e-rare d5.5 strategy paper part a v1 strategy paper o… ·  ·...

29
ERare ERANet for research programmes on rare diseases Instrument: Coordination Action Start date:1 st June 2006 Duration: 48 months Strategy paper on platforms for rare disease research Next Generation Sequencing platforms May 2010 Project funded by the European Commission within the Sixth Framework Programme (20062010)

Upload: vankhuong

Post on 06-Apr-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

       

 

 

E-­‐Rare  

 

ERA-­‐Net  for  research  programmes  on  rare  diseases  

 

Instrument:  Coordination  Action  

Start  date:1st  June  2006   Duration:  48  months  

 

 

Strategy  paper  on  platforms  for  rare  disease  research  

Next  Generation  Sequencing  platforms    

May  2010  

 

 

 

 

Project  funded  by  the  European  Commission  within  the  Sixth  Framework  Programme  (2006-­‐2010)  

 

   2  

     

Authors  

Joke  Lievens  Sophie  Koutouzov  GIS  Institut  des  Maladies  Rares  –  INSERM    Mailing  address:  96  rue  Didot  75014  Paris  France    Tel:  +  33  (0)1  58  14  22  84/81  e-­‐mail:  jlievens@gis-­‐maladiesrares.net      

 

   3  

     

 Table  of  contents Table  of  contents  ........................................................................................................................  3  

Introduction  .................................................................................................................................  5  Importance  of  technology  for  research  on  rare  diseases  ............................................................................  5  Technology  Platforms  .................................................................................................................................................  5  What?  .................................................................................................................................................................................  5  How  are  technology  platforms  financed?  ..........................................................................................................  5  Activities  ...........................................................................................................................................................................  6  

Objectives  .........................................................................................................................................................................  6  

Which  platforms  do  RD  researchers  need?  .......................................................................  7  Focusing  on  strategic  priorities  and  bottlenecks  ............................................................................................  7  Method  ...............................................................................................................................................................................  7  Results  ................................................................................................................................................................................  7  Response  Rate  .................................................................................................................................................................  7  Respondent’s  expertise  ...............................................................................................................................................  8  Platforms  used  today  ...................................................................................................................................................  8  Bottlenecks  identified  ..................................................................................................................................................  9  Strategic  Platforms  ....................................................................................................................................................  10  

Conclusions  ...................................................................................................................................................................  11  

Next  generation  sequencing  platforms  ............................................................................  12  Aims  and  Approach  ...................................................................................................................................................  12  Method  ............................................................................................................................................................................  12  Results  .............................................................................................................................................................................  13  Respondents  and  Response  Rate  ..........................................................................................................................  13  NGS  equipment  in  responding  laboratories  ....................................................................................................  14  Applications  ...................................................................................................................................................................  14  Bottlenecks  for  implementing  new  applications  ...........................................................................................  15  NGS  laboratories  conduct  own  research  ..........................................................................................................  16  Access  to  the  NGS  laboratories  .............................................................................................................................  16  Number  of  RD  projects  conducted  in  NGS  laboratories  .............................................................................  17  Bottlenecks  for  external  researchers  to  access  NGS  technology  ............................................................  18  Personnel  ........................................................................................................................................................................  18  Data  analysis  ................................................................................................................................................................  20  End-­‐user  training  ........................................................................................................................................................  21  Networking  initiatives  ..............................................................................................................................................  22  Charge  ..............................................................................................................................................................................  23  

Conclusions  ...................................................................................................................................................................  23  

Recommendations  ...................................................................................................................  24  Which  technology  platforms  are  needed?  .......................................................................................................  24  Improving  access  to  NGS  technologies  and  integrating  NGS  laboratories  in  national  and  transnational  programmes  on  RD  ......................................................................................................................  24  Complexity  of  data  analysis  or  bioinformatics  ..............................................................................................  24  

 

   4  

     

Personnel  ........................................................................................................................................................................  25  Funding  ...........................................................................................................................................................................  25  End-­‐user  training  ........................................................................................................................................................  26  Computing  power  /  data  storage  ........................................................................................................................  26  Access  ...............................................................................................................................................................................  26  

“Plateforme  Mutations”:  Case  study  of  an  NGS  funding  initiative  ...........................  27  A  public-­‐private  partnership  .................................................................................................................................  27  Services  offered  ...........................................................................................................................................................  27  Calls  for  projects  .........................................................................................................................................................  27  First  conclusions  .........................................................................................................................................................  28    

Annex  1:  Questionnaire  -­‐  Which  platforms  do  researchers  need?  

Annex  2:  Questionnaire  -­‐  Next  generation  sequencing  platforms  

Annex  3:  Newsletter  to  thank  participants  to  Questionnaire  -­‐  Next  generation  sequencing  platforms

 

   5  

     

Introduction  

Importance  of  technology  for  research  on  rare  diseases  Technology  and  techniques  used  in  the  research  or  diagnostic  laboratory  evolve  at  great  pace  and  to  be  at  the  forefront  in  a  certain  field  goes  hand  in  hand  with  keeping  abreast  of  the  latest  technologies  and  techniques.   This   is   valid   for   all   research   fields   and   in   the   case   of   research   on   rare   diseases   it   is   not  difficult  to  imagine  the  enormous  impact  technological  advances  may  have.    

Research  on  rare  diseases  (RD)  is  characterized  by  few  and  scattered  resources  in  general  and  thus  any  technological  advance  enabling  e.g.  to  use  less  sample,  to  lower  cost/sample,  to  diminish  hands-­‐on  time  will   leave  more   of   greatly-­‐needed   resources   available   to   advance   research.   Diagnosis   for   a   lot   of   RD  patients   is  often  very  difficult,  but  the  development  of  DNA  analysis  techniques  that  are  being  refined  and   adopted  by  diagnostic   laboratories   today  has   greatly   simplified   the   task   for   diseases  with   known  DNA  defects.  Also,   the  availability  of  biobanks  and  sample  collections  of  patient  cohorts   that  are  very  well   characterized,   make   certain   rare   diseases   highly   interesting   “test   cases”   for   new  technologies/techniques.    

Technology  Platforms “Technology  platforms”  is  very  generic  terminology,  used  in  various  contexts.  Thus  a  clear  delineation  of  the   technology   platforms   as   they   were   considered   here   is   crucial   for   a   good   understanding   of   the  objectives  of  this  paper  and  the  strategic  recommendations  issued  at  the  end.  This  paragraph  is  meant  to   situate   the  platforms   studied  and  provide  a  description  of   the  various  embodiments  of   technology  platforms,   which   prove   to   be   quite   heterogeneous   not   only   throughout,   but   also   within   European  countries.      

What?  Technology  platforms  can  generally  be  defined  as  “the  association  of  equipment,  know-­‐how  and  human  capacities  at  the  same  site  with  the  aim  of  offering  high-­‐level  technological  support  to  a  community  of  users”  (GIS-­‐IBiSA  website  http://www.ibisa.net/charte.php  accessed  on  Sep  23,  2009).    

For  this  paper,  the  technology  platforms  studied  were  both  not-­‐for-­‐profit  and  commercial  organisations  (privately  owned  companies  offering  services  to  clients  from  public  or  private  institutions),  although  the  emphasis  was  on  not-­‐for-­‐profit  structures  as  it  became  clear  that  the  research  community  studied  more  readily  uses  these.    

 

How  are  technology  platforms  financed?  Not-­‐for-­‐profit  technology  platforms  are  financed  through  one  or  more  of  the  following  resources:  

- Infrastructure  investments  of  institutions  like  universities,  hospitals,  research  institutes  

- Infrastructure  development  grants  from  a  regional  or  national  government  

- Research  grants  

- Charity  funds  

In   a   classic   scheme   infrastructure   development   funds   used   for   the   initial   set-­‐up   of   these   technology  platforms,  would  gradually  shift  to  financial  support  through  grants  for  research  projects  or  projects  that  drive  development  of  new  technologies  and  platforms  would  further  function  by  cost-­‐recovery.    

 

 

   6  

     

Activities  Their  activities  fall  under  one  or  more  of  the  following  categories:    

- Customer  support/consultancy  services:  e.g.  to  give  advice  on  procedures,  methods  and  resources.  

