early growth, lipid composition, and survival expectations - physical

13
Vol.126:163-175, t995 MARINE ECOLOGYPROGRESS SERIES Mar Ecol Prcg Ser Publlshed October 5 Early growth, lipid composition, and survival expectations of shrimp Pandalus borealis larvae in the northern Gulf of St.Lawrence Patrick Ouelletr'', Christopher T. Taggart2, Kenneth T. Frank3 rNlinistire des Peches et des Oc€ans,Institut Maurice-Lamonlagne, CP 1000,850 route de la mer, Mont-Joli, Quebec, Canada GsH 324 2Department of Fisheries and Oceans, North*est Atlantic FisheriesCentre, PO Box5667, t{hite Hills, St. John's, Ne*,Ioundland, Canada AIC 5Xt 3Department of Fisheries and Oceans, Bedford lnstitute of Oceanography, PO Box 1006, Dartmouth, Nova Scotia. Canada BZY 4A2 ABSTRACT: Shnmp Pandalus borealis lan'al abundance, early gro*'th. and lrprd composrtron were assessedat 3 srtes in the northern Gulf of St. La*'rence, Canada, in lvlay 1990.Physrcal charactenstics {temperdture, salinity, bearn attenuatronl of the u'ater column, zooplankton biomass(80 to 250 pm and 333 pm lo 2 mm size f ractjonsl and its taxonomrc compositton (333 pm to 2 mm stzef raction) at each site, were also tnvestrgdted The 3 sampling sltes were dtflerent envrronments \4nth distinct water column charactenstlcs and zooplankton community structures. Phospholipids were the most abundant (-809,.) hprd class rn shnmp zoea I and zoea II lan,ae rr'hereasthe triacvlglycerols (TAC) accounted for an aver- age of 5 "" of the total liprds. The drstnbution of TAG wet-werght ratros of shrimp larvae caplured in the freld was srnrilar to laboratorv reared larvae, suggesting that the laboraton'-derived TAG conditjon index can be used to infer the performance of shnmp larvae in different environments and to estimdte relatrle survival expectatlons among the larval cohorts. ln general, shnmp larvae were apparently not suffenng from limrted food resources in the sectors of the Culf tn 1990. Nevertheless, zoea II lan'ae *'ere larger in size {werght}and length, and showed a hrgherTAG condrtron lndex at the srtes where developmental stages of calanord copepods \^'ere more abundant. Thts supports the proposition that secondarl'productron in the water column rnfluences growth, condition, and survival potential of shnmp lan'ae. It rs proposed that survival of the first larval stage and recruttment to the shnmp stocks are influenced by the factors af fecting stratrJrcation and mr-xing rn the \4'atercolumn, i e. buoyancy fluxes, through control of phrtopldnkton and copepod productron rn the northern Culf of St. Lawrence. KEY WORDS: Pandalus borealis. Larvae Survrval . Secondary production ' Culf of St. Lawrence INTRODUCTION It is generally accepted dmong fisheries biologists that factors (mainli fluctuations in the abiotrc environ- ment) affecting growth and survival during the early life stages influence the level of recruitment to marine populations (Shepherd et al. 1984, Laurence 19901. Moreover, small changes in gror,r'th and mortality dur- tng the early stages can have a profound effect on the fluctuations in the number of recruits (Laurence 1990, 'E-mail: p-ouellet@ qc dfo.ca O lnter-Research 1995 Resa,lc o/ f ull artrcle not p..rnltted Fogarty et al. 1991). Most attempts to correlate early larval abundance or mortality (or proxies thereof ) with a simple environmental signal have been inconclusive or existing relations frequentlyfail when new data are added to the analyses (Taggart& Frank 1990). Taggart & Frank (1990)also argued that it is first necessaryto resolve the biological processes at and below the scale of the driving physical processes to succeed in rdenti- fying the relationshrpsbetween environment and recruitment level. Thus, a more precise definition of the primary ecological factor(s) that directly influence larval growth and survival could be an effective means

Upload: others

Post on 11-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Early growth, lipid composition, and survival expectations - Physical

V o l . 1 2 6 : 1 6 3 - 1 7 5 , t 9 9 5MARINE ECOLOGY PROGRESS SERIES

Mar Eco l Prcg Ser Publlshed October 5

Early growth, lipid composition, and survivalexpectations of shrimp Pandalus borealis larvae

in the northern Gulf of St. Lawrence

Patr ick Ouel letr ' ' , Chr istopher T. Taggart2, Kenneth T. Frank3

rN l i n i s t i r e des Peches e t des Oc€ans , I ns t i t u t Mau r i ce -Lamon lagne , CP 1000 ,850 rou te de l a me r , Mon t - Jo l i , Quebec ,Canada GsH 324

2Depa r tmen t o f F i she r i es and Oceans , No r t h *es t A t l an t i c F i she r i es Cen t re , PO Box5667 , t { h i t e H i l l s , S t . John ' s ,Ne* , I ound land , Canada A IC 5X t

3Department of Fisher ies and Oceans, Bedford lnst i tute of Oceanography, PO Box 1006, Dartmouth,Nova Scot ia. Canada BZY 4A2

ABSTRACT: Shnmp Pandalus boreal is lan 'a l abundance, ear ly gro* ' th. and l rprd composrtron wereassessed at 3 sr tes in the northern Gul f of St . La* ' rence, Canada, in lv lay 1990. Physrcal charactenst ics

{ temperdture, sal in i ty , bearn at tenuatronl of the u 'ater column, zooplankton biomass (80 to 250 pm and333 pm lo 2 mm size f ract jonsl and i ts taxonomrc composi t ton (333 pm to 2 mm stze f ract ion) at each s i te,were also tnvestrgdted The 3 sampl ing s l tes were dt f lerent envrronments \4nth dist inct water columncharactenst lcs and zooplankton community st ructures. Phosphol ip ids were the most abundant ( -809, . )

hprd c lass rn shnmp zoea I and zoea I I lan,ae rr 'hereas the t r iacvlg lycerols (TAC) accounted for an aver-age of 5 "" of the tota l l iprds. The drstnbut ion of TAG wet-werght ratros of shr imp larvae caplured in thefre ld was srnr i lar to laboratorv reared larvae, suggest ing that the laboraton' -der ived TAG condi t jonindex can be used to infer the performance of shnmp larvae in d i f ferent environments and to est imdterelatr le surv ival expectat lons among the larval cohorts. ln general , shnmp larvae were apparent ly notsuf fenng f rom l imrted food resources in the sectors of the Cul f tn 1990. Nevertheless, zoea I I lan 'ae* ' e re l a rge r i n s i ze {we rgh t } and l eng th , and showed a h rghe rTAG cond r t r on l ndex a t t he s r t es whe re

developmental stages of calanord copepods \^ 'ere more abundant. Thts supports the proposi t ion thatsecondar l 'productron in the water column rnf luences growth, condi t ion, and surv ival potent ia l ofshnmp lan'ae. I t rs proposed that surv ival of the f i rs t larval stage and recrut tment to the shnmp stocksare inf luenced by the factors af fect ing stratrJrcat ion and mr-x ing rn the \4 'ater column, i e. buoyancyf luxes, through contro l of phrtopldnkton and copepod productron rn the northern Cul f of St . Lawrence.

KEY WORDS: Pandalus boreal is . Larvae Survrval . Secondary product ion ' Cul f of St . Lawrence

INTRODUCTION

I t i s genera l l y accepted dmong f i sher ies b io log is tstha t fac to rs (ma in l i f luc tua t ions in the ab io t rc env i ron-

ment ) a f fec t ing growth and surv iva l dur ing the ear lyl i fe s tages in f luence the leve l o f recru i tment to mar inepopu la t ions (Shepherd e t a l . 1984, Laurence 19901.Moreover , smal l changes in g ror , r ' th and mor ta l i t y dur -tng the ear ly s tages can have a pro found e f fec t on thef luc tua t ions in the number o f recru i ts (Laurence 1990,

' E -ma i l : p -oue l l e t@ qc d fo . ca

O l n te r -Resea rch 1995Resa, lc o/ f u l l ar t rc le not p. . rn l t ted

Fogar ty e t a l . 1991) . Most a t tempts to cor re la te ear lylarval abundance or mortal i ty (or proxies thereof ) witha s imp le env i ronmenta l s igna l have been inconc lus iveor ex is t ing re la t ions f requent ly fa i l when new data areadded to the ana lyses (Taggar t & Frank 1990) . Taggar t& Frank (1990) a lso argued tha t i t i s f i r s t necessary toreso lve the b io log ica l p rocesses a t and be low the sca leo f the dr iv ing phys ica l p rocesses to succeed in rdent i -fy ing the re la t ionshrps be tween env i ronment andrecruitment level. Thus, a more precise definit ion ofthe primary ecological factor(s) that direct ly inf luencela rva l g rowth and surv iva l cou ld be an e f fec t i ve means

Page 2: Early growth, lipid composition, and survival expectations - Physical

N l a r E c o l P r o ( l S t ) r l 2 h l r r ' l _ 1 7 5 . l ( ) q 5

to achr t - "e a be t te r r t : c ru r tmt :n t l t re r i i c t ion . The use o f ab iochr 'n l rcd l l l i p i r t - l_ rased) conr l r t ion rndex tha t re f lec tsthe sLr rv rva l po ten t ia l o f the la rvae mdy prove to be apor rer f r . r l too l rn assess ing th t : eco loq ica l fac to r (s1i n v o h e d ( O u e l l e t e t a l . 1 9 9 2 ) .

