D Harris CS An example of solutions: 2D Fadeev CS An example of solutions: 2D Kan CS

x x x

zMagnetic field lines (black) and plasma pressure (color)

0

Harris 1962 Fadeev et al. 1965 Kan 1973

ions (+) and electrons (-)

Page 5: Earth magnetotail current sheet: observations vs. model

Cluster 2001-2004

THEMIS 2008-2009

ARTEMIS 2010

Geotail 1993-1994

Spacecraft missions and available datasets

r~18RE

r~10-30RE

r~50-200RE

THEMIS 2010-2017

r~10-12RE

r~30-200RE

ARTEMIS 2011-2016

r~55RE

MMS 2017

r~30RE

Page 6: Earth magnetotail current sheet: observations vs. model

Outline:

•Current sheet structure: distributions of currents and plasma, embedding, main gradients

•Current carriers in the magnetotail: electron and ion contributions

•Pressure balance: role of plasma anisotropy/nongyrotropy in current sheet balancing

• Electric fields: mechanisms of generation, typical amplitudes

•Current sheet thinning: pre-reconnection conditions in the magnetotail

Page 7: Earth magnetotail current sheet: observations vs. model

Current sheet structure: thin current sheets

i~1000 kmRunov et al., 2006Runov et al., 2006; Petrukovich et al. 2015; Vasko et al. 2015; Artemyev et al., 2016.

Typical CS thickness is about 2000 km << RE

x

Page 8: Earth magnetotail current sheet: observations vs. model

Current sheet structure: embedding

0N Runov et al., 2006

Absence of significant density variation along z-axis

Magnetic field as a distance along z-axis: Bx/Blobe~z/LCS

Bx/Blobe

,P N T P N T

Petrukovich et al., 2015

Bx/Blobe Bx/Blobe

T e/T e,

max

T i/T i,m

ax

Electron and ion pressure gradients are mainly supported by temperature gradients

Page 9: Earth magnetotail current sheet: observations vs. model

CS structure: observations vs. simple kinetic models

Harris CS model with 10-20% of cold background plasm

Ni

z

jy

Ti

Ni

z

jy

Ti

Observed current sheets

• Lobes are filled by rarified cold plasma, but CS boundaries are hot due to uniform temperature.

• Plasma density profile is very close to the current density profile

• Lobes and CS boundaries are filled by dense cold plasma.

• Current density profile is embedded into plasma density profile

Page 10: Earth magnetotail current sheet: observations vs. model

CS structure: what model can reproduce CS structure?

Kinetic models do not describe strongtemperature gradients for 2D (x,z) CSconfigurations, but can reproduce embeddedcurrent density profile

Hybrid simulations (MHDelectrons + kinetic ions) areflexible enough to reproduceboth embedding andtemperature distributions.

see also Schindler & Birn 2002;Sitnov et al., 2006; Zelenyi et al.2011

observations

Birn et al. 2004

Yoon&SLui 2004

Sitnov et al. 2000Zelenyi et al. 2000

Lu et al., 2016

see also Lin et al. 2015, Lu et al. 2016

Page 11: Earth magnetotail current sheet: observations vs. model

Current carriers: absence of ion currentsWang et al., 2012

Ti>>Te thus wewould expect toobserve strongion diamagneticcurrents.

j yn

A/m

2

Bx/Blobe Bx/Blobe

Examples of ion current observations in CSs

Runov et al., 2006

currents from B-gradients

Ion currents C4

Ion currents C1

jy/ene km/s

Israelevich et al., 2008

Artemyev et al., 2015

Comparison of B-gradient currentsand ion currentsfor subset of CSs

Page 12: Earth magnetotail current sheet: observations vs. model

Current carriers: unexpectedly strong electron currents

Ion currents

electron currents

Ion currents

electron currentselectron currents

Ion currents

Geotail Cluster THEMIS

Three data sets show the same effect of strongelectron currents and weak ion currents. Plasma(ion + electron) currents are close to B-gradientcurrents derived from multispacecraftmeasurements (Cluster) or from CSoscillations/flapping (Geotail, THEMIS).

see also Vasko et al., 2015; Petrukovich et al.,2015; Artemyev et al., 2016

Page 13: Earth magnetotail current sheet: observations vs. model

Current carriers: observations vs. modelsConservation of total plasma momentum in volume V