- Technical  services  and  assistance  

- Research-­‐based   collaboration:   platform   enters   as   a   partner.   Funding   for   collaborative   research  performed   by   platform   partners   must   be   provided   unless   otherwise   agreed.   The   result   of   joint  research  shall  be  published  with  joint  authorship.  

- Training  

Objectives    The  work   undertaken   during   the   E-­‐Rare   project  was   aimed   at   facilitating   the   links   between   scientists  working  in  the  field  of  rare  diseases  and  technology  platforms  (high  throughput  genotyping,  molecular  screening,   proteomics,   animal   models,   stem   cell   institutes   etc.)   that   could   provide   resources   and/or  expertise   to   those   teams.   The   final   goal   was   to   explore   potential   routes   for   integration   of   these  technology  platforms  into  a  European  transnational  funding  programme  for  research  on  rare  diseases.  

 

The  objectives  of  this  paper  are:  

- To  provide  an  overview  of   the  organization  and   functioning  of   technology  platforms  and   types  of  technologies  

- To   provide   insight   in   RD   researcher’s   needs   for   technology   platforms   and   study   the   roadblocks  hindering  researchers  to  make  use  of  the  expertise  and  resources  at  technology  platforms.  

- To  provide  a  detailed  analysis  of  next  generation  sequencing  platforms  today  and  their  involvement  in  RD  research    

- To   formulate   recommendations   for   optimizing   the   use   of   technology   platforms,  more   specifically  next  generation  sequencing  platforms,   in  RD  research  and  enabling  RD  researchers  to  fully  exploit  the   expertise   and   resources   that   are   being   made   available   at   technology   platforms   throughout  Europe  

- To  provide  a  case  study  of  a  technology  platform  dedicated  to  RD    

 

 

   7  

     

Which  platforms  do  RD  researchers  need?    

Focusing  on  strategic  priorities  and  bottlenecks    Research  on  rare  diseases  comprises  all  areas  of  expertise  ranging   from  epidemiology  and  genetics   to  therapeutic   research   and   thus   no   technology   platforms   can   be   considered   “rare   disease   specific”.  However,  to  pinpoint  potential  gaps  and  difficulties  encountered  by  this  community  while  making  use  of  technology  platforms,  the  approach  was  taken  to  focus  on  those  technologies  that  the  RD  community  considers  as  strategic  for  the  development  and  achievements  of  research  in  RD.  

Researchers   involved   in  projects   sponsored  by  RD   funding  programmes  were   surveyed  by  means  of  a  short   qualitative   questionnaire.   The   questionnaire   was   aimed   at   determining   which   technology  platforms  they  were  using,  the  bottlenecks  they  experienced  and  which  technology  platforms  will  play  a  strategic  role  for  RD  research  in  the  coming  years.    

The  results  served  as  an  input  for  the  in-­‐depth  study  of  2  types  of  technology  platforms:  next  generation  sequencing  and  high-­‐throughput  small  molecule  screening  platforms  (Deliverable  D5.5  Part  B).  

Method  

A   short   web-­‐based   questionnaire   was   developed.   The   questionnaire   contained   4   multiple-­‐choice  questions,  except   for   the   last  question  where  the  number  of  answers  was   limited  to  2   (Annex  1).  The  link   to   the   questionnaire,   together   with   an   invitation   to   participate,   was   sent   in   May   2009   to   578  researchers  who  had  applied  for  RD  research  funding  programmes.  More  than  94%  (545  researchers)  of  the  target  group  had  applied  for  the  E-­‐Rare   joint   transnational  call  2009,  9  had  applied  for  the  E-­‐Rare  joint  transnational  call  2007,  9  had  applied  in  2009  for  the  French  programme  “Plateforme  Mutations”  which   is   focused  on  next  generation  sequencing  and   the   remaining  15  had  applied   for  a  French  CGH-­‐Array  funding  programme.  The  questionnaire  was  anonymous.  Registration  of  the  IP  address  allowed  us  to  verify  that  respondents  participated  only  once.  One  reminder  was  sent  10  days  after  first  invitation.  The  questionnaire  was  closed  and  answers  analysed  28  days  after  the  first  invitation.  

Results  Response  Rate  One   hundred   and   fifty-­‐three   (153)  responses  were   collected,  which   equals   an  

overall   response  rate  of  26%.  Respondents  mostly   worked   in   Germany   (45),   France  (34),   Italy   (24),   Spain   (18)   and   the  Netherlands   (12)   (Figure   1).   Twenty   (20)  respondents  were  working  in  countries  that  were   less   represented:   Austria   (3),   Greece  (4),   Israel   (4),   Portugal   (6),   Turkey   (2)   and  the   U.K.   (1).   For   analysis,   answers   from  these   less   represented   countries   were  grouped   together   in   the   category   “Other  countries”.   Response   rates   varied   per  country:   France   24%,   Germany   28%,   Italy  32%,  Spain  56%,  The  Netherlands  16%  and  “other  countries”  21%.    

Figure   1.   Number   of   questionnaires   sent   and  responses  received  per  country.  

 

   8  

     

Respondent’s  expertise  Overall,   a   majority   of   respondents   (61%)  indicated   that   they   were   researchers,   a   very  small   group   (4%)   was   working   as   a   clinician  only   and   35%   had   both   research   and   clinical  activities.  Per  country  analysis  as  illustrated  in  Figure   2,   showed   that   this   distribution   of  activities   was   roughly   identical   for   all  countries,  except   for  France,  where  only  very  few  respondents  also  had  clinical  activities.    As  shown  in  Figure  3  left  panel,  forty-­‐one  and  32%  of  respondents  had  expertise   in  genetics  and   pathophysiology,   respectively.   Other  areas   of   expertise   were   diverse   and   differed  by  country,  as  illustrated  in  the  right  panel.  Of  note,   in   all   countries   few   respondents   are  involved  in  clinical  research/trials.  

Figure  2.  Activity  domain  of  respondents.    

In   summary,   the   composition   of   the   population   that   participated   in   the   survey   reflects   the  heterogeneous  backgrounds  of   researchers  active   in   the   field  of   rare  diseases.  About  one   third  of   the  participants  has  clinical  experience.  There  seem  to  be  small  country-­‐by-­‐country  differences  in  research  expertise,  which  may  need   to  be   taken   into  account  when   it   comes   to   the  use  of   specific   technology  platforms.  

 

Platforms  used  today  To  situate  the  use  of  technology  platforms  in  research  on  rare  diseases,  researchers  were  asked  which  of  8  platforms   they  were   currently  using,   and   they   could   indicate  other  platforms   in  a   free   text   field.  Microarray  facilities  were  by  far  the  most  widely  used  technology  platforms.  Of  all  participants,  47%  was  using  microarray  technology  platforms  (Figure  4).  Three  other  types  of  technology  platforms  were  used  by   almost   1   in   5   researchers:   facilities   for   the   creation   of   animal   models,   proteomics   and   imaging  facilities.  Other   technology  platforms  were  used  sporadically.  Remarkably,  25%  of   researchers  did  not  use  any  type  of  technology  platform.    

Figure  3.  Area  of  expertise  all  countries  confounded  (left  panel)  and  distribution  of  expertise  per  country  (right  panel)*.  

*Multiple  answers  were  allowed.  

 

   9  

     

Per  country  analysis  (Figure  5)  indicates  that  more  French   and   Dutch   respondents   made   use   of   at  least   one   technology   platform,   in   particular  microarray   and   animal   model   platforms.   Use   of  proteomics  platforms  varies   from  one   country   to  another,  with  about  one  in  four  respondents  from  Germany,  The  Netherlands  and  “Other  countries”  using  proteomics  while   this   rate  was  much   lower  for  the  rest  of  the  countries  analysed.  It  should  be  noted  that  the  Italian  sample  population   includes  mostly  researchers  working   in   large  not-­‐for-­‐profit  research   institutes   and   thus   results   for   Italy  may  be  biased   as   a   large  part   of   RD   research  work   in  this  country  is  also  performed  university  hospitals.  

Figure  4.  Technology  platform  use  (May  2009)  

Bottlenecks  identified    For   the   question   “What   are   today   the   bottlenecks   you   encounter   in   using   high/medium   throughput  technology  platforms”  respondents  were  presented  with  6  predefined  items  plus  a  button  for  free  text  and  were   free  to   indicate  as  much   items  as   they  thought  necessary.  Figure  6  shows  the  results   for  all  countries  confounded  (left  panel)  and  the  distribution  of  answers  per  country  (right  panel).    