Th t ' re a re j l t r rnc ipa l Panc la lus b r : rea l i s aggregat ronsrn the ' nor 'hern Gu l f o f S t . Larv rence, Canada: thenor th t 'es t , nor th Ant rcos t i , and nor theas t sec tors(F ig l ) In spr ing , ac lu l t female shr imp move to rvardsha l lo rver rva ter rvhere the f i r s t pe lag ic la rva l s tage rsre leasec l in to the rva ter co lumn. Larva l enrergence hasbeen repor ted to occur s rmul taneous ly f rom Apr i l toearh ' \ lav wr th in each sec tor o f t l . re nor thern Cu l f{Oue l le t e t a l . 1990) . The s tudy o f the pa t te rn and sca leo f shr rmp la rva l hor izon ta l d is t r ibu t ion shorved a spa_t ia i l v s t ruc tu red d is t r ibu t ion o f zoea I la rva l pa tchesfo l lo rv ing en le rgence in the sec tors o f the nor thernGul f , bu t a spat ia l l y random pat te rn o f d is t r ibu t ionn ' i th no c lear re la t ronsh ip rv r th the hr , 'd rograph ic spa-t ia l he terogene i tv fo r the o lder la rvae rv i th in the d i f fe r -en t sec tors (Oue l le t e t a l . 1990) . I t was there forehy .po thes ized tha t d i i fe ren t ia l deve lopmenta l ra tes andmor ta i i t v , in response to t roph ic var iab i l i t y wr th in thesec tors , may exp la in the spat ia l pa t te rn o f d is t r ibu t ionof the o lder (zoea I I+ ) shr imp la rvae (Oue l le t e t a l .19901 A subsequent study on the vert ical distr ibutionof shnmp la rvae revea led tha t the zoeae I and I i aggre_gate near the p,vcnocl ine {dbove 40 m) in a strat i f iedwater column, coincident with high chlorophyi l alchl a) and suspended part icle concentrat ions (Ouellet& Le fa iv re 1994) . In add i t ion , the d i rec t ion and magnr_tude o f water t ranspor t were favorab le fo r the malnre_nance of larval shrimp cohorts within the northwestsec tor o f the Gu l f (Oue l le t & Le fa iv re 1994) .

Thrs study is a component of the research programon Pandalus boreal is larval distr ibution arrd ecoloqv in

67' 65" 63" 6t"

Longitude (west)

Posrt ion ot the sampl ing sr tes and detar ls of theeach sr te ln the northeln Gul f of St . Lau,rence,

the nor thern Gu l f o f S t . Lawrence. The spec i f i c ob lec-t l ves were : (1 ) to rnedsure and contpare abundancegro iv th , and l ip id compos i t ion o f shr imp la rvde a t d i f -fe ren t s r tes (wdter masses) in 2 sec tors o f the nor thernGul f , and (2 ) to assess the u t i i i t y o f a labora torv -der ived l ip id cond i t ion index I i .e . la rva l t r iacy lg lvc_ero ls ITAG) conten t (pg) :wet we igh t (mg) ra t io {TACrvw r1 x 1000; Oue l le t e t a l . 19921 fo r es t imat rng la rva lsurv iva l po ten t ia l in the f ie ld . The var iab i l i t y observedin shr imp la rva l g rowth , l ip id condr t ion , and surv rva lpo ten t ra l among the sampl ing s i tes i s d rscussed in re la_t ron to the d i f fe rences in water mass characrens t lcs(phys ica l and b io log ica l l observed dmonq the s i tes .

I\,{ATERIALS AND METHODS

The s tudy was conducted a t 3 s i tes in the nor thernGul f o f S t . Lawrence be t rveen 24 N lay and 2 June 1990{F ig . 1 ) . S i tes A and B were loca ted in the nor thwestGu l f , in the pr inc ipa l zone o f la rva l emergenceobserved fo r the nor thwest sec tor {Oue l le t e t a l . 1gg0) ,Site C was located -5 km from the north coast of Anti-costr Island, in the zone of larval emergence for thenor th Ant icos t i sec tor (Oue l le t e t a l . 19g0) . Each s i tewas descr ibed by a f i xed 20 x 20 km l2 -s ta t ion gnd(F ig . 1 ) . The en t i re g r id a t each s i te was sampledwithin 24 h and each gnd was sampled twrce {circuit 1and circuit 2) before moving to the next si te.

At each grid stat ion, vert ical temperature, sal ini tyand l ight transmission [Sea Tech 25 cm beam {660 nm)transmrssonteter] prof i les were recorded. Underwaterl ight transmission was converted to a beam attenudtioncoef f i c ten t d (m- ' )accord ing to L ieberman e t a l . {1gg4 l :

- l n Id = _

0 .25

where T is the relatrve l ight transmission atdepth and 0 .25 is the length (m) o f the ins t ru -ment l ight path. Continuous dorvncast prof i leso f tempera ture , dens i ty (o , ) , and beam a t tenu_at ion were averaged a t 1 m tn te rva ls and sub-sequently smoothed using a 5 point movingaverage.

Vert ical ly integrated zooplankton (333 umB o n g o n e t s : P o s g a y & N l a r a k l g B 0 ) a n d m e s o -zoop lank ton (80 pm con ica l r ing ne t ) sampleswere col lected in the upper 40 m, whichincludes the permanent pycnocl ine. The zoo-p lank ton b iomass (d ry werght : g 100m-3; andtaxon specif ic abundance rvere determinedfrom the Bongo samples and biomass only (drywe igh t : g 100m-3) f rom the con ica l ne t sam-ples. For each Bongo tow, a sample from 1 ofthe 2 nets was preserved in a 4 9/o formalin and

{ 1 )

EoC

o-l

J

sampl ing gnd forMay 1990

FS 2rro

t t s d

.o'

F ig 1

Page 3: Early growth, lipid composition, and survival expectations - Physical

Ouel let et a l . : Surv ival expectat lons of shrrmp lan ae

seawater solut ion for the enumeratlon of decapod lar-

vae. The sample from the second net \^ 'as passed

through 2 mm and 500 pm s ieves to ob ta in the 333 to

500 ;rm and 500 pnl to 2 mm size fract ions The frac-

t ions were suspended and mixed in 2 I o f pure water

and 2 subsanp les (25 or 50 ml , dependrng on the den-

srt l ' of orqanlsms) were extracted The f irst lvas pre-

served for taxon identl f icatron and enumeration, and

the second rvas f i l tered on a 1 5 pm pre-burned lVhat-

man GF/F f i l te r and f rozen fo r b ioma 's de terminat ion

Add i t iona l b tomass es t in ra tes (no taxon tdent t f i ca t ion ;

rvere made for 2 mesozooplankton size fract ions (80 to

125 and 125 to 250 i rm) us ing the above methodo logy '

The 250 to 333 pm size fract ion rvas not included, as i t

rvas clear, bv visual ly comparing the larger zooplank-

ton from the conical (80 pm) net rvi th the smaller zoo-

p lank ton f rom the Bongo (333 pm) ne t f rom the same

sta t ion . tha t the B0 Um mesh ne t was no t sanp l ing the

la rger (>250 pm) zoop lank ton e f f l c ien t ly . Never the-

less, thc interval 250 to 333 pm accounts for only 4 n'o of

the s ize range cons idered ( i .e . B0 pm to 2 mm); there-

fore the size fract ions retarned (80 to 250 pm, 333 pm to

2 mm) cover most of the reported feeding range for

zoea I and I I shr imp la rvae (S t ickney & Perk ins 1981)

Dry weight rvas determined after each size fract ion

had been oven dried (60'C) for 24 h Anah'sis of van-

ance IANO\/A) w'as apptied to the zooplankton bio-

mass {square- roo t t rans formed) da ta to tes t fo r day and

night, and sampling site effects on each size fract ion'

S ign i f i can t l l -d i f fe ren t means among s l tes were ident t -

f ied us ing the Student -Nervman-Keu ls (SNK) a pos fe-

r jo r i tes t (Soka l & Roh i f 1981) .

The zooplankton community structure at each std-

t ion u'as described b-v computing the 'relat ive domi-

nance index ' o f each spec les or taxonomrc ca tegory

enumerated in the 333 to 500 pm and the 500 pm to

2 mm size fract ions. The measure of relat ive domi-

nance is based on the rat io of the proport ion of taxon j

and the expec ted (mean) p ropor t lon o f a l l o ther taxa in

the sample (Kvd lse th 1991) :

, , = P ' l2 l' E ( p t l

rvhere r, is the 'relat ive domindnce index' of taxon i ,

p, is the proport ion of taxon j in the sample, and E(P,) is

the expected (weighted mean) proport ion of the other

taxa g iven by :

S . 2t r , p r - L ' ' t r ( 3 1L \ , t , _

1 _ p ,

The lorver l i r l l t of the index is 0 when P, = 0 and

r, = 1 i f al l taxa are unifornrly distrrbuted in the san.rple

( i .e . equa l p ropor t ions) ; however , the index has no

upper l in t i t and r , - -+ - when p , ) l 'Box p lo ts o f the

r , index computed a t each s ta t ton fo r a s i te , and c i rcu i t ,

were constructed to vtsual lY compare the relat ive com-

posit ion of the zooplankton community anlong sam-

p l ing s i tes .

A minimum of 5 shrimp larvae were col lected l ive

from each zooplankton san.rple and immediately pre-

served in l iqu id n i t rogen fo r f resh wet -$ 'e lgh t de termi -

nation and [pid analyses fol lou' ing the protocol used

for ind iv idua l shr imp la rvae in Oue l lc t e t a l (1992) .