total current

rate of total plasma momentum change

ion (+) and electron (-) currents

Hesse et al., 1998

factor ~m-/m+<<1 for ions. Thus, ifthe total momentum is conserved

(M = 0), the change of the total

current J is mainly due to change

of the electron flow nv-

-vy/

v Ti electron velocity, v-

ion velocity, v+

Dv=v+-v-

Pritchett et al., 1995

Increase of electron flow

Kinetic thin CS formation

CS thinning and intensification of jy~enDv current density in PIC simulation

Page 14: Earth magnetotail current sheet: observations vs. model

Pressure balance: expected gradients

21

0,8

pxp z y

pBp B j

z x c

x

z

magnetic field line Bx

Bzjy

1p̂

c

j BIsotropic plasma pressure pp=p++p-

, 84

lobe lobey lobe P

z

B Bcj B p

B x

static pressure balance

Nakai et al. 1991

Blo

be

nT

r/RE

Balance along z Balance along x

Current density magnitude is defined by the lobe magnetic field distribution

Blobe distribution along the tail

Page 15: Earth magnetotail current sheet: observations vs. model

Pressure balance: statistical observations

22 nA/myj upper limit for jy at r~18RE

observed jy are much larger than expected values

Nakai et al. 1991;Shukhtina et al. 2004

0.8

20nT / 25lobe EB r R

THEMIS measurements

( )4

lobe lobey

z

B Bcj x

B x

B-gradient current

P-gradient current

Page 16: Earth magnetotail current sheet: observations vs. model

Pressure balance: electron anisotropy

2

4

4 ( ),

ep

e e

p i e e

pB c

p pp p p

B

B B B j B

curvature force

1

4 1

lobe lobey

e z

B Bcj

B x

at the equatorial plane (Bx=0)

Field-aligned electron anisotropy helps balancecurrent sheet. For e=1 the entire current densitygenerated by curvature electron drifts (d/dx=0)

THEMIS observations

There is a significant populationof CSs with almost isotropicelectrons

Page 17: Earth magnetotail current sheet: observations vs. model

Pressure balance: observations vs. models

1xzy z

pj B

z c

Ion nongyrotropy can balance CS

Burkhart et al., 1992

see also Eastwood 1972; Pritchett and Coroniti 1992; Ashour-Abdalla et al., 1994;

PIC simulation of thin CS

distribution function of ions supporting pxz≠0

Artemyev & Zelenyi 2013

Ob

serv

atio

ns

mo

de

ls

see also Sitnov et al., 2004; Zhou et al., 2009; Zelenyi et al. 2011

vx

vx

vy

vy

Page 18: Earth magnetotail current sheet: observations vs. model

Electric fields: Hall field in thin CS

Dominance of electron currents requires strong electric fields Ex, Ez

2 2

y z x x zE B

E B E Bv c c

B B

E BWygant et al., 2005

time~30s

Bx<0 Bx>0

-E m

V/m

Cluster crossing of very intense CS

Statistics of quiet CSs

E m

V/m

Bx/Blobe Bx/BlobeBx/Blobe

Vasko et al., 2014

~ ~ ~1mV/m

~ 0.1mV/m

yE Bz x x

zx z

lobe

jvE B B

c qn c

BE E

B

Cluster & THEMIS can provide reliable electricfield measurements only in CS (x,y) plane.Therefore, observed electric fields can beestimated only for strongly titled CS with z↔y

Page 19: Earth magnetotail current sheet: observations vs. model

Electric fields: field-aligned field

2

e e

e e

p p Ben E p

B B

B B

Electron stress balance along magnetic filed lines

peII/pepeII/pe

Cluster statistics THEMIS statistics

1.1 1.2e

e

e

p

p

1ln

e

e

ee

TeE T

B

neconst

0.1 mV/mE

Page 20: Earth magnetotail current sheet: observations vs. model

Electric fields: observations vs. modelsTransverse electric field (Ex, Ez)

Lu et al., 2016

Ez>0

Ez<0

Hybrid simulations

PIC simulations

see also Pritchett 2005; Zelenyi et al. 2011;Schindler et al. 2012;

Birn & Hesse, 2014

Ez>0

Ez<0

Field-aligned electric field (EII)

eFII/Te

Egedal et al., 2013

PIC simulations

Artemyev et al., 2016eEIIL/Ti

EII>0

EII>0

Analytical CS model

Page 21: Earth magnetotail current sheet: observations vs. model

Current sheet dynamics: thinning McPherron et al. 1972 An example of thinning CS observed by THEMIS at x~-12RE

Bz decreases

Blobe increases

jy increases

LCS decreases

Page 22: Earth magnetotail current sheet: observations vs. model

Current sheet dynamics: plasma cooling

An example of thinning CS observed by THEMIS; plasma data are collected around the equatorial plane

growth of the plasma density

2/3

1/4

,

~ 1

~

i z

i e z

n B

T B

Electrons are cooling faster than ions!+

Page 23: Earth magnetotail current sheet: observations vs. model

Current sheet dynamics: observations vs. model

• Current sheet thinning is accompanied by (driven) pressure increase.