Figure  5.  Technology  platform  use  per  country  

 

   10  

     

To   this   question,   responses   were   remarkably   unanimous:   more   than   half   (52%)   of   the   respondents  indicated   «complexity   of   data   management/bioinformatics»   to   be   a   bottleneck.   “Difficult   access  conditions”   and   “absence   of   training”   are  mentioned   about   half   as   frequently   by   22   and   19%   of   the  respondents,  respectively.  Results  were  similar  for  all  countries  analysed,  except  for  training,  which  was  not   considered  a  bottleneck   in   the  Netherlands.  Remarkably,  3  of   the  6  predefined   items  were  never  pinpointed   as   bottlenecks,   these  were  «   Lack  of   information/Visibility  »,   «  High   cost  »   or   «  Scarcity   of  technology  platforms  ».    

 

Strategic  Platforms  Finally,   respondents   were   presented   with  the   same   8   platforms   as   above   and   were  asked   to   «   Choose   2   technology   platforms  [they   considered]   to   be   of   strategic  importance   for   [their]   research   in   the  coming   years  ».   The   item   «  other  »   allowed  them  to  define  other  platforms  by  means  of  a  free  text  field.  As  shown  in  Figure  7,  three  technology   platforms   were   chosen   most  frequently  :   Second   generation   sequencing  (52   times),   the   Creation   of   animal   models  (51  times)  and  Microarrays  (47  times).    

Figure  7.  Strategic  technology  platforms*    

A  by  country  analysis  allowed  to  reveal  a  number  of  country-­‐specific  differences  as  shown  in  Figure  8.  Second  generation  sequencing  platforms  are  clearly  considered  to  be  strategic   in  France,   Italy  and  the  Netherlands,  whereas  they  are  not  considered  strategic   in  «Other  countries».  This  might  be  explained  by  the  fact  that  the  group  «  Other  countries  »  mainly  consists  of  respondents  from  countries  were  this  technology  is  largely  unavailable  as  yet  (e.g.  Turkey,  Portugal,  Greece...)  and  thus  might  be  less  known.  

 

Creation   of   animal  models   is   considered   to   be   a   strategic   platform   by   researchers   from   all   countries  except   Italy.   Italian   researchers   give   priority   to   second   generation   sequencing   and   bioinformatics  

 

*Frequency  =  absolute  number  of  times  a  certain  platform  was  chosen  

Figure  8.  Strategic  technology  platforms  per  country  

 

   11  

     

platforms.  

With   regards   to   microarrays   opinions   diverge,   researchers   from   Germany   and   «  Other   countries  »  consider   these  platforms   to  be   the  most   strategic,  whereas   for   French   researchers  microarrays   figure  among  the  least  strategic  platforms.  A  possible  explanation  might  be  that  since  microarrays  are  already  widely  adopted  by  French  researchers  they  are  less  considered  as  a  platform  that  will  be  «  strategic  »  for  the  coming  years.  

 

Least  indicated  as  strategic  are  drug  screening  platforms,  stem  cell  technology  platforms  and  «  Other  »  platforms.  To  put  this   into  perspective:  61%  of   the  respondents  does  not  have  clinical  experience  and  that  seems  to  be  reflected  in  the  choices  of  platforms  above.  Indisputably,  therapeutic  research  for  rare  diseases   such   as   drug   discovery   and   the   development   of   innovative   therapies   is   extremely   important  and   needs   to   be   encouraged   and   platforms   such   as   drug   screening   or   stem   cell   facilities   have   an  important  role  to  play  in  such  research.  

Conclusions  Overall   three   technologies   stand   out   as   a   strategic   priority   for   researchers   in   the   RD   field  :   second  generation  sequencing  (further  indicated  as  next  generation  sequencing  since  this  technology  is  evolving  very   rapidly),   creation   of   animal   models   and   microarrays.   In   contrast   to   the   first   2,   the   use   of  microarrays   is   widespread:   47%   of   respondents   already   use  microarrays   today   versus   22   and   8%   for  animal  model  and  second  generation  sequencing  platforms,  respectively.    

We   have   identified   a   few   factors   that   keep   RD   researchers   from   fully   making   use   of   the   available  technology  facilities  today:  a  major  hurdle  is  the  bioinformatics  or  the  complexity  of  data  management  associated  with  high-­‐throughput  technologies.  In  second  place,  also  the  access  conditions  and  a  lack  of  training  for  the  end  users  do  impede  collaborations  with  technology  platforms.  

It  should  be  kept  in  mind  that  these  results  reflect  the  needs  and  views  of  a  research  community  that  is  predominantly  implicated  in  basic  research,  with  only  1  in  6  and  1  in  5  respondents  indicating  preclinical  drug  development  and  clinical  research/studies,  respectively,  as  their  main  area  of  expertise.      

 

 

   12  

     

Next  generation  sequencing  platforms  

Aims  and  Approach  Of  the  153  researchers  surveyed   in  the  first  questionnaire  13  were  using  Next  Generation  Sequencing  (NGS)   facilities,  with  a   large  majority  working  with  not-­‐for-­‐profit   laboratories:  11   researchers  versus  2  using  NGS   services  of   a   company.  NGS  platforms  were   identified  as  highly   strategic  but   scarcely  used  therefore   it   was   decided   to   study   the   laboratories   that   have   NGS   technology   and   the   hurdles   for  accessing  this  technology  in  more  detail.  This  study  focusing  on  laboratories  performing  NGS,  allowed  us  to  explore  topics  like  nature  and  level  of  collaborations,  access  conditions  etc.  in  detail  and  to  formulate  recommendations  for  RD  research  funding  accordingly.    

Over   the   last   years,   the   number   of   European   initiatives   on   research   infrastructures   or   aiming   at  gathering   data   on   technology   platforms   has   multiplied,   such   as   for   example   the   EC-­‐funded   ERA-­‐Instruments,   EATRIS   and   ELIXIR   projects.  More   specifically   in   the   area   of   rare   diseases,  Orphanet   has  obtained  financing   for   the  FP7  project  “RDPlatform”  that   includes,  among  others,   the  development  of  an  additional  tab  in  the  Orphanet  database  for  “Technology  &  Know-­‐How”.  This  resolves  to  establishing  a  more  or  less  comprehensive  database  of  technology  platforms  that  can  be  used  by  RD  researchers.  

Several  of  the  initiatives  mentioned  above  also  foresee  to  look  at  certain  aspects  of  the  NGS  landscape  within   the   European   Research   area.   Therefore,   in   order   to   avoid   overlap   and   in   an   effort   to   create  synergies  E-­‐Rare  set  up  collaboration  with  3  partners  to   jointly  study  NGS   laboratories,   these  partners  were   1)   ERA-­‐Instruments   (ERA-­‐NET   on   funding   of   life   science   research   infrastructure);   2)   gENVADIS  (European  network  of  medical  research  laboratories  using  NGS)  and  3)  RDPlatform  (FP7  support  action  creating  a  set  of  tools  for  European  RD  researchers).  

The  common  goal  of  the  4  partner  organisations  was  two-­‐fold:  1)  create  a  database  of  laboratories  that  are  performing  NGS  throughout  the  European  Research  Area  (see  Deliverable  5.3  Part  A:  Catalogue  of  Next  generation  sequencing  platforms)  and  2)  establish  a  “state  of  the  art”  of  NGS  laboratories  covering  the   partners’   interest   fields   e.g.   sequencers,   applications,   personnel,   accessibility   for   “external”  researchers,  (transnational)  collaborations  etc.  

 

Method  An  on-­‐line  questionnaire  was  elaborated  to  gather  all  data.  Due  to  the  various  interest  domains  of  the  4  partners,   the   questionnaire   was   quite   extensive   (about   45   questions   with   dynamic   answer   options-­‐    Annex  2).  The  questionnaire  contained  7  sections,  treating  different  topics  :    

Section  1:  General  Information:  contact  details,  website…  

Section  2:  Laboratory  activities  and  technology:  sequencing,  data  analysis,  user  training…  

Section  3:  Personnel:  number,  constraints…  

Section  4:  Access:  research  domains,  type  of  projects…  

Section  5:  Collaborations:  participation  in  large  sequencing  initiatives,  national  networks…  

Section  6:  Financial  resources  

Section  7:  Public  display  agreement  

Section   1  was   the   only   section   that  was  mandatory.   Questions  were  mostly  matrix-­‐type   or  multiple-­‐choice.  Free  text  fields  were  foreseen  for  comments  throughout  the  questionnaire.  