The only modif icat ion was the addit ion of a third chro-

marods deve lopment [45 n t in in ch lo ro f o rm:methano l :

r v a t e r ( 5 0 : 3 0 : 3 , r ' : v : v ) l f o r i s o l a t i o n a n d q u a n t i f i c a t i o n

of the polar i ipid (phospholipids) classes (adapted from

Nlur ray 1985) . lnd iv idua l shr imp la rva l b iomass as to ta l

o rgan ic carbon (o rgC zoea- r )u 'as es t lmated f rom to ta l

hp id da ta ( i .e . summat ion o f a l l l i p id c lasses) us lng a

re la t ion fo r b rachyuran Ia rvae (Anger & Harms 1990) .

Total length (from the t ip of the rostrum to the end of

the telson) a: ld carapdce length (from the posterior end

of the orbit to the posterior dorsal margin of the cara-

pace) o f the fo rmaldehyde-preserved shr imp la rvae

rvere measured under a dissecting mlcroscope.

RESULTS

Water mass structure at the sites

The surface mired-layer temperature and sal inity

characterist ics at each stat ion i l lustrated the discrimi-

nation of the water masses anlong the sites for each

sampling circuit , as dif ferences amc,ng sites exceeded

the d i f fe rences w i th in s i te (F ig . 2A, B) . The sur face

water mass a t S i te C was re la t i ve lv more homogeneous

and c lear ly co lder and more sa l ine (F ig . 2A, B) Advec-

t ion of freshr,r 'ater at Site A was apparent by the pres-

ence of less sal ine wdter durlng sampling circurt 2

(F ig . 2A, B) . The ana lvs is a lso ind ica ted a g rad ien t

betrveen the surface water masses of Sites A and B and

the warming at Site B reldt ive to Site A.

I\4ajor dif ferences among sites were also observed in

the vert ical structure of the water column. Site A had a

sha l low (<10 m) mixed layer above an ex tended ( to

50 m) pycnoc l ine (F ig . 3A) . D is t inc t subsur face max ima

in suspended par t i c les , as shoun by beam a t tenuat lon ,

rvere observed within the pycnocl ine and above the

co ld in te rmed ia te layer (F ig . 3A) . S i te B a lso had a

sha l low {< 10 m} mixed la1 'e r , bu t showed s t ronger tem-

pera ture and dens i ty g rad ien ts re la t i ve to S i te A and a

less ex tens ive co ld in te rmed ia te layer (F ig . 3B) . Cor re-

spondingly, suspended part icle concentrattons were

much lower than at Site A, l imited to the upper 20 m,

and no dist inct subsurface maxima were observed at

the pycnoc l ine . In cont ras t , the sha l lower S i te C had

the deepest mixed layer ( -20 m) and the weakes t ther -

moc l ine and pycnoc l ine (F ig . 3C) . Suspended par t i c le

Page 4: Early growth, lipid composition, and survival expectations - Physical

\ l a r E c o l P r o g S c r l ? b l h 3 _ I 7 ) . l ( t l | 5

A S i te A

(Jc

o 6 .0

t r { .0

F

S i te B

30.0

Sal ini ty

Site A S i t e B Si te C Si te A Si te B Si te C

concent ra t ions a t S i te C were much lower than a tSite B and more uniformlv drstnbuted with depth.

Abundance, growth, and size variabi l i ty ofshrimp larvae

Average ( to ta l ) concent ra t ions (number 100m-11 o flarval shrimp among circuits at Sites A and C were10- fo ld h igher than concent ra t ions a t S i te B (Tab le 1 ) .Co-occur rence o f d i f fe ren t deve lopmenta l s tages wasnoted a t a l l s i tes , bu t zoea I la rvae were more abun-dant a t S i te A whereas zoeae I I dominated a t S i tes Band C (Table 1). The zoeae II rvere signif icantly largerin s ize (wet rve igh t ) and length (carapace and to ta l ) a tSite C than at Sitec B and A tTable 2.| . The zoea II lar-v a e m i n i m u m b i o m a s s { i , e p g o r g C z o e a ' ) a t S i t e Branged f rom 39.6 to 45 pg (average: 42 .3 pg) re la t i ve tomrn imum b iomass rang ing f rom 64.2 to 80 .5 pg and53.9 to 59 .4 i rg a t S i tes A and C respec t ive ly (Tab le 3 ) .A l though the means o f a l l zoeae I I a t each s i te were no tstat ist ical ly dif lerent, the dif ferences in zoea II larvaeminimum size among sites are interpreted as the con-sequences of drl ferential larval growth performance,

i .e. the net oain in bodv size at the f irst moult.

32 .0

F ig . 2 . {A ) Combrned t empe ra -ture dnd sal inr tv dragram fromthe averaged mrxed la,ver atedch stat ion {open s l 'mbols: crr -cu i t 1 ; c l osed svmbo l s ; c l r cu i t 2 ) .Cons tan t dens r t l l o , J l l nes d realso rncl icated rB1 Box plotssummanztng the mixed- lavercharactenst ics i temperature andsa[nr ty1 at the sampltng s l tes foreach sampl ing crrcut t . Each boxpresents the ntedldn {honzontalhne1, the upper and lorver quar-t i les {upper and lorver bounds ofthe rectanglel , and the range

(vert rcal l inel rn the data

Shrimp larvae l ipid composit ion and TAG content

Overal l , the phospholipids (phosphatidy"lchcl ine andphosphat idy le thano lamine) accounted fo r more than8091" of al l l ipids in both zoea I and zoea II shrimp lar-vae {Fig. 4). Among the neutral l ipids, the diacylglyc-ero ls ( -10%) and the f ree s te ro ls ( -6o 'n ) rvere more

Table 1. Pandalus boreal is. lvlean (r SD) concentrat ion inun.r-ber 100m-11 o f shnmp la rvae a t the sampl ing s l tes dLrnng bo thclrcults. N = 12 stat ions at al] srtes except for ctrcuit 2 at

S r t e C w h e r e N = 1 0

24.0

B

i , t r

I

rr r -l---l

i- i-l -;-

I-T_

i r i? )

= +

I

. ) 8

a 7

E o

I rt-

J

2

I

.= 30

9 2 9q)

2 7

26

Circui t Totdl Zoea I Zoea I I Zoea I I I

Si te A1 1 5 . 2 t 1 5 1 1 0 0 t 9 . 7 5 1 r 7 5 0 t r 0 22 3 2 . 2 x 2 6 . 1 2 1 6 ! 1 7 8 1 0 7 t 9 . 0 0

Si le B1 . 1 6 1 , 1 . 8 0 5 t 1 . 8 { . 1 : 3 5 02 3 . 2 x 2 6 0 . 6 t 0 . 8 2 7 x 2 . 0

Si le C1 2 7 . 1 x 3 4 . O 0 . 4 t 0 8 2 5 . 8 r 3 2 5 1 . 2 t 1 52 3 0 . 2 x 2 1 . 3 0 6 r 1 1 2 8 . 3 x 2 0 . 2 t 3 t 1 . j

Page 5: Early growth, lipid composition, and survival expectations - Physical

Ouel let et a l . r Survtval e\pectdt lons of shrtn lp Iarvae

O1- < - r ^ i l <,. 1:

"l

\

\

\

Ia, m-', 5 2 A

"f,'iz. 7

t7h0F{

\\*\

\,,

- ' 2 !

: 3 C

n ot-,

2Aa

C '4t )

a

(nilfrI

F ig . 3 . Tempera tu re {TJ , den -

s r t y - l o , ) , and beam a t t enua t l on(a , m r ) p ro f r l es a t each sam-

p l i ng s i t e ( so l i d l i nes ; c i r cu r t i ;

dashed hnes. ct rcut t 21. For

c lar i ty , only the median and

the extremes for each gr id and

clrcui t are presented to i l lus-

t rate the degree of var iabi l t tY

d t each s r t e 1A , B ' and C )

abundant than the TAG (3 to 5 ' ) i , ) and on ly t races o f

s te ro l o r fa t ty -acrd es ters were recorded (F ig 4 ) Fre-

quency d is t r ibu t ions o f the s tandard ized ind iv idua l

TAG conten t { i .e . the TAG ww 1 cond i t ion lndex)

shorved h igher var iab i l i t y , i .e . g rea ter range, fo r the

z o e a e I d t S i t e A r e l a t r v e t o S i t e s B a n d C , r v h e r e

zoeae I I dont ina ted (F ig 5 ) . Very few zoeae l l were

preserved fo r the b iochemrca l ana lys is a t S i te A tc l r -

c u i t 1 : N = 4 , m e a n T A G w w r = 0 5 1 + 0 2 9 , r a n g e =

0 t o 0 . 6 6 ; c i r c u i t 2 : N = 9 , m e a n T A G s ' 1 v ' r = Q l $ +

0 .79 , range = 0 .18 lo 2 .87) ; never the less , h igher p ro-

por t ions o{ zoea I I la rvae ln poor condr t lon (TAG l tn :

5 0 .2 ) were observed a t Sr te B re la t i ve to S i tes C and

A lzoeae l ) , espcc ta l l y dur ing sampl ing c i rcu t t I c r t

S i t e B { F i q 5 )

Zooplankton biomass and community structure

From the Bongo sanrp les , the la rger (500 pm to

2 mm) zoop lank ton b iomass was much lower a t S i te C

re la t i ve to S i tes A and B IANOVA (SNK) , p < 0 .05 ; c i r -

cu i t 1 and 2 n igh t samples ] whereas zoop lank ton b io -

rnass in the smal le r (333 to 500 pm) s ize f rac t lon was

s ign i f i can t ly h igher a t S i te A re la t i ve to S i tes B and C

IANOVA (SNK) , p < 0 .05 ; c i rcu i t 1 n iqh t samples and

c i rcu i t 2 day samples ] (F ig 61 . The n tesozoop lank ton

b iomass in the 125 to 250 prn s ize f rac t ion f rom the con-

ica l ne t was s ign i f i can t ly lower a t S i te B re la t i ve to

S i t e s A a n c l C { A N O V A ( S N K ) , p < 0 0 5 ; c i r c u i t 1 d a y

sanrp les ] and s ign i f i can t lv h rgher a t S i te A re la t i ve to

S i tes B anc i C [ANOVA (SNK) p < 005; c r rcu i t 1 n igh t

Page 6: Early growth, lipid composition, and survival expectations - Physical

i l l a r Eco l P roq Se r l l t i : l t i : l - 17 .5 , l {X )5

s a r n p l e s l ( F i g . 6 ) . F o r t h e s n r a l l e r s i z e

f r a c t r o n 1 8 0 t o 1 2 5 p m ) , b i o m a s s r v a s s i g -nr I rcan t ly lower a t Sr te B re la t i ve to Sr teA I A N O V A ( S N K ) , p < 0 0 5 ; c i r c u i t 1 d a ya n d n r g h t s a m p l e s l ( F i g . 6 1 .