• Plasma entropy is conserved

Birn & Hesse 2014

pn const

3/5 2/5~ , ~n p T p

Page 24: Earth magnetotail current sheet: observations vs. model

Conclusions:1. CS embedding can be reproduced by simulations and analytical models

2. Temperature gradients well seen in observations, but are not included intokinetic simulations

3. Thin CSs are characterized by strong electron currents (both inobservations and simulation)

4. Estimations suggest significant contribution of ion nongyrotropy (not yetobserved!) and electron anisotropy to the pressure balance

5. Strong transverse electric fields are seen in simulations, but more accurateobservations are required to estimate these field in the magnetotail

6. Models and observations of the electron anisotropy indicate on a finitefield-aligned field in the magnetotail (not yet observed!).

7. CS thinning is accompanied by plasma cooling, but this effect is not seen insimulations.

Page 25: Earth magnetotail current sheet: observations vs. model

EARTH MAGNETOTAIL CURRENT SHEET

Geotail,

Cluster,

THEMIS,

ARTEMIS

Predicted by models, but

not yet observed

Well observed, but not

yet modeled

• E• EII

• pxz

• T• T

Page 26: Earth magnetotail current sheet: observations vs. model

Additional info

Page 27: Earth magnetotail current sheet: observations vs. model

Current sheet dynamics: current density growth

jy nA/m2

Petrukovich et al., 2007

~ 1/y zj B

Artemyev et al., 2016

3/2~1/y zj B

-12RE -18RE

TCS properties:- CS thinning is not uniform process:

larger initial Bz in the near-Earth CS requires more significant Bz decrease during thinning

- Bz is smaller at larger r, whereas jy is larger at smaller r

Petrukovich et al., 2013

THEMIS 2015Cluster 2001-2004

j yn

A/m

2

Bz nT

Page 28: Earth magnetotail current sheet: observations vs. model

Formation of thin C

Plasma pressure inthe neutral plane

=5/3

1999 JGR

2014 JGR

jy

Page 29: Earth magnetotail current sheet: observations vs. model

Modern CS models

Sitnov & Schindler 2010 Sitnov & Merkin 2016

2D solution with magnetic “hump”

2D solution with included dipole!

Sitnov et al., 2007

2D solution with small population of nongyrotropic ions

Page 30: Earth magnetotail current sheet: observations vs. model

Recent reviews about CS structure & dynamics• Artemyev, A. V., and L. M. Zelenyi (2013), Kinetic structure of current sheets in the Earth magnetotail, Space Sci. Rev., 178, 419–440,

doi:10.1007/s11214-012-9954-5.

• Baumjohann, W., et al. (2007), Dynamics of thin current sheets: Cluster observations, Ann. Geophys., 25, 1365–1389.

• Birn. J, et al. (2012) Particle acceleration in the magnetotail and aurora Space Sci. Rev. 173 49–102

• Eastwood, J. P., H. Hietala, G. Toth, T. D. Phan, and M. Fujimoto (2015), What controls the structure and dynamics of Earth’s magnetosphere?, Space Sci. Rev., 188, 251–286, doi:10.1007/s11214-014-0050-x.

• Egedal, J., A. Le, and W. Daughton (2013), A review of pressure anisotropy caused by electron trapping in collisionless plasma, and itsimplications for magnetic reconnection, Phys. Plasmas, 20(6), 061201, doi:10.1063/1.4811092.

• Ganushkina, N. Y., et al. (2015), Defining and resolving current systems in geospace, Ann. Geophys., 33, 1369–1402, doi:10.5194/angeo-33-1369-2015.

• Goldstein, M. L. et al. 2015 Multipoint observations of plasma phenomena made in space by cluster J. Plasma Phys. 81 325810301

• Petrukovich, A. A., A. V. Artemyev, I. Y. Vasko, R. Nakamura, and L. M. Zelenyi (2015), Current sheets in the Earth magnetotail: Plasma and magnetic field structure with Cluster project observations, Space Sci. Rev., 188, 311–337, doi:10.1007/s11214-014-0126-7.

• Schindler, K. (2006), Physics of Space Plasma Activity, 522 pp., Cambridge Univ. Press, Cambridge.

• Sitnov, M. I., and V. G. Merkin (2016), Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation, J. Geophys. Res. Space Physics, 121, 7664–7683, doi:10.1002/2016JA023001.

• Yoon, P. H. and Lui, A. T. Y., 2005 A class of exact two dimensional kinetic current sheet equilibria J. Geophys. Res. 110 A01202

• Zelenyi L M, Malova H V, Artemyev A V, Popov V Y and Petrukovich A A (2011) Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration Plasma Phys. Rep. 37 118–60

• Zelenyi, L. M., A. I. Neishtadt, A. V. Artemyev, D. L. Vainchtein, and H. V. Malova (2013), Quasiadiabatic dynamics of charged particles in a space plasma, Phys. Uspekhi, 56, 347–394, doi:10.3367/UFNe.0183.201304b.0365.