In   order   to   achieve   a   high-­‐quality   and   informative   database,   it   was   essential   to   reach   as   many   NGS  

 

   13  

     

laboratories   as   possible.   A   comprehensive   list   with   contact   e-­‐mails   of   laboratories   performing   NGS  throughout  ERA  was  compiled  based  on  1)  data  from  national   funding  agencies;  2)  data  from  national  networking/technology  initiatives  (e.g.  IBiSA  in  France:  http://www.ibisa.net)  3)  web-­‐based  research  4)  personal   contacts   from   members   of   the   gENVADIS   consortium.   In   October   2009,   one   hundred   and  thirty-­‐two  (132)  laboratories  were  invited  by  e-­‐mail  to  participate  in  the  survey.  A  reminder  was  sent  in  November   2009.   Throughout   the   following  months   laboratories  were   reminded  by   personal  mail   and  telephone  contacts  until  the  questionnaire  was  finally  closed  in  February  2010.  In  the  beginning  of  April  2010  a  Newsletter  (Annex  3)  was  sent  to  thank  the  participants  and  present  them  the  first  results.  

Before   analysis,   it   was   ensured   that   there   were   no  multiple   responses   from   the   same   laboratory   or  sequencing   facility.   Out   of   76   respondents,   25   did   not   provide   an   answer   to   all   questions.   The  information   they   did   provide   however   is   included   in   the   final   dataset.   Throughout   the   analysis   it   is  indicated  how  many  laboratories  responded  to  each  question.  

 

Results  Respondents  and  Response  Rate  Seventy-­‐six   (76)   laboratories   from  13  countries  within   the  European  Research  area  participated   in   the  questionnaire  and  filled  out  at  least  section  1,  which  was  the  only  mandatory  section.  (response  rate  =  58%).  Fifty-­‐one  respondents  from  12  countries  filled  out  all  sections  (Figure  9).  

Figure  9.  Response  rate  and  responding  countries  

Figure  10.  Participating  NGS  laboratories    

About   two-­‐thirds   of   the   responding  laboratories   were   academic   research  groups   or   sequencing   facilities.  Regional/National   sequencing  institutes,   non-­‐profit   research  organisations   and   companies   each  represent   about   a   fifth   of   all  respondents   (Figure   10).   This  distribution   remains   almost   identical  for   all   questions   throughout   the  questionnaire.  

 

   14  

     

The  responding  NGS  laboratories  that  are  not  privatly  owned  are  run  with  financial  means  coming  from  national  or  regional  funding  in  the  first  place,  followed  by  funding  from  the  host  institution  (universities,  university  hospitals,  research  institutes…)  and  researchers  paying  for  services  slightly  ahead  of  European  funding.  

 

Between  1  and  3  years  is  the  period  for  which  two  thirds  of  the  respondents  have  been  performing  NGS.  One  third  only  started  in  the  past  year,  while  the  other  third  has  been  carrying  out  NGS  for  more  than  3  years.  A  per  country  analysis  of  countries  with  at  least  5  responses  indicates  that  laboratories  with  the  longest   experience   (>3   years   NGS   activity)   are   mostly   from   Germany,   while   responding   laboratories  from  Spain  often  are  more  novice  in  NGS  (<1  year  NGS  activity).  

 

NGS  equipment  in  responding  laboratories  Not   taken   into   account   the   Wellcome   Trust’s   Sanger   insitute   in   Hinxton,   where   39   sequencers   are  operational,  the  NGS  laboratories  in  this  survey  have  on  average  1,5  sequencers.  Roche’s  454  Genome  Sequencer   is   the  most  widespread   technology   (41  out   of   66   responding   laboratories)   and  most   of   its  users   have   access   to   only   1  machine.   Illumina’s  Genome  Analyser   is   also  widely   used   (28/66),   and   in  contrast  to  the  454  Genome  Sequencer  almost  half  of  its  users  have  more  than  1  machine.  At  the  time  of  the  survey,  Helicos’  Heliscope  and  Illumina’s  Hiseq  sequencers  were  each  found  in  1  of  the  surveyed  laboratories  only  (Figure  11).  

 

Seventeen   laboratories   (17/66)   indicate   that   they   intend   to   acquire   another   NGS   equipment   on   the  short  to  medium  term  (median  6  months).  Only  1  of  these  is  planning  to  buy  more  than  1  sequencer.  At  the   time  of   the   survey   Illumina’s  GA  was   the   technology  of   choice   for  most   laboratories,  but   this  will  likely  evolve  quickly  as  newer  technologies  have  made  (e.g.   Illumina  HiSeq)  or  are  about  to  make  it  to  

Figure  11.  NGS  technologies  in  use  (February  2010)*  

*The  colour  code  indicates  how  many  sequencers  of  a  specific  type  are  present  in  the  same  laboratory  

Applications  The  great  majority  of  laboratories  use  their  NG  sequencer  for  transcriptome  analysis  (49/68)  and  whole  genome   sequencing   (48/68)   or   mutation   detection   (45/68   with   amplicon   sequencing;   42/68   with  enrichment   strategies).   Epigenetic   or  metagenomic   studies   are   currently   less   frequent,   but   still  more  than  1  in  3  laboratories  (24/68)  reportedly  has  experience  with  these  applications  (Figure  12).  

 

   15  

     

Not   unsurprisingly   the   number   of   applications  that   are   operational   within   a   laboratory   is  correlated  with   the   period   that   laboratory   has  been  performing  NGS  (Figure  13).  

 

Bottlenecks  for  implementing  new  applications  Respondents   indicate   that   the   number   of  personnel   for   data   analysis   (i.e.  bioinformaticians)   and   funds,   for   equipment  but   also   consumables,   are   the   main  bottlenecks   that   keep   them   from   developing  and   implementing   new   sequencing  applications   in   their   lab   (Figure   14).   The  number   of   technical   personnel   is   also   a  limitation,   but   most   respondents   qualify   this  as   a   minor   bottleneck.   The   development   of  new   applications   does   not   appear   to   be  limited  by  the  necessary  training  of  personnel  or  the  number  of  sequencers  available.  

 

A   per   country   analysis   shows   that   certain  bottlenecks   are   perceived   differently   in  different   countries:   In   Italy   and   the   U.K.   for  example,   only   1   in   5   indicates   funds   to   be   a  major   bottleneck   while   in   other   countries  more   than   double   perceive   funds   as   a   major  bottleneck.  For  Italy,  the  number  of  personnel  to   conduct   data   analysis   is   clearly   the   main  

Figure  13.  Number  of  applications    

*Respondents   were   asked   to   attribute   a   «  score  »   to   each   point   (major,  minor   or   no   bottleneck).   The   vertical   axis   indicates   the   frequency   of   the  answer.  

*Multiple  responses  were  allowed  

Figure   14.   Bottlenecks   for   introducing   new  applications*    

 

   16  

     

impediment  for  adopting  new  applications.  

NGS  laboratories  conduct  own  research  In  the  group  of  most  represented  countries  (>=  5  respondents)  relatively  more  French  laboratories  are  founded   specifically   to   perform   large-­‐scale   sequencing   (9/15),   whereas   among   Dutch   and   German  respondents   those   laboratories   are   the   exception   (respectively   1/11   and   2/14).   This   may   very   well  reflect   a   true   difference   in   research   funding   policies   between   France   on   the   one   hand,   where  sequencing  efforts  have  been  centralized,  and  Germany  and  the  Netherlands  on  the  other  hand,  where  NGS  equipment  has  been  acquired  by  individual  laboratories.  

 

 

 

 

 

Overall,   the   large   majority   of  responding   laboratories   are  active   in   basic,   medical   or  genomic  research.  Almost  half  of  the   respondents   indicate   that  technology   development   is   also  one   of   their   main   activities  (Figure  15).  

 

Access  to  the  NGS  laboratories  

Who  uses  NGS  equipment?  