Or . 'e ' ra l l , the la rger (500 pm to 2 mm)

zoop lank tor t con tnr r :n i tv s t ruc t r l re !vas. : . - . . r . - - . , l l . ^ . - ' . a n < r l o < e n d l h e) l l l l l l d t q L o l r 5 o l l l P l l l r y

ca lano id copepods (Ca lanus f inn tarch i -

cu-s, (1. hrperboreus late copepodites or

adLr l ts ) dominated the zoop lank ton com-m r r n r l v t t r r n 7 t I n t o r o c t . n , ' l , f - t ; ^ n , .r r r r r r r L r r I t l V . / , . r r r t C l c r t r l l U r v , \ t t t I I t t A t -

cJr lcus was more abundant than C.

h- rperboreus a t Sr tes A and B, i .e . the

nor th rves t sec tor , rvhereas C. h t p t ' rbor -

eus rvas the dominant ca lano id copepoda t S r t e C A l l h o r r o h t h p c o n c e n t r a t i o n s o fC. t ;nmarch icus rvere s imi la r be tweenSi tes A and B, anc l bo th concent ra t ions\ \ 'e ' re conrparab le to C hr per l - ro reus

c o n e D o d i l o s l a o e c o n c e n t r d t l o n s a t_ " r . ' r " . ' " _ ' ' - J _

Si te C, the younger i smal le r l copepodr te

s toges lC . f inmarch jcus or C. hvper -

zoeae Ii s i t c A ( 1 ) N = 2 1i - - S i t o A ( 2 ) N = 2 8

Sire B (l ) (no dEra)N S i t c B ( 2 ) N = 2s S i r c C ( 1 ) N = 3I S i t c C ( 2 ) N = 2

Table 2. Pandalus borea, l js . Mean { t SD) tota l lenqth, carapace length( f o rn rd l dehvde -p res t ' r ved s l ) ec lmens ) , and we t we rgh t ( f r ozen spec lmens l l o rsh r imp l a r va l s t d ( l t , s d t each samp l i ng s i t e dunng bo th c r r cu r t s 1C) .

' s t a t t s t r -

ca l l y s rgn r f r can t d r f f e r cnces IANOVA (SNK) , p < 005 ldn tong san rp l i ng s r t esfor each crrcurt

C r r cu r t Zoea To ta l l eng th Ca rapace l eng th

{ m m ) { m m l

lvet werctht

i m g l

S i t e A1 I

I I

2 TI I

Si te B1 I

I I

2 lI I

Si te C1 I I

I I I

2 lI I

I I I

51 6 .29 t 0 .262 3 7 . 9 1 t 0 5 05 { 6 3 9 r 0 4 03 5 7 . 9 2 x O . 5 1

2 b . 1 8 t 0 . 4 15 8 2 5 : 0 . 6 0

2 6 5 5 t 0 . 1 21 1 7 . 9 4 t 0 4 5

1 0 8 8 6 5 t 0 . 4 8 '9 1 0 7 6 t 0 . 3 7

2 6 3 9 t 0 . 0 11 0 2 8 . 3 9 r 0 . , { 2 '10 10.21. z 0.23

1 2 5 r 0 l 01 . 6 3 t 0 . 1 5

1 . 2 , 1 t 0 1 11 . 6 7 t 0 1 4

1 . 1 6 t 0 0 07 . 7 1 x 0 . 2 5

i . 3 3 r 0 . 1 11 . 7 6 t O 1 6

1 8 3 t 0 1 6 '2 3 9 t 0 1 6

1 . 3 3 t 0 0 01 . 8 1 t 0 1 5 '2 3 8 t 0 1 1

I 84 t 0 . 372 9 9 r 0 6 0

2 .05 t 0 393 . t r 7 t 0 . 53

3 . 4 4 t 0 7 6

3 . . { 2 t 0 60

4 0 9 t 0 5 7 '

1 2 6 t 0 . 7 2 '

1 l

3{I

1 6

62

62

- 6 0

b 5 0

E 4 0

3 3 0

20

t 0

0

8 0

70

70

60

40

3 0

20

l r a c e t i { r ! ,l l l*r n \L-

- : f:.*t

-$

boreus) were more abundant at Site .{than a t S i tes B and C lTab le 4 ) .

The smaller {333 to 500 pm) zooplank-ton were relat ively more diversif ied, rvi thmore taxa shorving a high relat ive domr-nance index wtthin each sampling site(F ig . 7 ) . Larvaceans rvere the dominanttaxonomic group at al l si tes, but coLlec-t ively calanoid copepod eggs, naupli i ,and small copepodite stages were moreimportant, especial lv at Site A {Fig. 7,Table 4). The 333 to 500 pm zooplanktonat Site C was dif ferent. as radiolarians(pro tozoan) and euphaus i id la rva l s tagesdominated relat ive to the calanoid dev-e lopmenta l s tages {F ig . 7 ) Hotvever ,ca lano id deve lopmenta l s tages (eggs ,naupli i , and copepoditesl together rvereagain numerical ly more abundant atS i te C re la t i ve to S i te B rTab le 4 ) .

Fig. 4. Pandalus boreaj js . Lrpid composi t ion ofshnmp larvae at each sampl ing sr te and c i r -curt . S-Es: sterols-ester ; TAC; tnacvlg lycerols;FF-A: f ree fat ty acrds; DAG: dracylg lycerols;FS te : f r ee s te ro l s ; Pe : phospha l : dy l e thano l -amine; Pc: phosphatrd_vlchol ine. Total I iprdcomposl t lon was possrble for only a s ingl€zoea I larva at Si te B {c i rcui t l ) so the va}ues

are not presented on the plot

S-Er TAG FFA DAG

ZOCAE I I

f S i t c A ( l ) N = 3f S i t 6 A ( 2 ) N = 9z T s i r c B ( l ) N = 2 1s s i r c B ( 2 ) N = 1 5E B s S i t e C ( 1 ) N = 5 6l S i t c C ( 2 ) N = 5 4

t r ace , : .

1 0

S-Es TAC

'.:liY

Page 7: Early growth, lipid composition, and survival expectations - Physical

Ouel let et a l . : Survtval expectat lons of shrtmp larvae

Table 3. Pandalus bo;ea. / rs. Bromass of shnmp larvae expressed as organic carbon per zcea (pg org C zoea r ; at each sanlpl ing

st te durtnq both c l rcut ts

Site A; zoeae I40

30

20

l 0

l 0

500 um to 2 mm

E c i r c u i t l ( d a y ) N = 2 0r c i r c u i t l ( n i g h t l N = 1 6[ Z c i r c u i t 2 ( d a y f N = 1 8B c i r c u i t 2 ( n i g h t ) N = 1 6

125 to 250 pm

0,0 0lo J o . 7 0 . 9 l l 1 3 l J 1 , 1 l 3 2 l

tr4 0.6 0. l 1.0 l .2 1.1 1.6 l l 2.0

Site C; zoeae I I

B0 to 125 pm

- ( 1 ) N - 2 2- ( 2 ) N - 3 1

i i

i -

i n _ L h

=# =ffi ri333 to 500 pm

0,0 020J 0.? 0.9 l l l3 lJ

0.4 0.5 0l 1.0 r 2 l .a 1.5

Site B; zoeae I I

3)

> 2 0

l 0

ol 0J oJ 0.7 0.9 l l 13 lJ l .? 1.9 2J

o.o 02 04 0.6 0r 1.0 l l 1.1 t J l , 2.0

Class (TAG *--1)

Frg 5. Palrdai us boreai ;s Frequency dlst r ibut lons of the tndi-

v i dua l T . \G nw 1 c i , nd i t t on t ndex l o r shnn lp l a r va l coho r t s a l

edcn s l t e

Site A Site B Site C

F ig . 6 . Compar r son o f t he n tedn (+ 1 SD lzoop lank ton b i omass

rn .1 s r ze f r ac t r ons an tong san rp l l nq s l t es f o r da1 'and n l qh l

samphng pe r rods . ( a l S l gn i f i cdn t d t f l e r t ' n ces IANOVA (SNK] ,

p < 0 . t ) 51 dn lonq sam l ) l t nq s l l es

Zoea Srte A Srte B Sl te C

( 1 r 1 2 \ ( 1 1 \ 2 1 ( 1 ) . \ 2 i

r \ ' 1 1 ) 1I . \

\ l r n r m u m 1 5 . 2 2 4 1

\ l a r rmum 201 .2 198 .3

\ ! ean t SD 85 .8 t 59 .2 86 .3 * ' 10 1

i l N 4 8 ?: 15 49 .50

\hntmum 64.2 80 5 15 0 39.6 53 9 59 4

\ l a r imum 158 .8 2262 187 5 2O7 5 513 1 5522

\ I e a n t S D 1 0 6 1 t 4 2 8 1 4 , { . 5 * 5 1 . 9 1 1 1 . 6 t 4 0 . 9 1 3 0 8 t 5 3 . 7 1 8 1 . 3 : 6 9 3 1 9 5 9 t 9 1 . 1

f_ : o ) N=21- ( 2 ) N = 1 5

o ) N ' 57( 2 ) N - 5 5

Page 8: Early growth, lipid composition, and survival expectations - Physical

1 7 0 Nta r Eco l P rog Se r l l r r 1 t j 3 -175 , 1995

Si te A - 500 pm lo 2 mm Site A - 333 to 500 pm- o )-- (2)

h = hry1guNc = cl,rnoid uupl:Egc = ohnoid cgltCop = q1"no16 cop€"odi:qCyc = Cyciopoid 6p€p€drPol = Polychrctr (lrruc)El = EupbEuiidJ (hnr.)Ple . hcropods (Mo-lqi)Ech = Echinod!;N i:rFrc)Pm= Psadednw Jp ibr/re)Amp = l5pr-;Oo6tCir = CiripcdiE (uu:-ir)Cld = Cladccrr

