e- notes substations

44
E- Notes SUBSTATIONS

Upload: others

Post on 18-Dec-2021

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: E- Notes SUBSTATIONS

E- Notes

SUBSTATIONS

Page 2: E- Notes SUBSTATIONS

TOPICS

• Classification of substations :

Indoor & Outdoor substations

• Substations layout showing the location of all the substation equipment.

• Bus bar arrangements in the Sub-Stations: Simple arrangements like

1. Single Bus Bar

2. Sectionalized Single Bus Bar

3. Main and Transfer Bus Bar System with relevant diagrams.

Page 3: E- Notes SUBSTATIONS

Introduction

The present-day electrical power system is a.c.

Electric power is generated, transmitted and

distributed in the form of alternating current.

The electric power stations are located at far

away from the consumers or load centers.

At many places in the power system, it is

desirable and necessary to change some

characteristic of electric supply.

Page 4: E- Notes SUBSTATIONS

Sub-Station An assembly of apparatus installed to perform voltage

transformation, switching, power factor correction, power and frequency –converting operation.

The sub-stations are used to change some characteristic of electric supply in the power system.

Voltage

A.C. to D.C.

Frequency

Power Factor

Page 5: E- Notes SUBSTATIONS

Factors governing the selection of site

Sub-stations are important part of power system.

The continuity of supply.

Near the load centre (at the centre of gravity of load) of its service areas.

Proper access for incoming sub transmission lines and outgoing primary feeders.

Easy access for repairs and maintenance, abnormal occurrences such as

possibility of explosion or fire etc.

Enough space for future expansion.

Minimum capital cost.

Page 6: E- Notes SUBSTATIONS

Classification of Sub-Stations

According to

Service requirement

Design (constructional features).

Page 7: E- Notes SUBSTATIONS

According To Service Requirement

Transformer sub-stations:

Transform power from one voltage level to another .

Transformer will be the main component

Switching sub-stations:

Switching operations of power lines

Synchronous (Power factor correction) Substations:

Improves the power factor of the system.

Located at the receiving end of transmission lines.

Synchronous condensers for p.f improvement.

Page 8: E- Notes SUBSTATIONS

According To Service Requirement

Frequency changer sub-stations:

Convert normal frequency to other useful.

Converting sub-stations:

Convert a.c. power into d.c. power

Electric traction, electroplating, electric

welding, battery charging, etc.

Industrial sub-stations:

Industrial consumers (huge amounts of power)

Individual sub-stations

Page 9: E- Notes SUBSTATIONS

According to Design (Constructional features)

• A sub-station has many components (e.g.insulators, bus bars,transformers, circuit breakers,switches, fuses, instruments etc.) which must beproperly protected for continuous and reliableservice.

Indoor sub-stations:Equipment are installed indoor (within a building)Generally used for voltages upto 11 kV onlyAtmosphere is contaminated with impurities such

as metal corroding gases and fumes , conductivedust etc.

Page 10: E- Notes SUBSTATIONS

According to Design (Constructional features)

Outdoor sub-stations: For voltages beyond 11 kV, equipment is invariably installed

outdoor More clearances between conductors and the space required

for switches, circuit breakers and other equipment Not economical to install the equipment indoor.Underground sub-stations: In thickly populated areas The space available for equipment and building is limited and

the cost of land is high.Pole-mounted sub-stations: These are used for distribution purposes only Equipment installed overhead on H-pole or 4-pole structure It is the cheapest form of sub-station

Page 11: E- Notes SUBSTATIONS

Comparison between Outdoor and Indoor Sub-Stations

S.N

o Particular Outdoor Sub-station Indoor Sub-station

1 Space required More Less

2 Time required for

erection

Less More

3 Future extension Easy Difficult

4 Fault location Easier because the

equipment is in full

view

Difficult because the

equipment is

enclosed

5 Capital cost Low High

6 Operation Difficult Easier

7 Possibility of

fault escalation

Less because greater

clearances can be

provided

More

Page 12: E- Notes SUBSTATIONS

Transformer Sub-Stations

The majority of the sub-stations

Transformer is the main component employed to change the voltage level.