Laboratories   have   typically   been   equipped   with   NGS   technology   with   the   aim   of   offering   high-­‐level  sequencing  support  to  a  community  of  users  that  is  more  or  less  wide.  The  largest  group  i.e.  half  of  the  laboratories   say   they   are   open   to   any   researcher   without   distinction   from   academia   or   a   company  (27/54)  (Figure  16  left  panel).  In  half  of  the  responding  laboratories  access  is  however  limited  to  specific  user  groups.  Overall,  one  in  4  is  open  to  academic  researchers  only  (13/54).  Some  laboratories  a  priori  do   not   deliver   NGS   services   to   researchers   from   outside   the   host   institution   (6/54)   or   from   another  

Figure  15.  Main  research  focus  of  respondents*  

Figure  16.  Access  to  the  NGS  laboratory*  

*Please  note  that  a  response  was  not  obligatory  and  respondents  could  indicate  multiple  user  groups  as  a  “majority”.  

*Multiple  answers  were  allowed  

 

   17  

     

country   (7/54).   Access   to   the   NGS   technology   in   the   responding   German   laboratories   appears   to   be  more   restricted:   only   1   in   7   is   –in   theory-­‐   “open   to   all”   versus   more   than   1   in   2   in   France   or   the  Netherlands.    To   be   able   to   appreciate   whom   the   NGS   equipment   in   the   survey   really   serves,   we   then   asked   to  estimate  the  relative  share  of  each  user  group.  It  appears  that  in  practice  the  large  majority  of  users  are  researchers  from  within  the  host  institution  or  academic  researchers  from  the  same  country  (Figure  16  right   panel).   About   2   in   3   of   the   responding   laboratories   declare   that   they   have   few  or   no   academic  researchers   from  another   country   as   a   client.   Thus   in  practice   it   appears   that   here   is   no  or  only   very  limited  transnational  opening  of  NGS  laboratories.  The  majority  of  NGS  laboratories  (27/46)  do  not  have  companies  among  their  customers.    

 

Collaborations  or  service?  About  two  thirds  of  the  NGS  research  laboratories  (32/54)  are  set  up  to  perform  sequencing  not  only  in   the   framework   of   research   collaborations,   but  also  as  a  service  in  exchange  for  a  fee  (Figure  17).  About   half   of   the   time,   sequencing   projects,   be  they   research   collaborations   or   projects   carried  out   as   a   paid   service,   will   undergo   some   sort   of  selection   procedure   (e.g.   selection   by   a   scientific  committee,  call  for  projects…).      

Consistent  with  what  was  said  above,  ¾  of  the  NGS  laboratories  declares  that  the  majority  of  projects  they   actually   conduct   are   internal   research  projects   and   collaborations.  Of   the   laboratories   that  offer  the   possibility   of   performing   sequencing   as   a   paid   service   (32/54),   a   little   more   than   half   says   paid  services   represent   the   majority   of   the   work,   in   one   fourth   it   concerns   only   a   minority   or   few   of   all  sequencing   projects   they   do   and   the   remainder   of   these   laboratories   never   actually   provided   paid  sequencing  services  to  clients.    

 

In  summary,  while  ¾  of  NGS  laboratories  are  set  up  to  allow  access  to  academic  users  from  any  country,  few  researchers  cross  national  borders  to  have  their  samples  sequenced.  The  research  going  on  in  NGS  laboratories   is  mostly   “internal”   research  or   research   conducted   in   collaboration  with  academic  users  from  the  same  country.    

 

 

Number  of  RD  projects  conducted  in  NGS  laboratories  We  wanted  to  quantify  the  number  of  RD  projects  that  are  being  done  in  the  responding  laboratories.  About   half   of   the   responding   NGS   laboratories   have   never   conducted   a   project   on   RD.   Of   the  laboratories   that   did   RD   research   in   the   3-­‐year   period   between   January   2007   (when   NGS   became  available)  and  February  2010,  more  than  half  conducted  1  to  5  projects.  Six  NGS   laboratories  did  6-­‐10  projects   and   4   conducted  more   than   20   projects   on   RD   (Figure   18).   These   last   4  NGS   laboratories   (*  Exeter   Sequencing   Service/University   of   Exeter,   Genoscope   CEA/CEA   Evry,   Plateforme  Mutations/CEA  Evry  and  Centre  for  genomic  research/University  of  Liverpool)  together  carried  out  more  than  half  of  all  220  projects  on  RD.  When  considering  these  numbers  it  should  be  taken  into  account  that  RD  projects  are   not   specifically   long   (order   of   magnitude:   a   few   months),   because   they   usually   concern   only   a  limited  number  of  samples  and  a  target  region  in  the  order  of  Mb.    

 

 

Figure  17.  Collaborations  or  paid  service*    

 

   18  

     

Twenty-­‐four   of   the   220   RD   projects   can   be  qualified  as  “transnational”  in  the  sense  that  they   involved   scientists   from   different  European   countries   and   12   of   these   were  carried   out   by   1   NGS   laboratory   (Exeter  Sequencing   Service/University   of   Exeter).  Thus,   sequencing   for   RD   research   seems   to  be   concentrated   in   a   few   laboratories   in  Europe   and   transnational   collaborations   for  NGS   in   this   area   of   research   are   not  common.   In   conclusion,   only   a   limited  amount   of   NGS   laboratories’   resources  appear  to  be  dedicated  to  RD  research.  

 

 

Bottlenecks  for  external  researchers  to  access  NGS  technology  Next,  we  assessed  potential  roadblocks  encountered  by  researchers  without  NGS  equipment  to  access  NGS  technology,  either  through  collaboration  or  as  a  service.  From  the  NGS  laboratories’  point  of  view  there  are  2  major  bottlenecks  to  perform  research  for  «  third  parties  »:  the  number  of  bioinformaticians  and   the   number   of   technical   personnel   they   dispose   of.   Other   important   bottlenecks   are   the  development  of  data  analysis  methods,  the  large  amount  of  time  spent  on  internal  projects  and  the  lack  of  funding  behind  the  “third  parties’”  research  proposals.  Instrument  capacity  seems  to  be  a  bottleneck  in   about   half   of   the   responding   laboratories,   while   it   does   not   hinder   the   advancement   of   research  projects  for  the  other  half.  

 

Concerning  RD  projects  in  particular,  NGS  laboratories  indicate  that  a  lack  of  funding  of  the  RD  teams  is  the  main  bottleneck  specific  for  this  type  of  research.  The  potential  difficulty  of  statistical  analysis  and  lack  of   funding   for  RD  projects  at   the  NGS   laboratory  are  also   considered  as  bottlenecks  albeit  minor  ones.  

 

Overall,   the   major   roadblocks   encountered   by   NGS   laboratories   seem   to   be   situated   in   the   area   of  personnel  and  the  process  of  data  analysis.  In  order  to  better  understand  the  difficulties  encountered  by  NGS  laboratories,  further  analysis  focuses  on  these  topics.  

 

 

Personnel  

Personnel  dedicated  to  NGS  activities  The   median   number   of   personnel   in   the  responding   laboratories   (57)   is   6   in   total:   2  technical   staff,   2   bioinformaticians,   1   “other  scientific   personnel”,   0   students/post-­‐doctoral  students,   0   administrative   personnel   and   1   other  personnel   mostly   server/system   support   or   sales  support.   Figure   19   illustrates   the   distribution   of  personnel  number  per  country    

 

 

Figure   18.   Number   of   NGS   laboratories  with   RD  projects  (January  2007  –  February  2010)  

Figure   19.   Total   number   of   personnel   per  laboratory*  

*the  line  indicates  the  median    

 

   19  

     

 

Lack  of  personnel  All  countries  confounded,  a  majority  of   laboratories  claim  to   lack  bioinformaticians  (46/57),  consistent  with   the   results   shown   in   Figure   14.   Respondents   were   asked   to   indicate   the   reasons:   half   of   them  attribute  this  to  a  lack  of  qualified  applicants  and  the  other  half  to  a  lack  of  funds.  The  situation  is  clearly  different   for   technical  personnel   (lacking   in  33/57   laboratories)  where  a   lack  of   funds   is  most   invoked  (26/33).  This  picture  can  differ   locally  as   illustrated   in  Figure  20.  As  a   respondent   rightfully   remarks   it  should  be  kept  in  mind  that  the  personnel  bottleneck  has  also  to  do  with  the  impossibility  to  automate  certain   lab  tasks   (e.g.   library  prep,   target  enrichment)   for   the  moment.  About  1   in  4  respondents  also  expresses  a  need  for  other  scientific  personnel  (17/57)  or  students/post-­‐docs  (14/57).    