1 0 - ( l )- - (2 '

if = C. limtrchicus1 = C. hyPerborouslop = olanoid cop€poditd::r = bry8cqnPm = .D€ldar,hruJ tp.Bl = Euphruiids Oanac)air = Cimp€dir (nrupli i)avc = Euchtcu tp.?o; = Foiychrctr (!-f lre)

lA= McnAt sp.l. = Ptcropods (Mollsi)!c = tsDscrioid copcpodr3!t = Cstrrcod!

" 1 . . " 0 . . -

l 0

x

U

i ,l J 0 r d " o A

R!dOslPir:o lPm3op.{vdcb

i t Eg" Cyc El tub AnpNc Cop Pol nc Pm Cir

Si te B - 333 to 500 pm- ( l )-- (21

c:dOsl

A-s Jitc A pi'rs:

Hc = ilarpactircid co,rcprds

l 0

EI 5uc

Site B - 500 Fm to 2 mm- o )-- (2)

l 0

x

E riJt r 6

o 4

z0

r ,s : i r r l - l ;us:

l-mc = Am?l:ipods

.'-iyd = llydrorcans

I

l]U f l' ' a r 0 6 . o - . lltuffooooooil

l 0

Cf luc Lar Asp Iiyci !c El Ptc

Ch Ml Fc Cop ioi Cir Csl

Site C - 500 Fm to 2 mm

Egc Pol Pm ,AnpCop Cyc Nc ?tc

Site C - 333 to 500 pm- ( l )- - Q )

- ( l )-- a)x

I

o

ofr

l 0A-1 Si.,r A plus:

Sr = litrisedia (naraplii)3yc = 3ycl'opoid c";ipoas t

AmP = 46P1t;*4tI{yd = :Jydroa8il

6

As Sitc A plus:

Ilc = ;l8rpactiord copcpods

l r0 f l 0 r r - i .0 8 ! U U U U U d 0 . . c . .

Ch El Pc CiJ 3op CEt P'.c Euc

Cf lar ?ol Cyc i-yd ,rrp --lc l'O

9l Cop Fol PE F,c Cat l-yd\r 3gc Nc Ecb Cyc Cir Cld llc

Fig.7. Box plots summariz ing the zooplankton community st ructures. Each plot presents the median (hor izontal l ine1, the upperand lorver quart i les iupp.r and lou'er bounds of the rectangle) , and the range (vert ical l ine) of the re lat ive dominance rndexescomputed at each s i te and samohng c i rcurt , for 2 srze f ract ions. On the x-axrs, the taxa are ordered f rom the most domlnan:

{ i .e. hrghest re latrve dominance index) to the least ( r .e. Iowest re lat ive domrnance index) according to the resul ts for the f i :s lsamol ino c i rcui t at each sr te

Page 9: Early growth, lipid composition, and survival expectations - Physical

Ouel let et a l . : Survtval expectatrons of shnmp lan'ae 171.

Taxon Clrcul t Si te A SI le B Srte C

500 ym to 2 mmCa/anus l t nn ta r ch t cus 1 153 4 t 1 ' 76 .4 115 .8 t 73 .6 26 .9 t 30 .8

2 9 7 2 x 8 0 . 4 1 4 8 6 t 8 0 2 9 0 1 t 6 6 4

CaJanus ht 'perboreus 1 59.1 x 27 .7 98.9 t 77 3 112. '7 t 109.92 6 9 . 8 t 1 9 1 1 0 1 . 9 t 9 7 2 2 3 6 . 9 t 1 2 5 1

Copepod i t e s t agesa 1 26 5 t 21 .3 0 .9 t 1 . 8 5 l - t 17 .62 1 7 . 1 t 1 7 . 4 0 . 2 t 0 . 8 - b

333 t o 500 pm

Ca lano rd eggs , naup l i i .copepod i t es 1 76 .1 : 76 .3 2 .7 t 2 . 3 106 .8 t 75 .8

2 9 3 2 x 4 2 . 3 0 9 : 0 . 5 7 4 0 t 3 9 . 3

uC. f tnmarchtcu-s and C. hyperboreusblncluded rvr th C. hrpcrboreus above

Tab le 4 . Mean { tSD l ca l ano td

{number mcopepod developmental stage conc€ntrat iont ; among samphng sr tes

the s tage, can render compar ison o fthe mcan va lues fo r the en t i re s tagemuch less dccurate. Calanoid copepoddevelopmental stages concentrat ionswere s imi la r among S i tes A and C,never the less , the b igger zoea I I lan ,aeat Sr te C re la t i ve to S i te A cor t ld a lsobe the resu l t o f enhanced gro t ' th a tS i te C (maybe caused bv d i f fe rencesin qual i ty or caloric content of thefood). Shrimp larval size at age ormou l t s tage was found to be rndepen-dent o f rear ing tempera tures (Wien-

berg 1982) , suggest ing tha t the lo rvermean water tempera ture a t S i te Ccannot explain the dif ference in larval

size. Alternativeiy, lorver incubationtempera tures ( i .e . dur rng egg deve l -opment) rvere found to be responsibie

DISCUSSION

Despite their relat ive proximity, sampli t ig Sites A

and B u'ere located in independent hydrographic

regions separated by a near surface density front

del ineating the u'estward, density-drtven, coastal cur-

rent and the antrcycionic gyre in the northwest sector

o f the Gu l f {Kout i tonsky & Bugden 1991) (F ig . 8 ) . The

nar row pdssage be tween the Quebec coas t and the

west end o f Ant icos t i I s land is a reg ion where co ld

sur face waters , o r ig ina t ing f rom upwel l ing a long the

north shore to the east, and strong t idal current, mixing

the cold intermedrate layer with the surface layer, con-

tnbute to the persistence of a cold and relat ivel-v well

m ixed rvd ter co lumn (Kout i tonsky & Bugden 1991) .The characterist ic water column observed at Site Creflects the eastward advection of this water massa long the nor th s ide o f Ant icos t i I s land. Moreover , thefrontal region created by t idal mixing over the shal-lows contr ibute to the rsolat ion of the northu'est sectorfrom the north Anticosti sector [see de Lafontaine et al.1991) D i f fe rences in the zoop lank ton b iomasses andcommuni ty s t ruc tu res among sec tors and s i tes , e .g . theverv lo rv abundance o f ca lano id deve lopmenta l s tagesat S i te B re la t i ve to S i te A , and the dominance o fCa/anus hyperboreus and radiolarians at Site C, sup-por t the conc lus ion tha t the 3 sampl ing s i tes representdrs t inc t envr ronments fo r the shr in ' rp la rvae.

A l thor rgh the zoeae 1 l a t S i tes A and B bo th o r ig i -na ted f rom the nor thwest sec tor sparvn ing s tock , thed i f f e rence in body length and s ize (o rg C) inc rement a tthe f i rs t mou l l ind ica ted the independent deve lopmento f the 2 la rva l q roups , Compar ison o f body s rze mln-tma, fo r a g i r , t ' l . r mou l t s tage, shou ld be an adequatees t in ra te o f la rva l s ize inc rement a t the mou l t s incevar tab i l i t f in q rou ' th , as the Ia rvae progress th rough

for b igger la rvae a t ha tchrng (Nunes 1984) . Hou 'ever ,mean deep (100 to 200 m) water tempera tures , where

egg-carrying female shrimp are found, are relat ivelyunr fo rm (a d i f fe rence o f *1oC in 1994) among thenorthrvest and north Antrcosti sectors {D. Gilbert, Inst i-tut N' launce-Lamontagne, pers. comm.), and the homo-geneity of zoea I shrimp larval cohorts among the sec-

Site A Si te B

26.5--'/

o l

40

t o l

r20

.-2zs l

\ . t\. ,1\ 2 7

- 2 5 5 -

- 26 ---*/

\\ ./-' /. 265

---./

2 7 =

F ig .8 . l sop l ' cna l l o , ) d i s t nbu t i on d t a c ross - sec t l on f r omQuebec ' s no r t h sho re t o t he no r t h r ves t an t r cvc l on rc qv re l l e f tt o ngh t ) , cu t t r ng t h rough samphng S r t es A and B ( see F rg . 1 )

. , /a 2 6 J

= 1 6 0

2N

240 |III

2r0 |i

Page 10: Early growth, lipid composition, and survival expectations - Physical

\ l a r Eco l P rog Se r l l t i . l b : l - 175 , l { } 95

to rs o f the nor thern Gu l f has l teen shorvn in a p rev tous

inves t iga t ion lOue l le t e t a l . 1990) . There fore , i t t s a rea-

sonab le assumpt ion thd t the observed d i f fe rences tn

the zoeae I I s ize is the resu l t o f d i f fe ren t ia l g rowth per -

fo rmance among s i tes and the 3 sanrp l ing s i tes were

suppor t ing d is t inc t la rva l shr imp cohor ts . I t i s a lso

impor tan t ro unders tand tha t la rva l s ize a lone is no t

ind ica t ive c r f the surv rva l po ten t ia l o f the la rvae. l v lo re-

over , the TAG index used to assess la rva l cond i t ion ts

we igh ted by the la rvae bodv s ize .