Depending upon the purpose served classified into :

(i) Step-up sub-station

(ii) Primary grid sub-station

(iii) Secondary sub-station

(iv) Distribution sub-station

Page 13: E- Notes SUBSTATIONS

The block diagram of supply system indicating the position of sub-stations

Page 14: E- Notes SUBSTATIONS

Step-up sub-station: The generation voltage (11 kV) is stepped up to high voltage 220 kV

Electric power transmitted by 3-ph, 3-wire overhead system tothe outskirts of the city

These are generally located in the power houses

Outdoor type

Primary grid sub-station: From the step-up sub-station, electric power is received by the

primary grid sub-station

Reduces the voltage level to 66 kV for secondary transmission

Electric power is transmitted at 66 kV by 3-phase, 3-wire systemto various secondary sub-stations located at the strategic pointsin the city

Outdoor type

Page 15: E- Notes SUBSTATIONS

Secondary sub-station: From the primary grid sub-station, electric power is received

by the secondary grid sub-station The voltage is further stepped down to 11 kV The 11 kV lines run along the important road sides of the city. Big consumers (having demand more than 50 kW) are

generally supplied power at 11 kV Outdoor type

Distribution sub-station: The electric power from 11 kV lines is delivered to

distribution sub-stations These sub-stations are located near the consumer’s localities Step down the voltage to 400 V, 3-phase, 4-wire for supplying

to the consumers.

Page 16: E- Notes SUBSTATIONS

Equipment in a Transformer Sub-Station1.Bus-bars: When a number of lines operating at the same voltage have to be directly connected

electrically, bus-bars are used as the common electrical component Bus-bars are copper or aluminum bars (rectangular x-section) Operate at constant voltage The incoming and outgoing lines in a sub-station are connected to the bus-barsThe most commonly used bus-bar arrangements in sub-stations are :

(i) Single bus-bar arrangement(ii) Single bus-bar system with sectionalisation(iii) Main and transfer bus-bar arrangement

2. Insulators: They support the conductors (or bus-bars) and confine the current to the conductors The most commonly used material is porcelainThere are several types of insulators• pin type• suspension type• post insulator etc

Page 17: E- Notes SUBSTATIONS
Page 18: E- Notes SUBSTATIONS
Page 19: E- Notes SUBSTATIONS

Equipment in a Transformer Sub-Station

3. Isolating switches :To disconnect a part of the system for general

maintenance and repairsAn isolator is essentially a knife switch and is

designed to open a circuit under no loadOperated only when the lines carry no current4.Circuit breaker:An equipment which can open or close a circuit

under normal as well as fault conditions It is so designed that it can be operated manually (or

by remote control) under normal conditions and automatically under fault conditions

For the fault conditions operation, a relay circuit is used with a circuit breaker

Page 20: E- Notes SUBSTATIONS
Page 21: E- Notes SUBSTATIONS
Page 22: E- Notes SUBSTATIONS

Equipment in a Transformer Sub-Station

5. Power Transformers:

To step-up or step-down the voltage

Except at the power station, all the subsequent sub-stations use step-down transformers

6. Instrument transformers:

The lines in sub-stations operate at high voltages and carry current of thousands of amperes

The measuring instruments and protective devices are designed for low voltages (generally 110 V) and currents (about 5 A)

They will not work satisfactorily if mounted directly

This difficulty is overcome by installing instrument transformers

Transfer voltages or currents in the power lines to values which are convenient for measuring instruments and relays

Two types

(i) Current transformer (C.T.) (ii) Potential transformer (P.T.)

Page 23: E- Notes SUBSTATIONS
Page 24: E- Notes SUBSTATIONS

Equipment in a Transformer Sub-Station(i) Current transformer (C.T.):

It is a transformer which steps down the current to a known ratio

The primary consists of one or more turns of thick wire connected in series with the line

The secondary consists of a large number of turns of fine wire and provides for the measuring instruments and relays a current which is a constant fraction of the current in the line

• Suppose a current transformer rated at 100/5 A is connected in the line to measure current. If the current in the line is 100 A, then current in the secondary will be 5A. Similarly, if current in the line is 50A, then secondary of C.T. will have a current of 2·5 A. Thus the C.T. under consideration will step down the line current by a factor of 20.

Page 25: E- Notes SUBSTATIONS
Page 26: E- Notes SUBSTATIONS

Equipment in a Transformer Sub-Station(ii) Potential transformer:

It is a transformer which steps down the voltage to a known ratio

The primary consists of a large number of turns of fine wire connected across the line.

The secondary winding consists of a few turns and provides for measuring instruments and relays a voltage which is a known fraction of the line voltage.

• Suppose a potential transformer rated at 66kV/110V is connected to a power line. If line voltage is 66kV, then voltage across the secondary will be 110 V.

Page 27: E- Notes SUBSTATIONS
Page 28: E- Notes SUBSTATIONS

Equipment in a Transformer Sub-Station7. Protective relays:

These are installed for ptotection of equipment against faults or over loads

8. Metering and Indicating Instruments:

These are installed to watch and maintain the circuit quantities.

e.g. ammeters, voltmeters, energy meters etc.

The instrument transformers used with them for satisfactoryoperation.

9.Miscellaneous equipment.

(i) Lightening arresters.