 

 

 

Potential  solutions  Respondents  were  presented  with  a   list  of  potential  solutions  to  solve  the  lack  of  applicants  and  were  asked   to  pick   those  options   they  considered  effective.  Throughout  all   job  categories,  ameliorating   the  financial   aspect   (salary/grant)   as   well   as   orienting   students   to   specialized   courses/organising  postgraduate   courses,   were   the   2   preferred   solutions   (Figure   21).   In   the   free   text   field   the   need   for  specific,  in-­‐house  training  for  bioinformaticians  was  brought  up,  as  well  as  the  problem  of  visibility  and  

Figure  20.  Reasons  why  personnel  is  lacking*    

*Only  countries  with  at  least  4  respondents  are  included  in  this  figure  

N° Responses : 57

*A  response  was  optional,  the  number  between  brackets  indicates  the  number  of  times  the  option  has  been  ticked  

 

   20  

     

Data  analysis  

Infrastructure  and  personnel  involved  in  NGS  data  analysis  Respondents  were  asked  which  infrastructure  and  personnel  for  data  analysis  they  had  for  NGS  in  their  laboratory:   almost   all   laboratories   have   servers   and   a   system   engineer   (60/65)   and   personnel   for  development   or   customization   of   software   tools   for   data   analysis   (58/65),   1   in   4   does   not   have  commercial  software  (49/65)  or  personnel  for  training  end  users  in  data  analysis  (45/65).    

The   infrastructure   and   personnel   for   data   analysis   is   often   not   available   to   users   from   outside   the  laboratory.   As   shown   in   Figure   22   clear   differences   exist   between   countries   with   respect   to   the  organisation  of  data  analysis   for  external  users   (only  countries  with  at   least  4   responding   laboratories  were  taken  into  account).  It  appears  that  German  NGS  laboratories  are  not  set  up  to  deliver  NGS  data  to  researchers   external   to  the   facility,   whereas   in  France,  more   than  half   of  the   facilities   do   dedicate  infrastructure   and/or  personnel   to   NGS   data  analysis   for   external  users.   Laboratories   that  dedicate   resources   to  third   party   data   analysis  most   frequently   do   so  through   the   training   of  end  users  in  data  analysis.  

 

Analysis  is  done  ad  hoc  There   are   no   standard   or  common   data   analysis  procedures   for   data  delivered   to   third  parties.  The  depth  of  data  analysis  depends  on   the  NGS   laboratory  and   the  specific  NGS  application.   For   any   specific   application,   about   a   third  of   laboratories  will   provide  external   users  with  the  data  together  with  analysis  software  for  the  specific  application.  Another  third  will  deliver  the  data  in  genome  browser  format  (except  for  mutation  detection  or  structural  variation  detection  –  where  often  the  data  will  be  a  list  of  variations  with  respect  to  a  reference  sequence).    

Bottlenecks  for  data  analysis  About   half   of   the   responding  laboratories   indicate   that   the  number  of   personnel   for   data   analysis   (30/60  respondents)   and   the   number   of  personnel   for   development   or  customization   of   analysis   software  tools   (27/60   respondents)   are   major  bottlenecks   for   data   analysis   (Figure  23).   Almost   always   both   go   together.  Of   note,   these   personnel   needs   may  be   somewhat   less   pressing   in   the  Netherlands,   where   about   1   in   2  responding   laboratories   indicates  these   are   no   bottleneck,   and   in  Belgium,  where   respondents   consider  them  as  a  minor  bottleneck  only.  The  

Figure  23.  Bottlenecks  for  the  analysis  of  NGS  data.    

Figure  22.  Availability  of  data  analysis  infrastructure/personnel  for  external  users*  

*Only  countries  with  at  least  4  respondents  were  included  in  this  figure  

 

   21  

     

limited   capabilities   of   end   users   to   analyse   data   autonomously   are   also   considered   an   important  bottleneck  for  data  analysis  by  the  NGS  laboratories  (major  bottleneck  for  24/60  respondents),  followed  by  the  number  of  personnel   for   the  training  of  end  users   in  data  analysis   (major  bottleneck   for  17/60  respondents).   All   responding   laboratories   in   Italy   (6)   and   the  U.K.   (5)   consider   data   storage   and   data  management  as  a  bottleneck.    

How  to  facilitate  data  analysis?  When   asked   to   indicate   which   potential   solutions   to   the   bottlenecks   for   data   analysis   are   effective,  respondents  most   frequently  choose   increasing  collaborations  with  other  NGS   laboratories   to  develop  the   knowhow  and   (42/60)   and  hiring  more  personnel   for   data   analysis   (41/60)   (Figure  24).   These   are  followed  by   solutions   at   the   level   of   the  end  users,   solutions   at   the  analysis   software   level   and  more  collaboration   with   technology   providers.   Remarkably,   cloud-­‐computing   and   personnel   dedicated   for  end-­‐user  training  are  chosen  by  only  1  in  5  respondents.  Solutions  brought  up  by  the  respondents  in  the  foreseen  free  text  space  fell  into  the  category  of  end  user  training  or  an  increase  in  server  capacity.  

 

Consistent  with  the  diverging  opinions  on  certain  bottlenecks,  opinions  may  differ  on  efficacy  of  certain  solutions:  

• In  Belgium,  none  of  the  4  respondents  believes  that  hiring  more  personnel  for  data  analysis  or  software  development  would  be  an  effective  solution    

• Corresponding  to  their  specific  data  storage  and  server  management  needs,  4/5  of  respondents  from   the  U.K.   believes  hiring  more  personnel   for   data   storage   and   server  management   is   an  effective  solution  for  facilitating  data  analysis  versus  around  1/5  for  other  countries.  

 

End-­‐user  training  Out   of   62   responding   laboratories,   23   organise   end-­‐user   training.   Topics   range   from   technology   or  specific  applications  (13),  data  analysis  (13),  specific  bioinformatic  tools  (13)  and  experiment  design  (10)  to   genetics   and   genomics   of   specific   organisms   (2).   In   the   group   of   7   countries   with   at   least   4  respondents   it  appears   that   the  number  of  courses   is  particularly   low   in  Germany   (1/10)  and  Belgium  (0/4).  

Figure  24.  Effective  ways  to  tackle  the  bottlenecks  for  data  analysis.  

 

   22  

     

 

Networking  initiatives  More   than   half   of   the   responding   laboratories   (33/49)   are   engaged   in   some   type   of   networking  initiative,  mostly  national  federations  or  partnering  networks  (24/49).  Less  than  a  third  (15/49)  is  active  in  European  initiatives  such  as  ELIXIR,  BBMRI  etc.    

 

Some  interesting  differences  emerge  when  the  data  are  analysed  by  country  (Figure  25).  Only  countries  with  at  least  4  participating  NGS  laboratories  were  considered  for  this  analysis  i.e.  Germany,  France,  The  Netherlands,   Spain,   Italy   and   the   United   Kingdom.   Globally,   participation   in   any   type   of   networking  initiative   is   less   frequent   in   Italy   and   Spain,   while   in   the   United   Kingdom,   on   the   contrary,   all   4  responding   laboratories  are   involved  in  some  type  of  collaborative   initiative.  Except  for   laboratories   in  Italy   and   Spain,   at   least   half   of   the  NGS   laboratories   is   engaged   in   national   federations   or   partnering  networks.   The  participation   in  EU   initiatives   seems   to  be   rather   low   in  France   compared   to   the  other  countries,  but  we  can  not   rule  out   that   this  might  be  due   to  differences   in   interpretation  of   the   term  «  European   initiatives  ».   In   its  most   strict   sense   this   could  be   interpreted  as   large   scale   infrastructure  initiatives  such  as  EATRIS,  BBMRI,  etc.  only,  while  in  a  broader  sense  it  can  contain  all  research  consortia  supported  by  the  EC  under  FP7.  