Lipid composit ion, TAG contenl, and survival

expectat ions ol shrimP larvae

The s t ruc tu ra l l ip id f rac t ion l i e phospho l ip rds)

accounted for most of the total l ipid in the shrimp lar-

vae. A l though prev ious s tud tes have shorvn tha t the

TAG cou ld account fo r 20 to 40oo o f the to ta l l i p id in

age 1+ Panda lus borea l i s shr imp (Hopk ins e t a l . 1993) ,

s tud ies o ! ' r p rawn Penaeus spp. have revea led tha t

most l ipids are associated lvi th cel l membranes and

that relat ively few reserve l ipids are accumulated dur-

ing mou l t ing cy 'c les lChandumpai e t a l , 1991, Da l l e t a l

1993). Nlore surprising rvas the high content of the dia-

cy lg lycero ls (DAG) in the shr imp zoea l s tages . DAG

are usually present in ver-v low quanti t ies in l ive ani-

mal t issues, thus the relat ively high proport ion of DAG

in the samples could ref iect l ipid degradation dunng

storage. However, the hvdrolysis of TAG produces

propor t iona l quant i t ies o f DAG and f ree fa t t l ac ids .

There fore , the low propor t ion o f FFA (F ig . 4 ) , together.ai i th the dbsence of a signrf icant relat ionship between

the TAG and DAG contents (data not shown), supports

the conclusion that the high DAG quanti t ies ref lect

metabolic act ivi ty associated with bios'Tnthesis of cel l

membranes or assimilat ion of dietan' l ipids, A marked

increase in the 1, 3-DAG was observed in the digestive

g land o f we l l - fed prawn {Chandumpai e t a l . 1991) . In

addit ion, experiments with '{C-label led dietary l ipids

in the prawn Penaeus escu.lenlus revealed that most of

the assimilated fatty acids were lncorporated into the

phospho l ip id f rac t ion (Da i l e t a l . 1993) . Indeed,1 ,2-

DAG is an important precursor in the biosvnthesis

pathway of both the phospholiprds and the TAC

(Vance & V"nce 1985). lr toreover, in situations where

the avai labi l i ty of fatty acid is low (as the lorv propor-

t ion of FFA in the samples would suggest; Fig. 4), the

major f lux'from DAG is dtrected to phospholipid syn-

thesis (Vance & Vance 1985). Consequently. the TAG

data can be considered as a consen'at ive index of the

amount of short-term energy ieser\. 'cs and of the con-

dit ion of the shrimp larvae at the sampling sites.

The use of a relat ively si inple index based on the

TAG content of shrimp larvae was proposed to dssess

the e f fec ts o f feed ing cond i t ions on surv iva l in the labo-

ra to ry (Oue l le t e t a l . 1992) . To app ly the method in the

f ie ld r t i s necessary to ob ta in representa t ive samples o f

la rva l cohor ts fo r the en t t re mou l t cYc le . Th is requ i re -

ment s tems f rom the fac t tha t the methoc l uses the f re -

quency d is t r ibu t ion o f the ind iv idua l cond i t ion ind ices

to dssess the overa l l cond i t ion o f la rva l cohor ts . Br ie f

bu t synchronous la rva l emergence per iods charac ter ize

shnmp reproduc t ion in the nor thern Cu l f o f S t .

Larv rence, and the nor th rves t and the nor th cent re sam-

p l ing s r tes cor respond to the pr inc ipa l emergence areas

for these s tocks (Oue l le t e t a l . 1990) . The var ia t ion in

the TAG ww-r frequency distr ibutions and the rvlde

range in zoeal biomass (total organic carbon) observed

dmong the s r tes suppor t the conc lus ion tha t the samples

were representative of shrimp larvae at al l phases of

the mou l t cvc le . A w ide range o f va lues is expec ted

rvhen sampling larvae at vanous phases in the n'roult

cycle due to the pattern of accumrtlat ion and deplet ion

in o rgan ic carbon { i .e . l ip id reserves) , as documented

for NIa ; idae {c rabs) and Panda l idae (shr imp) la rvae

(Anger e t a l , 1989, Oue l le t e t a l . 1992, Lovnch & Oue l le t

1994) . iUoreover , desp i te the fac t tha t TAC represented

less than 5 " ' , of al l l ipids, the f requency distr ibutions of

the TAG ww-1 index from the sampling sttes were sim-

i lar to the patterns observed for the Artemja-fed iarvae

in the labora tory {Oue l le t e t a l . 1992, the i r F ig . 6 ) .

Therefore, the dif ferences observed in the TAG condr-

t ion of shrimp larvae among the sampling sites ref lect

trophical ly rnduced vanabil t ty in larval shrimp in the

dif ferent environments and can be associated with dif -

ferent survival expectat ions at the moult.

The surv iva l da ta f rom Oue l le t e t a l , {1992) were re -

arralyzed to establ ish the relat ionship betwcen shrimp

larvae cumulative survival through the f irst 2 moults

and the proport ion of larvae in poor TAG condit ion

during the zoea I (Site A) or zoea i l (Sites B and C)

stages 1Fig. 9) When the proport ions of shnmp larvae

rn poor TAC condit ion at the sampling sites are trans-

posed into survival expectat ions using the relat ionship,

few dif ferences are observed among sites, and survival

rs expected to be high at ai l si tes, but noticeably lower

survival is expected for zoeae II at Site B relat ive to

Sites A (zoeae I) and C (Fig. 9). The relattvely high sur-

vival expectat ions at al l si tes can in Dart be explained

by the late date of sampling, i .e. by the dominance of

zoea II larvae at the Sites C and B. In the laboratory,

higher mortal i t ies were recorded at the f irst moult with

increasing survival at moult for the older stages (Ouel-

let et al. 1992), However, high survival expectat ions

were also estimated for the zoea I larvae at Site A and,

overal l , the results rvould suggest that most shrimp }ar-

vae were unl ikely to suffer from l lmited food resources

in the sectors of the Gulf in 1990. These survival esL-

mates could also be judged too simple to be real lst ic,

Page 11: Early growth, lipid composition, and survival expectations - Physical

Ouel let et a l . : Survrval expectat lons of shrrmp lan ae

e.g ther do no t inc lude o ther fac to rs such as predat ton .

Ner ,e r the iess , the approach i l lus t ra tes the po ten t ia l o f

deve loprng and app ly ing a labora tory -der ived ls imp le)cond i t ron rndex to d iagnose the surv iva l po ten t ia l o f

shr imp la rva l cohor ts f rom the f re ld .

Shr imp la rvae l ip id cond i t ion and eco log ica l

charac ter is t i cs o f the s i tes

Spec ies-spec i f rc responses to hydrograph ic (ver t i ca l

s t ra t r f i ca t ron , tempera t l l re ) and hydrod l 'namtc (advec-

t ion , mix ing o f u 'a te r masses) in f luences de termine the

deve lopment o f d i f fe ren t zoop lank ton communi t ies

rvithin and among the sectors of the Gulf of St.

Lau ' rence (de La fon ta ine e t a l . 199 i ) . The cond i t ions a t

Sr te A 1r .e a dvndmlc thermoc l ine /p1 'cnoc l ine reg ion)

were favourab le to ca lano id p roduc t ion as in fe r red

f rom the hrgh concent ra t ion o i copepod deve lopmenta l

s tages . F ihanced copepod produc t ion has been docu-

mented rn areas associated with high chloroph,vl l a

concent ra t ions (R ichardson 1985, Runge 1985) , andpotential lv b-v high concentrat ions of mtcrozooplank-

ton {K leppe l e t a l . 1991} . Enhanced ver t i ca l nu t r ien tf lux can st imulate and maintain phytoplankton pro-

duction and generate an accumulation of chl a bromassat the pvcnoc l ine /n i t rachne depth (Cu l len e t a l . 1983) .

As the beam a t tenuat ion coef f i c ien t has been shown tobe rndicative of chl a biomass in a variety of marineenv i ronments (L ieberman e t a l . 1984, Vandeve lde e ta i . 19881, the max ima observed in the water co lumn a tS i te A can be in te rpre ted as a subsur face ch l d max-tma. Ho$ 'ever , the max ima can a lso represent an accu-mulation of detr i tal material ( fol lowing a blooml at thedens i ty d iscont inu i ty and no t necessar t l y enhancedproduction, part icularly at the greater depth.

Fig. 9 Panda/u-s borea.hs. Relat ionshrp be-tu 'een cumulat ive shrrmp larvae surv ivalthrough the f r rst 2 r . r . roul ts and the proport ionof zoeae rn low l iprd {TAG) condi t ion { f romoue l l e t e t a l . 1992 ; : { a , r ) zoeae I r ea red on.4r tern.ra nauplr i h igh-densi ty d iets, HD-Aand HD-B respec t i ve l y ; { ^ } zoeae I r ea redon Ar lemid naupl i r low'-densl ty (LD-A) d iet ;( .1 zoede I reared on lsochrysrs spp. cel ls ;l o , o ) zoeae I I on HD-A and HD-B respec -t tvely; 1at zoeae i l on LD-A. The predrct ionequd t l on Nas t i sed t o l oca te t he sh r imp l a r -va l coho r t s f r on t t he f r e l d on t he re l a t i onsh io

Lower zooplankton biomasses in the smaller size

fractions and the much iorver concentrat ions of cope-

pod eggs , n rup l i i , and smal l copepod i tes observed a t

Site B ref lect l imited local productton as well as

reduced hor izon ta l exchanges be t rveen the ad jacent

sampl ing s r tes . The s t rong dens i t l ' s t ra t i f i ca t ion a t

S i te B can prevent the t ranspor t o f nu t r ien ts to the sur -

face la_ver and hence l imit primarv prodr.rct ion in that

area o f the nor thern Gu l f lSev igny e t a l , 19791. Beam

attenuation profi les aiso suggested phytoplankton con-

centrat ion in the upper layer and l imited accumulation

of ch l a b romass a t the pycnoc l ine , a s r tua t ion expec ted

rvhen productron is not driven bv cross-pycnocl ine

t ranspor t o f nu tnents (Cu l len e t a l . 1983) .