(ii) Fire fighting equipment

(iii) sub-station auxiliary supplies

Page 29: E- Notes SUBSTATIONS
Page 30: E- Notes SUBSTATIONS
Page 31: E- Notes SUBSTATIONS
Page 32: E- Notes SUBSTATIONS

Symbols for Equipment in Sub-Stations

Page 33: E- Notes SUBSTATIONS

Symbols for Equipment in Sub-Stations

Page 34: E- Notes SUBSTATIONS

Symbols for Equipment in Sub-Stations

Page 35: E- Notes SUBSTATIONS

Bus-Bar Arrangements in Sub-Stations Important components in a sub-station.

There are several bus-bar arrangements

The choice depends upon various factors such as system voltage, position of sub-station, degree of reliability, cost etc.

(i) Single bus-bar system

(ii) Single bus-bar system with sectionalisation

(iii) Main and Transfer bus-bar system

Page 36: E- Notes SUBSTATIONS

(i) Single bus-bar system It consists of a single bus-bar

All the incoming and outgoing lines are connected to the same bus bar.

Low initial cost

Less maintenance and simple operation

The equipment connections are very simple and hence the system is very convenient to operate

If the fault occurs on any section of the bus, the entire bus bar is to be de-energized for carrying out repair work.

This results in a complete interruption of the supply.

Not used for voltages above 33kV.

The indoor 11kV sub-stations are single bus-bar arrangement.

Page 37: E- Notes SUBSTATIONS

(i) Single bus-bar system

The two 11kV incoming lines connected to the bus-bar through circuit breakers andisolators. The two 400V outgoing lines are connected to the bus bars through isolator,circuit breaker and step down transformer (11kV/400 V) from the bus bars

Page 38: E- Notes SUBSTATIONS

(i) Single bus-bar system

Advantages:Each of the outgoing circuit requires a single circuit

breaker. It is the cheapestThe relaying system is simpleThe maintenance cost is lowDisadvantages:Maintenance without interruption of supply is not possible. Expansion of substation without shutdown is not possible.

Page 39: E- Notes SUBSTATIONS

(ii) Single Bus-Bar System with Sectionalisation

The single bus-bar is divided into 2 or 3 sections

Load is equally distributed on all the sections.

Any two sections of the bus bar are connected by acircuit breaker and isolators.

If a fault occurs on any section of the bus, thatsection can be isolated without affecting the supplyfrom other sections.

The repairs and maintenance of any section of thebus bar can be carried out by de-energizing thatsection only, eliminating the possibility of completeshutdown.

This arrangement is used for voltages up to 33 kV.

Page 40: E- Notes SUBSTATIONS

(ii) Single bus-bar system with sectionalisation

Two 33 kV incoming lines connected to sections I and II through circuit breaker and isolators.Each 11 kV outgoing line is connected to one section through transformer (33/11 kV) andcircuit breaker.Each bus-section behaves as a separate bus-bar.

Page 41: E- Notes SUBSTATIONS

(ii) Single bus-bar system with sectionalisation

Advantages:The operation is simple as in case of the single bus barFor maintenance or repair of the bus bar, only one

half of the bus bar is required to be de-energized.The relaying system is simpleThe maintenance cost is low

Disadvantages: In case of a fault on the bus bar, one half of the

section will be switched-off.Maintenance without interruption of supply is not

possible.

Page 42: E- Notes SUBSTATIONS

(iii) Main and Transfer bus-bar system: It consists of two bus-bars, a “main” bus-bar and a

“Transfer or spare” bus-bar Each bus-bar has the capacity to take up the entire

sub-station load.The incoming and outgoing lines can be connected to

either bus-bar with the help of a bus-bar couplerbus-bar coupler consists of a circuit breaker and

isolators.Generally, the incoming and outgoing lines remain

connected to the main bus-bar. In case of repair of main bus-bar or fault occurring on it,

the continuity of supply to the circuit can bemaintained by transferring it to the Transfer bus-bar.

Frequently used for voltages exceeding 33kV.

Page 43: E- Notes SUBSTATIONS

(iii) Main and Transfer bus-bar system:

The arrangement of main and transfer bus-bar system in a typical sub-station. The two 66kV incoming lines can be connected to either bus-bar by a bus-bar coupler.The two 11 kV outgoing lines are connected to the bus-bars through transformers (66/11 kV)

and circuit breakers

Page 44: E- Notes SUBSTATIONS

(iii) Main and Transfer bus-bar system:

Advantages:

It ensures supply in case of bus fault.

In case of any fault on the bus bar, the circuit canbe transferred to the transfer bus.

It is easy to connect the circuit from any bus.

The maintenance cost decreases.

Disadvantages:

Requires one extra circuit breaker.

Switching is somewhat complicated while maintaininga breaker.

Failure of bus bar or any circuit breaker results inshutdown of the entire substation.