 

Involvement   in  one  or  more  networking   initiatives  did  not   seem  to  be  correlated  with   the  number  of  personnel  working  in  the  laboratory.  

 

Figure  25.  Involvement  in  networking  initiatives*    

(7)  

*The  number  between  brackets  indicates  for  each  country  the  total  number  of  laboratories  that  responded  to  the  question.    

(9)  (12)   (5)   (6)   (4)  

 

   23  

     

Conclusions  Today  only  a  minority  of  NGS  facilities  throughout  Europe  function  as  a  “platform”  or  service  provider  stricto   sensu.   Facilities   with   NGS   equipment   are   also   pursuing   their   own   research   goals   and   a   large  volume   of   samples   is   sequenced   in   the   framework   of   collaborations.   Although   in   theory   most   NGS  laboratories  are  open  to  all  academic  researchers,  they  mostly  serve  researchers  from  within  their  own  host  institution  or  country.  Few  samples  appear  to  cross  national  borders  to  be  sequenced.  Altogether  only  few  RD  projects  have  been  conducted   in  the  responding   laboratories  since  the  beginning  of  NGS,  this  RD  research  has  been  concentrated  in  a  few  laboratories.  

 

The  number  of  sequencing  projects   is   limited  by   the   tremendous  effort   -­‐in   terms  of   time  and  money-­‐  required  for  data  analysis  and  for  preparation  of  the  samples.  The  NGS  field  lacks  bioinformaticians  and  in   this   competitive   context,   attractive   salaries   are   thought   to  make   the   difference.   There   is   a   strong  need   for   training   of   bioinformaticians   and   technical   personnel,   but   also   end-­‐users.   As   procedures   for  data   analysis   are   in   constant   development   and   customization   is   the   rule   rather   than   the   exception,  collaborations   between   NGS   laboratories,   but   also   with   end-­‐users   and   technology   and   software  providers  are  a  necessity.    

Figure  26.  Type  of  charge    

Charge  Most   academic   laboratories/local   sequencing   facilities   operate   on   a   cost   recovery   basis   i.e.   academic  customers  are  charged  for  consumables  cost  only,  or   for  consumables  and  part  of  the  personnel  cost.  Industrial   customers   will   however   pay   an   extra   service   fee.   A   few   academic   laboratories/local  sequencing  groups  provide  the  possibility  to  apply  for  a  grant  to  conduct  the  NGS  project  at  no  charge.  Figure  26  illustrates  the  ways  in  which  different  organisations  charge  their  customers.  

 

   24  

     

 

Recommendations  

Which  technology  platforms  are  needed?  The  survey  conducted  among  153  RD  researchers  points  to  the  strategic  role  for  technologies  like  next  generation  sequencing,  the  creation  of  animal  models  and  microarray  analysis.  The  results  indicate  that  the  entry  barrier  to  these  strategic  technologies  would  be  lowered  if  RD  researchers  could  benefit  from  assistance  with  the  complex  task  of  managing  and  analysing  the  huge  amount  of  data  produced  by  high  throughput   technologies.   Less   stringent   access   conditions   and   more   technology   training   would   also  encourage   RD   researchers   to   explore   these   technological   possibilities.   How   these   needs   can   be  addressed  by  funding  agencies  is  explained  in  more  detail  below.  

Limitations  of  the  findings:  the  153  RD  researchers  surveyed  in  the  framework  of  the  E-­‐Rare  programme    are  working  in  academic  laboratories  and  are  mainly  involved  in  genetics  and  physiopathology  research,  39%  of  the  respondents  have  clinical  activities.  

Improving  access  to  NGS  technologies  and  integrating  NGS  laboratories  in  national  and  transnational  programmes  on  RD  As   can   be   learned   from   the   combined   results   of   the   surveys   above,   researchers   and   NGS   laboratory  heads/managers  point   in  the  same  direction  regarding  the  main  bottlenecks   for  accessing  and  making  optimal   use   of   existing   NGS   facilities,   such   as   notably   the   difficulty   of   data   analysis   and   the   lack   of  personnel/researchers  with  NGS  experience.    

The  analysis  above  already  mentions  potential  solutions  for  a  number  of  bottlenecks  identified  by  NGS  laboratories.   Here   we   propose,   based   on   the   respondents’   input,   several   potential   “avenues”   for  funding   agencies   to   improve   the   opening   of   NGS   laboratories   and   render   NGS   more   accessible,  especially  for  RD  researchers.  These  recommendations  are  organised  per  topic  as  in  the  analysis  above,  although  it  should  be  clear  that  a  lot  of  these  topics  are  intertwined,  e.g.  lack  of  personnel  and  lack  of  funds.    

   

Complexity  of  data  analysis  or  bioinformatics  Storing,   treating   and   standardising   the   tremendous   amount   of   data   generated   by   high   throughput  technologies  such  as  NGS  is  one  of  the  greatest  challenges  in  the  research  field  today.  A  number  of  EU  countries  (13  at  the  time  of  writing),   through  the  ELIXIR  project  (European  Life  Sciences   Infrastructure  for  Biological   Information),   are   reflecting  on   the   creation  of   a   sustainable   infrastructure   for  biological  information,   thus   encompassing   NGS   data.   The   UK,   Denmark,   Sweden   and   Finland   have   already  committed  funds  for  the  future  pan-­‐European  infrastructure.  It  leaves  no  doubt  that  this  infrastructure  will  play  a  major  role  also   in  developing  and  disseminating  data  analysis  methods  for  NGS.  Funding  at  the   level   of   the   NGS   laboratories   or   researchers   may   very   well   complement   such   high   level  commitments.    

 

Several  strategies  could  be  envisaged,  aiming  at:  

1. Stimulating  the  development  of  NGS  data  management  and  analysis  methods  at  NGS  laboratories  

• Stimulate  collaborations  (e.g.  through  grants)  between  NGS  laboratories:  this  was  the  preferred  scenario  of  NGS  laboratories.    

• Stimulate  collaborations  (e.g.  through  grants)  between  NGS  laboratories  and  software  providers  

 

   25  

     

• Grants  to  hire  bioinformaticians  • Training  grants  for  bioinformaticians  

 Specifically  for  rare  diseases  

• Grants  to  hire  bioinformaticians  dedicated  to  RD  projects  • Stimulate  development/implementation  of  a  new  technology/application  in  a  NGS  laboratory  

by  funding  RD  project  as  a  test  case  • Grants  for  the  organisation  of  a  meeting/seminar  dedicated  to  RD  topics    • Promote  E-­‐Rare  call  towards  bioinformatic  research  groups  in  order  to  encourage  them  to  set  

up  collaborations  with  RD  groups  and  submit  a  proposal  

 2. Improving/developing  NGS  data  analysis  know-­‐how  within  RD  research  groups  

• PhD/post-­‐doctoral  scholarships  for  bioinformaticians  with  RD  research  projects  

• Grants  to  hire  bioinformaticians  within  RD  research  groups  

• Stimulate  proposals  with  bioinformatic  goals  within  E-­‐Rare  call,  properly  evaluate  projects  from  bioinformatics  angle  

• Bioinformatics  summer  school  grants  

• Grants  for  the  organisation  of  a  NGS  meeting/seminar    

• Technology/infrastructure  grants  for  RD  research  groups  to  invest  in  bioinformatic  tools  

 

Personnel  The   NGS   facilities   in   this   survey   typically   employ   6,   of   which   2   bioinformaticians   and   2   technical  personnel.  There  are  typically  no  students  or  post-­‐docs  on  the  payroll.  In  almost  all  laboratories  there  is  a   shortage   in  bioinformaticians  and   in  half   there   is  a   shortage  of   technical  personnel.   This   is  not  only  attributed  to  a  lack  of  financial  means,  but  also  to  the  challenging  task  of  finding  the  right  applicants.    

 

Several  strategies  could  be  envisaged,  aiming  to  establish:  

1. More  attractive  working  conditions  

• Grants  to  hire  bioinformaticians/technical  personnel  

• Possibility  of  offering  bioinformaticians  salaries  competitive  with  those  in  industry  

• Training/mobility  grants  for  bioinformaticians  

• Training/mobility  grants  for  technical  personnel  

2. Increasing  number  of  scientists  and  technicians  specialised  in  NGS  

• PhD/post-­‐doctoral  scholarships    

• Grants  to  organise  NGS  courses  

 

Funding  Next   generation   sequencing   technologies   have   dramatically   lowered   the   cost   per   base   sequenced.  However,   NGS   today   remains   a   very   costly   technology,   not   only   in   terms   of   the   initial   investment   in  equipment,  but  also  in  terms  of  consumables  and  hands-­‐on  time  of  skilled  personnel.    