The dominance of Ca.lanus f inmarchicus at Sites A

and B is typical of the northrvestern Gulf of St.

Lau ' rence (de La fon ta ine e t a l . 1991) . The sh i f t in

dominant ca lano id copepod spec ies be t rveen the

northwest and north Anticosti sectors ref lects the dif-

ferent oceanographrc inf luences of the 2 sectors. The

in t rus ion o f co ld water f rom the Labrador Cur ren t

through the Strait of Bel le Isle in the northeast sector

of the Gulf ma)' explain the origin and relat ive abun-

dance of the copepod species C. h+'perboreus in the

zoop lank ton communi ty nor th o f Ant icos t i I s land.

Never the less , the abundance o f copepod eggs , nau-

pl i i , and small copepodites relat ive to more advanced

( la rger ) copepod i te s tages or the adu l ts , and the re la -

t i ve impor tance o f euphaus i id la rva l s tages , wou ld

suggest enhanced secondar l - p roduc t ion . A t S i te C,

however , beam a t tenuat ion va lues r le re much lo rver

than a t S i tes A and B. There fore , advec t ion o f la rva l

s tages produced d t the f ron ta l reg ion (nor th rves t end

of Ant icos t i I s land) o r a long Quebec 's nor th shore is

more l i ke ly respons ib le fo r the zoop lank ton commu-

n i ty found a t the s t te .

i n

= u.t

E C.E

€ 0.6

; o 5L= ^ /

. 9 o z

a U.2

i o. t

0.0

l ) A.(2) B0 )' * - - : \c(l ) c(2) -

F(2)i ' t - :

S = 1.08 - 0 .67PrA6 l R2 = 0 .66 (p < 0 .03)

0.2 0.3 0.4 c.5 c.t, c.?

P1a6, (p ropor i ion TAG r4 'b - l ! 0 .2 )

0.0 0 . i c 8

Page 12: Early growth, lipid composition, and survival expectations - Physical

1 7 { Nlar Ecol Proq St- ' r I z f t l t j i - I 7. i , I ! )115

In summary , S i tes A and C presented hrqh copepod

deve lopmentd l s tdge concent ra t ions ( i e secont ia ry

produc t ion) , and re la t i ve ly more d ivers i f ied zoop lank-

ton communi t ies , tha t p robab l l ' deve loped fo l lo rv ing

enhanced dnd sus td ined pr imarv p roduc t ron in a reas

where hydrograph ic cond i t rons were f avorab le to

nutnent t ranspor t and mix ing in the upper la le r o f the

water co lumn.

In the i r s tudY on the na tura l d ie t o f zoea I and I I

shr imp la rvae, S t ickney & Perk ins (1981) l i s ted d ia tom

fragn'rents as the most abundant i tem' fol lolved by

crus tdcean, po lychaete , dnd un ident l f ied inver tebra te

f ragments . These resu l ts seem to suggest tha t young

shrimp larvae are omnivorous, opportunist ic feeders

much l i ke adu l t shr imp (Shumway e t a l . 1985) . In add i -

t ion , labora tory exper iments have shown tha t zoea I

shnmp la rvae captured copepod naup l i i and cope-

podr te s tages a t re la t i ve ly h igh 1> 20 r tems I ' ' 1 concen-

t ra t ions (Pau l e t a l . 1979) . The concent ra t ions o f a i l

calanotd stages at anv sampling site rvere lorver than

the labora tory va lue , l i ke l ,v due to the in tegra ted to rvs

that tend to yield lorv values of the highlv concentrdted

micro-patches of zooplankton in the water column.

Horvever, the larger larval size and the higher propor-

t ion of zoeae in good TAG condit ion at Sites C and A

respectively w-ere coincident with higher concentra-

t ions of copepod stages at these sites relat ive to Site B,

suggesting a relationship betr,r'een shrimp larval

grorr.th, condit ion, and survival potential and sec-

ondary production in the water column Nloreover,

more zooplankton biomass at Sites A and C was

sequestrated in the smaller size fract ions and more

diversif ied zooplankton communit ies were observed,

as indicated by the greater number of taxa with a rela-

t ive dominance index larger than zero (see Ftg. 7) '

whrch could indicate an abundance of alternative prev

for shrimp larvae at these sites.

CONCLUSION

Ph-vsical processes that determine the degree of mix-

ing in the water columr could have a profound i ! f lu-

ence on the development of the zooplankton commu-

nitv and the planktonic food web (Holl igan et al. 1984,

K iorboe e t a l 19901. In the co ld waters o f the Gu l f o f S t

Larvrence, especial ly in spring, the density structure of

the surface layer is largely control led by sal inity vana-

t ion th rough f reshrva ter runof f {Bugden e t a l 1982) A t

the same t ime, the cold intermediate layer is the source

of inorganic nutr ients thai ini t iate and sustain pnmary

production in the spring (Sevigny er al. 1979) These

observations resulted in the hypothesis that increases

in Ireshwater runoff wi l l enhance strat i f icat ion, reduce

mixing, and lcwer the magnitude of the phytoplankton

s tanc l ing c rop produced dur ing the verna l b loom

per iod lBugden e t a l . 1982) . Reduct ion rn the pr imary

proc l t rc t ion w i l l in f luence the zoop lank ton dynanr ics .

Thus , rve propose the hypothes is tha t surv iva l o f the

f i rs t la rva l s tage and the recru l tn len t to the shr imp

stocks rs de terminrs t i ca l l y (negat ive l r ' ) in f luenced bv

hrgh buoyancy f luxes { runof f ) , th ro t rgh adverse in f iu -

ences on ph ,v top lank ton and zoop ldnk ton proc luc t rons .

in the nor thern Cu l f o f S t . Lawrence. Horvever , in the

Gul f o f S t . Lawrence most o f the f reshwater runof f

f lorvs into the northwest sector and also important ls

the rvinter ice-sheet covering most of the north and

northeastern sectors of the Gulf from January to Apnl

lKout i tonskv & Bugden 1991) . I ce mel t in ear ly spr ing

wil l contr ibute to the formation of strong density gradr-

en t thd t may acce le ra te ear ly phy top lank ton growth

and bromass accumulation unti l exhaustion of the

nut r ien t reserves lVe th e t a l . 1992) . Fur thermore , i t has

been proposed tha t i ce a lgae produc t ion {p r io r to the

open- \va ter verna i b loom) cons t i tu tes a s ign i f i can t food

resource for copepods and could enhance secondarv

produc t ion po ten t ia l (Runge e t a l 1991) . There fore ' i t

appears that freshrvater runoff (by reduction of phrlo-

plankton standing crop) and tce coverage (by

enhancement of secondary production) may inf luence

the survrval potential of shrimp larr-ae, in dif ferent and

opposr te ways , in the nor thern Gu l f o f S t . Lawrence.

Acknowledgemetls. \ \ 'e thank the cdptaln and crew of theN1\' 'Petrel-V' for their help and patience during the oceano-graphrc misston. \ \ 'e also thank t lr Serge Cosselin and \ lsKathra Hebert for thetr efforts dunng the crurse and theuassistance in the laboratory anal-vses. The revrews bv 5anonymous referees rvere also instrumental tn lmprortng thepresentation of the manuscnPt.

LITER.\TURE CITED

Anger K , Harms J 11990) E lementa l ICHN) and prox tmatebrochemical composrt ion of decapod crustacean larvaeComp Biochem Physiol 978( 1 ):6-o-80

Anger K , Harms J , P t ische l C, Seeger B r1989) Phvs io log tca land brochemrcal changes durtng the larval developmentof a brachyuran crab reared under constant condittons tnthe Iaboratorv. Helgolander frfeeresunters 13:225-244

Bugden GL, Hargrave BT, Sinclair l r l \1, Tang CL' ThernaultJC, Yeats PA (1982) Freshrvater nr:roff effects tn themanne en! 'rronment: the Culf of St. Lawrence example.Can Fish Aquat Scr Tech ReP 1078

Chandumpar A , Da l l W, Smi th DNI (1991t L rprd-c lass compo-sitron of organs and t issues of the t lger pralvn PenaeusescuJentus dunng the moult ing cvcle and durtng stana-t ron . \ Ia r B io l 108:235-245

Cullen JJ, Stewart E, Renger E, Eppley R\\ ' , \ \ ' inant CD t1983)Vertrcal motron of the thermocLine, nrtracl lne and chloro-phvl l maxrmum la1'ers in relat ion to currents on the South-ern Californra Shelf. J mar R':s 41.239-262

Dall W, Chandumpai A, Smith DN{ (19931 The fate of someltc-labei led dretary l ipids in the trger prawn Penaeus

Page 13: Early growth, lipid composition, and survival expectations - Physical

Ouel let et a l . : Sun' tval expectat lons of shrtnrp lan 'ae

escu ien tus i r l a r B ro l I 15 :39 -45

de La fon td i ne \ ' , l ) emers S , Runge J i 19911 Pe laq t c f ood r veb

rnteract luns and product^ ' t tv tn the Gul l of St . Lau'rence;

d pe rspec t r ve . l n : The rnau l t JC (ed ) The cu l f o f S t .

Lau'rence: smal l ocean or b ig estuart ? Can Spec Pubi Fish

A q u a t S c r 1 1 3 : 9 9 - 1 2 3

Foga r t v N l J , S r ssenu rne ! lP , Cohen EB i 1991 )Rec ru r tmen tvanab rh t t ' and t he d l namrcs o f exp lo t t ec i n t a r l ne popu la '

t r ons . TREE 6 .211 -216

l lo lhgan P\{ Harr ts RP, Nervel l RC, Harbour DS' } lead RN'

Lrnle l EAS, Lucas \11, Trdnter PRG, \ \ 'eeklev CNi t i984lVertrcal drstnbutron and pdrt l t lonlnq o! organic carbon tn

mrxed, f rontal and strat i f red u 'aters of the Engl ish Chan-

n e l . N l a r E c o l P r o g S e r 1 4 : 1 1 1 - 1 2 7

Hopk rns CCE, Sa rgen t JR , N i l s sen E \ { t 1993 } To ta l l t p t d con -

t en t , and Lp id and f a t t ) ' a c i d compos i t r on o f t he deep -\ \ 'd ter pra\rn Pandalus borea/ js i rom Baisf lotd, northern

No rwav : g row th and f eed rng re l a t r onsh tps . \ { a r Eco l P rog

S e r 9 6 : 2 1 7 - 2 2 8Krorboe T, Kaas H, Kruse B, \ {ohlenberg F, Trsel tus P .Erte-

bierg C {19901 The structure of the pelaqrc food rreb rn

reldt lon to \ r 'a ter colunrn structure rn the Skagerrak. \ {ar

Eco l P rog Se r 59 :1 9 -32Kieppel GS, Flo l l idav D\ ' , Preper RE (1991) Trophic interac-

t lons bet \ \ 'een copepods and mtcroplankton: a quest ion

abou t t he ro l e o f d ta toms . L rmno l Oceanog r 36 :172 -178

Kou t r t onsky \ /C , Bugden GL (1991 ) The phvs i ca l oceanog ra '

ph1' of the Gul f of St . Lawrence: a tevierr ' r r ' t th emphasis

on the svnopttc vanabi l t ty of the mot ion. In: Thernaul t JC

ledl The Gul f of St . Lau'rence: smal l ocean or brg estuary?

Can Spec Pub l F i sh Aqua t Sc i 113 :57 -90Kva l se th TO {19911 No te on b i o l og rca l d i ve r s t t v , evenness ,

and homoqene l t - v measu res . O rkos 62 :123 -127Lau rence CC (1990 ) G ro rv th , su r l t va l , and rec ru i tmen t t n

large manne ecos) 's tems. In: Shernlan K, Alexander LN' I ,

Gold BD (eds) Large nlar tne ecosvstems; pat terns,

processes. and 1 ' re lds. Amencan Assoclat ion f or the

. \ dvancemen t o f Sc tence , Wash rng ton , DC , p 132 -119

L rebe rman SH , G i l be r t GD , Sehgman PF , D rbe l ka AU ' { 1984 )Relatronshrp betrveen chlorophvi l a f luorescence and

underrvater l lght t ransmtsston tn coastal u aters o{ i South-

e r n C a l t f o r n t a . D e e p S e a R e s 3 1 : 1 7 1 - 1 8 0Lovnch CA , Oue l l e t P (1994 ) Pa t t e rns o { g ros - t h and t nac -v l -

glt'cerol content in snolv crab Chronoecetes opilto

rBrachvura: l r4a, ; idae) zoeal stages reared in the labora-

t o r l N la r B io l 120 :585 -591\ lurrav DK I1985) ln. rproved reproducrbr l r ty and qudntr tdt ive

anal l 'srs of phcisphol iprds by f lame lonlzat lon detect lon

J C h r o m a t o g r 3 3 1 : 3 0 3 - 3 1 2\unes P {198.1) Reproduct ive and }ar la l b io log-v of northern

shrrn.rp, Pandalus boreal ts Krover, ln re lat lon to temperd-

t u re . PhD thes rs , Un i ve rs r t y o f , { l a ska , Fa t rbanksOut ' l le t P, Lcfarvre D 11994) Vert icai dtstr ibr : t ton of shr imp

rPanda/u-s borea]rs l Iarvae tn the Cul f of St . Larvrence;

rn rphca t rons f o r t r oph t c t n te rac t i ons and t r anspo r t . Can J

F i s h A q u a t S c r 5 1 : 1 2 3 - 1 3 2( )ue l l t ' t P , Le fa t v re D , Kou t r t onskv \ ' { 1990 ) D rs t r i bu t i on o f

shnnrp (Pandalu.s borealr -s1 lan ae and hvdrographtc pat-

t e rn r n t he no r t he rn Gu l f o f S t . Lawrence Can J F i sh

\c l t rat Scr 47 2( . \68 2078

Th,t . ; ar l rc/e wa.s sulr tn i t l t ' r i Io lhe ed] tor

Ouel let P, Taggart CT, Frank KT 11992) L ip id condrtron andsurr , rval rn shnnrp Pandalus boreal ts larvae. Can J FishAqua t Sc i 49 r368 -378

Pau l AJ , Pau l J \ 1 , Shoen rake r PA , Fede r H \ { { 1979 ) P re l ' con -centratrons and feedrng response rn laboratory-reareds tage -one zoea o f k rng c rab , sno l c rab . and p rnk shnmp .T rans Am F i sh Soc 108 : J10 - , 143

PosgaV A . N la rak RR (19801 The \ 1AR\ IAP bongo zoop lank -t on samp le r s . J No r th r ves t A t l F r sh Sc r 1 :91 -99

R icha rdson K {19851 P lank ton d i s t r i buL ion and ac t i v i t l i n t heNorth Sea/Skagerrak-Kattegat f rontal area rn Apr i l 198,1.Nlar Ecol Prog Ser 26:233-244

Runge JA (1985 ) Re la t i onsh rp o f egg p rod r l c t r on o f Ca . l anuspaal tcus Brodskl ' to seasonal changes in phytoplanktonavar labi l i t l ' rn Puget Sound, \ \ 'ashington. L imnolOceanog r 30 :382 -396

Runge JA , The rnau l t JC , Legend re L , I r i g ram RG, Demers S

{1991) Coupl ing betrveen ice mrcroaigai product i r . r tv andthe pelagic, metazoan food u 'eb in southeastern l ludsonBa r ' : a svn thes rs o f r esu l i s . l n . Sakshaug E , Hopk rnsCCE, On ts l and NA {eds l P roceed rngs f r om the P ro N la reS lmpos ium on Po la r \ { anne Eco logy . Po la r Res 10 :325 - 338

Sev ignv JN{ , S rnc l a r r N { , E l -Sabh N l l , Pou le t S , Coo te A (1979 )Summer plankton distnbut jons assocrated rvr th the pl ,ys i -cal and nutnent propert les of the northu'estern Gul f of St .Lau'rence. J Frsh Res Bd Can 36:187 203

Shephe rd JG , Pope JC , Cousens RD (1984 | Vana t i ons i n f i shstocks and hypotheses concernrng their i rnks wi th c l imate.Rapp P -v Rdun Cons rn t Exp lo r \ l e t 185 :255 -267

Shumwa l ' SE , Pe rk rns HC, Sch rck DF , S t i c knev AP (1985 )S1'nopsis of brologrcal data on prnk shnmp, Pandalus bore-a i i s K roye r , 1838 NOA. { Tech Rep N \1FS 30 :1 -57

Soka l RR , Roh l f FJ ( 1981 )B rome t r v . \VH F reeman & Co , NewYork

S t r ckne_v AP , Pe rk rns HC {1981 ) Obse r l a t r ons on t he f ood o fthe Iarvae of the northern shr imp, Pandalus borealnK rove r {Decapoda , Candea l . C rus taceana 40 :36 -49

Tdggart CT, Frank KT (19!r0) Perspect ives on Iarval f rsh ecol-ogv and recrul tnrent process€s; probrng the scales of re la-t r onsh ips . l n : She rman K , A lexande r LN I , Go ld BD (eds )Large manne ecosvstems: pat terns, processes, and _vrelds.American Associat ion ior the Advancement of Scrence.\ \ ' a sh rnq ton , DC , p 151 -164

Vance DE, \ 'ance JE 11985) Brochemrstry of l iprds and mem-b ranes . The Ben ;amrn /Cummings Pubhsh ing Company ,l nc , N len lo Pa rk . CA

Vandeve lde T , Legend re L , Demers S , The rnau l t JC (1988 rInterre lat ionshrp betrveen rn vrvo f luorescence of phvto-plankton and l ight beam transmissron wi th reference tof l uo rescence y re l d . Can J F i sh Aqua t Sc r 45 :1508 -1513

Ve th C Lance lo t C , Obe r S (19S2 ) On p rocesses de te rm in i ngthe vert rcal stdbi i i t l ' o f sur face waters in the marginal icezone o f t he no r t h -wes te rn Wedde l l Sea and t he i r r e l a t r on -ship rvt th phvtoplankton bloom cle ' ,e lopment. Polar Brol1?:237 -243

\ \ ' renberg R {1982) Studres on the inf luence of tenrperdture,sahnrt l ' , hght , and feedrng rdte on labordtory reared lan'aeof deep sea shrrmp, Pandalus boreal js Kroyer 1838.l r leeresf orschunq 29: 1 3t i - 1 53

Itfanuscnpt frst recetved: !r/ia;' 10, 1991Reyrsed Uersror) accepted: Aprt l 12, 1995