In  addition  to  sufficient  structural  means  for  example  for  hiring  trained  personnel  or  organizing  training  for  end-­‐users,  a  number  of  specific/punctual  funding  initiatives  could  also  be  envisaged:  

 

   26  

     

 Specifically  for  rare  diseases  

• Grants   for   (transnational)  RD  research  proposals  using  NGS  technology:  during  evaluation  the  elevated  costs  of  NGS  consumables  should  be  taken  into  account  

• Grants  for  developing/implementing  new  NGS  technology/applications  in  the  framework  of  an  RD  research  project  

 

End-­‐user  training  Both   researchers   and   NGS   laboratory   heads/managers   are   convinced   of   the   importance   of   end-­‐user    training.  Not  only  would  better   knowledge  of   the  NGS   technology   lower   the  entry-­‐barrier   to   the  NGS  laboratory,  but  -­‐according  to  NGS  laboratory  heads-­‐  it  would  also  facilitate  the  challenging  task  of  data  analysis   since   it  would   be   easier   to   share   the   analysis   between   the  NGS   laboratory   and   the   end-­‐user  (researcher).    

 

Specific/punctual  funding  initiatives  could  be  envisaged  in  order  to  improve  researchers’  knowledge  of  NGS:  

Specifically  for  rare  diseases  • Grants  for  RD  researchers  to  attend  technology  meetings/summer  schools  • Grants  for  RD  researchers  to  attend  specific  training  sessions  organized  by  platforms  • Support  for  platforms  (network)  to  organize  (international)  training  sessions  for  RD  groups  

 

Computing  power  /  data  storage  The  NGS   laboratories   in   the   UK   and   in   Italy   particularly   express   the   need   for   computing   power/data  storage   infrastructure,   whereas   NGS   laboratories   in   other   countries   do   not   (or   not   yet?)   seem   to   be  confronted  with  this  problem.  Other  European  initiatives  such  as  ELIXIR  and  EGI  (www.elixir-­‐europe.org)  indeed  anticipate  an  explosive  need  for  computing  power  generated  by  the  adoption  of  high  throughput  technologies   in   various   domains.   These   initiatives   may   also   propose   ways   to   optimize/mutualise  computing  power  for  example  for  treating  NGS  data.    

 

Access  Today,   access   to   NGS   technology   is   limited   because  NGS   laboratories   only   have   limited   personnel   to  handle  samples  and  analyse  the  data.  In  addition,  a  number  of  research  projects  cannot  be  carried  out  because   these   do   not   dispose   of   sufficient   financial   support   to   carry   out   NGS   analyses.   Potential  solutions  to  these  bottlenecks  have  been  discussed  above.    

 

A   potential   route   for   maximizing   access   to   NGS   technology   is   the   opening   of   NGS   laboratories   for  projects   from   researchers   abroad.   This   is   virtually   not   done   today.   To   achieve   more   international  cooperation  one  could  envisage:  

• Wide  dissemination  of  information  on  NGS  laboratories  throughout  Europe:  see  e-­‐catalogue  on  E-­‐Rare  website  (www.e-­‐rare.eu)  

Specifically  for  rare  diseases  • Grants  for  (transnational)  RD  research  proposals  using  NGS  technology  

 

 

   27  

     

“Plateforme  Mutations”:  Case  study  of  an  NGS  funding  initiative    

A  public-­‐private  partnership  In   January   2009,   the   GIS-­‐Institut   des   Maladies   Rares   –a   French   funding   body   and   E-­‐Rare   Partner-­‐,  together  with  INSERM  -­‐the  French  National   Institute  for  Health  and  Medical  Research-­‐  and  the  Centre    National   de   Séquençage/Genoscope   –a   French   publicly   funded   NGS   facility-­‐   together   created   the  “Plateforme  Mutations”   a  platform   for   the  discovery  of  mutations   implicated   in  human  monogenic  diseases  (hence  most  often  rare  diseases).  The  next  generation  sequencing  technologies  available  at  this  platform   (Roche   454   Ti,   Illumina   GA,   Illumina   Hiseq   2000   –expected   in   2011-­‐   and   SOLiD)   enable   the  identification  of  allelic  variants  that  are  difficult  to   identify  with  classical  approaches  (small  number  of  patients,  locus  heterogeneity,  isolated  cases,  difficulty  to  determine  mode  of  inheritance  etc.).    

 

Each  partner  contributes  significant  resources:  

GIS-­‐Institut  des  Maladies  Rares:  employs  2  bioinformaticians  full-­‐time  working  for  the  platform  (approx.  260   k€)   and   finances   part   of   or   all   consumables   for   each   project   with   charity   funds   from   AFM  (l’Association  Française  contre  les  Myopathies  –  France’s  largest  patient  organisation  in  the  field  of  rare  diseases)  

INSERM:  acquired  Roche  454  Ti  sequencer  (approx.  350  k€)  

Centre   National   de   Séquençage/Génoscope:   puts   sequencers,   lab   space,   technical   and   coordinating  personnel  (3-­‐4  persons)  at  the  disposal  of  the  platform  

 

Services  offered  The   platform’s   team   first   assist   the   RD   teams   in   the   experimental   design,   performs   sequence  enrichment,   if   necessary,   library   construction   and   sequencing.   Current   technology   at   the   platform  enables  to  sequence  regions  of  interest  of  up  to  5  Mb  and  also  perform  whole  exome  sequencing.    

An  essential  part  of  the  platform’s  services  is  the  bioinformatic  analysis  of  the  data  generated.  Analysis  pipelines  have  been  developed  to  facilitate  detection  and  annotation  of  polymorphisms.  An  analysis  tool  enabling  to  filter  polymorphisms  according  to  several  criteria   is  put  at  the  disposal  of  the  RD  teams  as  well  as  an  interface  for  visualising  the  results  with  links  to  annotation  databases.  In  addition,  since  a  lot  of  RD  teams  do  not  have  bioinformatic  experience  in-­‐house,  the  platform’s  bioinformaticians  train  the  RD  teams  in  and  closely  assist  with  data  analysis.  

 

Calls  for  projects  Since  April  2009,  the  Platform  launches  4  calls  for  proposals  per  year  for  French  teams  with  a  research  project  on  monogenic  disease.  A  scientific  committee,  composed  of  11  representatives  of  the  founding  institutes  and  associated  stakeholders,  performs  project  selection  and  evaluates  the  cost.    

Throughout   the   first   6   calls   68   proposals   were   received   and   44  were   selected   for   sequencing   at   the  platform.  Total  cost  of  consumables  was  calculated  at  approx.  1  M€,  83%  of  which  was  financed  by  GIS  through  charity  funds.    

 

   28  

     

First  conclusions  The  platform  aims  at  treating  approx.  40-­‐50  RD  projects  per  year  and  resources  need  to  be  secured  to  keep  the  turn-­‐over  time  to  a   limit  of  90  days  (final  data  and  customised  bioinformatics  analysis).  Also,  since  NGS  technology  is  evolving  very  fast,  the  platform’s  team  needs  to  explore  new  applications  and  build  new  tools.  The  data  storage  capacity  necessary  to  keep  up  with  all  projects  is  estimated  at  9  To.    

 

 

   29  

     

Acknowledgements  

The   authors   wish   to   thank   Vincent   Meyer,   Gabor   Gyapay   and   Marc   Wessner  (Genoscope/CEA,  France)  for  their  helpful  contribution.  The  authors  explicitly  thank  Terry  Vrijenhoek   (gENVADIS),  Benoît  Dardelet  and  Marie-­‐Denise  Breton   (ERA-­‐Instruments)   for  the  fruitful  collaboration  that  led  to  this  paper.  The  authors  also  wish  to  acknowledge  the  contribution   of   the  whole   E-­‐Rare   consortium   and   in   particular   Ralph   Schuster   (PT-­‐DLR)  during  the  elaboration  of  this  paper.